

PII: S0040-4020(96)00771-5

A Facile and Stereoselective Azepine-Ring Formation at the Periphery of Pyridone and Pyrido[1,2-*a*]pyrimidone Systems *via* Intramolecular Imine and Carbonyl Ene Reactions

Michihiko Noguchi,* Takashi Mizukoshi, and Akikazu Kakehi[†]

Department of Applied Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755, Japan and [†]Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380, Japan

Abstract: Thermal reaction of the N-alkyl and N-aryl imines of 2-(alk-2-enylamino)-4-oxo-4Hpyrido[1,2-a]pyrimidine 3-carboxaldehyde (9) gave pyrido[1',2':1,2]pyrimido[4,5-b]azepines 11-14 in good to excellent yields. Similarly, the imines of 4-(alk-2-enylamino)-1,6-dimethyl-2oxo-1H-pyridine 3-carboxaldehyde (15) afforded pyrido[4,3-b]azepines 16 and 2,4ethanopyrido[4,3-d]pyrimidines 17 depending on the reaction conditions, the latter of which were secondary products from azepines 16. Heating aldehyde 15 in appropriate solvents also gave 2,4-ethanopyrido[4,3-d][1,3]oxazine 18. On the other hand, the thermal reaction of aldehyde 9 gave pyridopyrimidoazepine 20 and 12,13-ethanopyrido[1',2':1,2]pyrimido[5,4-b]azepine 21 in good total yields. These azepine-ring formation could be regarded as the intramolecular imine and carbonyl ene reactions at the periphery of the heterocyclic systems. Therein, the reactions proceeded in a highly stereoselective manner to give 4,5-cis azepines. The details and limitations of these ene reactions will be described. Copyright © 1996 Elsevier Science Ltd

Introduction

Recently, we have developed a new type of cyclization reaction at the periphery of pyrimidine and 1benzopyran systems; heating the imines of 6-(alk-2-enylamino)-2,4-dioxo-1,2,3,4-tetrahydropyrimidine 5carboxaldehyde 2 in toluene gave pyrimido[4,5-b]azepine derivative 3 as a mixture of 4,5-cis and -trans azepines.¹ On the other hand, the thermal reaction of 4-(alk-2-enylamino)-2-oxo-1H-1-benzopyran carboxaldehyde 4 also gave 1-benzopyrano[3,4-b]azepine derivative 5 as a 4,5-cis isomer (Scheme 1).²

Scheme 1.

These azepine-ring formations could be regarded formally as the intramolecular imine and carbonyl ene reactions classified to Type III.³ Since the examples of the Type III ene reaction were rarely found in literatures⁴ and these ene reactions proceeded smoothly without catalysts,^{5,6} our attention was focused on the reaction mechanism. Molecular orbital (MO) calculations using PM3 method were accomplished for the model reaction of 4-(*N*-allylmethylamino)-2-oxo-2*H*-pyran 3-carboxaldehyde (7: R¹= H) to 1-methyl-5-hydroxy-4,5-dihydropyrano[4,3-*b*]azepin-6(1*H*)-one (8: R¹= H) (Scheme 2). The results suggested that the azepine-ring formation was constituted of two consecutive orbital-controlled reactions; the [1,6] hydrogen shift leading to a conjugated azomethine ylide intermediate and its [1,7] electrocyclic ring-closure.² The latter step was concluded to be the rate-determining one.

Scheme 2.

Reactions: i) [1,6] Hydrogen shift (antarafacial); ii) [1,7] Electrocyclization (conrotatory)

Although the azepine-ring formation is much of interest because of its mechanistic novelty and synthetic utility, the generality and stereoselectivity of the ene reactions have not been established; neither the carbonyl ene reaction of aldehyde 1 took place under usual conditions nor the desired imines could be prepared by the reaction of aldehyde 4 with primary amines. Moreover, a mixture of 4,5-cis and -trans azepines was formed in the reaction of aldehyde 1 with primary amines.

In order to obtain better understandings on the azepine-ring formation, we examined the similar reaction of 4-(alk-2-enylamino)-2-oxo-1*H*-pyridoine 3-carboxaldehyde 9 and 2-(alk-2-enylamino)-3-oxo-4*H*-pyrido[1,2-*a*]-pyrimidine 3-carboxaldehyde 15, which possess characteristic cross conjugated π -electron systems at the periphery of the heterocycles.

This paper describes a successful application of the azepine-ring formation to these systems through both imine and carbonyl ene reactions, which proceed under extremely mild conditions with a high stereoselectivity. The limitations of this azepine-ring formation will be discussed.

Imine Ene Reaction at the Periphery of Pyrido[1,2-a]pyrimidone and Pyridone Systems

The thermal reaction of 2-(N-allylbenzylamino)-4-oxo-4H-pyrido[1,2-a]pyrimidine 3-carboxaldehyde (**9a**) with aniline (**10a**) and isobutylamine (**10b**) was examined. In both cases, pyrido[1',2':1,2]pyrimido[4,5b]azepines **11a** and **11b** were obtained in excellent yields. To complete the azepine-ring formation within limited periods of time, the reaction temperature above 80 °C (under reflux in benzene) was required. The reaction with aniline (**10a**) in refluxing benzene was slower than that with isobutylamine (**10b**). However, utilizing dehydrating reagent such as molecular sieves (4Å), or similar reaction at an elevated temperature gave substantially same results for the both amines.

Similar reactions of aldehydes **9b-d** with amines **10a-c** were examined under several conditions and the results are summarized in Table 1. Dihydroazepines **12-14** were obtained as single diastereomers in excellent yields and their structures were established by the analytical and spectroscopic data. The relative stereochemistry between the 4- and 5-positions in the azepine-ring of products **12-14** was deduced to be the same from the signal patterns of olefin protons at the 3-position (δ 4.50-5.22; double-double-doublet, *J*= *ca*. 2-3, 2-5, and 10 Hz) and was suggested to be *cis* as discussed in the previous paper.¹ Finally, the 4,5-*cis* configuration was unambiguously confirmed by X-ray crystal-structure analysis of dihydroazepine **12a** (Fig. 1).⁷

Table 1. Reaction of Aldehydes 9 with Primary Amines 10 Leading to Fused Azepine Derivatives 11-14

Entry	Substrates	R1	R2	R	Solvent	Temp.	Time (h)	Yield (%) ^{a)}
1	9a + 10a	Н	Н	Ph	benzene	reflux	20	11a/97
2	9a + 10a	Н	н	Ph	toluene	reflux	4	11a /94
3	9a + 10b	Н	н	i-Bu	benzene	reflux	3	11b/94
4	9a + 10b	н	н	<i>i</i> -Bu	toluene	reflux	2	11b/88
5	9b + 10a	Me	н	Ph	benzene	reflux	20	12a /91
6	9b + 10b	Me	н	<i>i</i> -Bu	benzene	reflux	4	1 2b /88
7	9b + 10c	Me	н	t-Bu	benzene	r.t.b)	60	12c/88
8	9c + 10a	Ph	н	Ph	benzene	reflux	6	13a /88
9	9c + 10b	Ph	Н	<i>i</i> -Bu	benzene	reflux	4	1 3b /83
10	9d + 10a	CO ₂ Et	н	Ph	benzene	r.t.b)	45	14a/7 8
11	9d + 10a	CO ₂ Et	Н	Ph	benzene	reflux	10	1 4a /73 ^{c)}

a) Based on the isolated products. b) Molecular sieves (4Å) were used as dehydrating reagent.

c) Another product **21d**, a carbonyl ene type product, was also obtained in 22% yield.

4,5-cis Azepine 12c was given in 88% yield by the reaction of aldehyde 9b and *tert*-butylamine (10c) at room temperature (Entry 7), regardless of the bulkiness of the substituent on the imine nitrogen. The electronwithdrawing nature of alkenyl substituent (\mathbb{R}^1) facilitated the rate of azepine-ring formation; the reaction of aldehyde 9d with aniline (10a) at room temperature gave azepine 14a in 78% yield (Entry 10). On the other hand, a similar reaction in benzene under reflux gave imine ene product 14a and carbonyl ene product 21d in 73 and 22% yields, respectively (Entry 11). Interestingly, the alkenyl substituent (\mathbb{R}^2) with Z-configuration in the imine interferred the ene reaction; the reaction of aldehyde 9e and amines 10a,b in refluxing toluene gave the starting aldehyde 9e as the hydrolyzed product of the corresponding imines.

Similarly, the 2-pyridone derivatives **15a,b**, bearing the same reactive functions in the 3- and 4-positions, were converted with primary amines **10a,b** in refluxing benzene to give dihydroazepines **16a-c**, which were converted to 2,4-ethanopyrido[4,3-d]pyrimidines **17a-c** during the purification procedures (Table 2). The transformation of **16** to **17** was easily explained; the amino nitrogen at the 5-position attacked nucleophilically to the 2-position in **16**.¹ The configuration of methyl group (R¹) at the 10-position in **17c** was deduced to be *exo* from the coupling constant between the 4- and 10-H (J= ca. 0 Hz). This reveals also the 4,5-*cis* selectivity in the azepine-ring formation. As mentioned above, the reaction of aldehydes **9** and **15** with primary amines **10** gave the azepines fused by heterocyclic systems. It should be also noted that these unactivated imines underwent under extremely mild conditions.^{5c} 4,5-*cis* Azepines were exclusively formed from the imines of aldehydes

Table 2. Reaction of Aldehydes 15 with Primary Amines 10 Leading to Fused Azepine Derivatives 17

Entry	Substrates	R ¹	R	Time (h)	Ratio ^{a)} of 16:17 in the crude products	Final Product/ Yield (%) ^{b)}
1	15a + 10a	Н	Ph	2	17 : 83	17a/89
2	15a + 10b	н	<i>i</i> -Bu	1	100 : 0	1 7b /93
3	15b + 10a	Me	Ph	8	76 : 34	17c/9 0

a) The ratio was determined by ¹H NMR spectra of the crude products. ^b) Based on the isolated products.

bearing 3-substituted (alk-2-enyl)amino groups with E-configurations. It was suggested that the imine formation from aldehydes 9 and 15 and amines 10 might be a crucial step as well as 1,7-electrocyclic ring-closure of the azomethine ylide intermediates.

Carbonyl Ene Reaction at the Periphery of Pyrido[1,2-a]pyrimidone and Pyridone Systems

Next our concern was focused on the thermal behaviors of the aldehydes 9 and 15. Aldehyde 15a gave 2,4-ethanopyrido[4,3-d][1,3]oxazine 18a and a fully conjugated pyrido[4,3-b]azepine 19 in 78 and 7% yields, respectively. A similar reaction of aldehydes 15b and 15c gave only 18b and 18c in excellent yields (Table 3). The structures of these products were determined also on the basis of the analytical and spectroscopic data by comparison with those of the related system reported.² To reduce the intricacies for the structural determination of [1,3]oxazine products, the X-ray crystal-structure analysis of 18c was accomplished (Fig. 2).⁷

Scheme 5.

Table 3. Thermal Reaction of Aldehydes 15 Leading to Fused Azepine Derivatives 18 and 19

Entry	Substrate	R1	Time (h)	Products/Yield (%) ^{a)}
1	15a	Н	24	18a/78 19/7
2	1 5 b	Me	80	18b/79 ^{b)}
3	15c	Ph	48	18c/8 0
	L.)			

a) Isolated yield. b) The starting material 15b was recovered in 19% yield.

Heating aldehyde **9a** in refluxing xylene gave dihydroazepine **20a**, [1,3]oxazine **21a**, and a fully conjugated azepine **22**. Similar reactions of aldehydes **9b-e** were also examined (Table 4). More elevated reaction temperatures were required to complete the azepine-ring formation through the carbonyl ene reaction of aldehydes **9** than those of aldehydes **15**. The carbonyl ene reaction of aldehydes **9** and **15** proceeded more sluggishly than the corresponding imine ene reaction. An apparent effect of ethoxycarbonyl substituent in the alkenyl moiety on the reactivity was also observed; heating **9d** in toluene under reflux gave dihydroazepine **20d** and [1,3]oxazine **21d** in a quantitative total yield (Entry 4). The ene reaction of **9d** proceeded even in refluxing benezene to give **20d** in 68% yield. The alkenyl substituent \mathbb{R}^2 also interferred the carbonyl ene reaction; heating the solution of aldehyde **9e** in xylene did not provide any changes. The effect of the substituent with Z-configuration in the alkene moiety on the azepine-ring formation will be discussed by the MO calculations utilizing PM3 method.⁸

Table 4. Thermal Reaction of Aldehydes 9 Leading to Fused Azepine Derivatives 20, 21, and 22.

 Entry	Substrate	R1	Solvent	Time (h)	Products/Yield (%) ^{a)}
 1	9a	Н	xylene	20	20a /22 21a /33 22 /42
2	9b	Me	xylene	60	20b /26 21b /36 ^b)
3	9c	Ph	xylene	18	21c /96
4	9d	CO ₂ Et	toluene	30	20d/71 21d/27
5	9d	CO ₂ Et	benzene	75	20d /68 ^c)

a) Based on the isolated products. b) The starting material 9b was recovered in 28% yield.

c) The starting material 9d was recovered in 22% yield.

The effects of the substituents at the amino nitrogen at the 2-position in pyridopyrimidines 23 on the azepine-ring formation were also examined. Heating 2-(N-allylanilino) substrate 23a in refluxing xylene gave [1,3]oxazine 24 and a fully conjugated azepine 25 along with the unreacted 23a. On the other hand, the reactions of 2-[N-allyl(ethoxycarbonyl)amino] 21b and 2-[N-allyl(benzenesulfonyl)amino] substrate 21c under similar conditions gave 2-allylamino-4-oxo-4H-pyrido[1,2-a]pyrimidine 3-carboxaldehyde (26), the product owing to the fission of the N-CO and N-SO2 bond in 23b and 23c, along with the unreacted starting materials (Scheme 7). According to the MO calculations of the reaction path utilizing PM3 method, the electron-withdrawing group on the amino nitrogen could be unfavorable to the 1,7-electrocyclic ring-closure process in the azepine-ring formation.⁸

Scheme 7.

Conclusion

We have described here that both carbonyl and imine ene reactions take place at the periphery of pyrido[1,2-*a*]pyrimidone and pyridone systems leading to fused azepine derivatives efficiently and stereoselectively. At the same system and under the same reaction conditions, the imine ene reaction is superior to the carbonyl one. An electron-withdrawing group such as ethoxycarbonyl in the alkenyl moiety facilitates both imine and carbonyl ene reactions. However, the electron-withdrawing groups on the amino nitrogen make difficult to accomplish the azepine-ring formation. It should be also noteworthy that these features of the azepine-ring formations mentioned above are consistent with the results of MO calculations using PM3 method.⁸

Experimental Section

General Methods. Descriptions of instruments, general procedures, and chromatographic procedures have been published previously.¹

Preparation of Starting Materials 9a-e, **15a-c**, **and 23a-c**. 2-Alkenylamino-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidine 3-carboxaldehydes **9a-e** and **23a** were obtained by the reaction of 2-chloro-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidine 3-carboxaldehyde⁹ with the corresponding amines similarly to the reported method for 6-alkenylamino-2,4-dioxo-1,2,3,4-tetrahydropyrimidine 5-carboxaldehydes.¹ In a similar manner, substrates **15a-c** were prepared from 4-chloro-1,6-dimethyl-2-oxo-1*H*-pyridine 3-carboxaldehyde, obtained through a Vilsmeier-Haack reaction of 3-hydroxy-1,6-dimethylpyridin-2(1*H*)-one,¹⁰ and the amines. Substrates **23b,c** were obtained by the reaction of 2-allylamino-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidine 3-carboxaldehyde (**26**) with ethyl chloroformate and benzenesulfonyl chloride in the presence of sodium hydride, respectively. The structures of aldehydes **9**, **15**, and **23** were fully confirmed by their analytical and spectroscopic data. The selected data are summarized as follows:

2-(N-Allylbenzylamino)-4-oxo-4H-pyrido[1,2-a]pyrimidine 3-carboxaldehyde (**9a**): colorless needles from ethanol; mp 93-96 °C; ¹H NMR (CDCl₃) δ = 4.16 (2 H, d, J= 5.9 Hz, NCH₂CH=CH₂), 4.91 (2 H, s, CH₂Ph), 5.17 (1 H, d, J= 17.2 Hz, NCH₂CH=CHH), 5.20 (1 H, d, J= 10.2 Hz, NCH₂CH=CHH), 5.88 (1 H, tdd, J= 5.9, 10.2, 17.2 Hz, NCH₂CH=CH₂), 6.91 (1 H, dt, J= 1.3, 6.9 Hz, 7-H), 7.21-7.34 (6 H, ov, Ph and 9-H), 7.67 (1 H, ddd, J= 1.7, 6.9, 8.9 Hz, 8-H), 8.84 (1 H, dd, J= 1.7, 6.9 Hz, 6-H), 10.19 (1 H, s, CHO). Anal. Found: C, 71.34; H, 5.35; N, 13.14%. Calcd for C₁₉H₁₇N₃O₂: C, 71.45; H, 5.37; N, 13.16%.

2-[N-Benzyl(*trans*-crotyl)amino]-4-oxo-4H-pyrido[1,2-*a*]pyrimidine 3-carboxaldehyde (**9b**): colorless plates from hexane-benzene; mp 122-124 °C; ¹H NMR (CDCl₃) δ = 1.68 (3 H, d, J= 5.0 Hz, NCH₂CH=CHMe), 4.07 (2 H, d, J= 3.6 Hz, NCH₂CH=CHMe), 4.91 (2 H, s, CH₂Ph), 5.47-5.63 (2 H, ov, NCH₂CH=CHMe), 6.89 (1 H, dt, J= 1.3, 6.9 Hz, 7-H), 7.19-7.36 (6 H, ov, Ph and 9-H), 7.65 (1 H, ddd, J=

1.7, 6.9, 8.6 Hz, 8-H), 8.83 (1 H, ddd, J=0.7, 1.7, 6.9 Hz, 6-H), 10.17 (1 H, s, CHO). Anal. Found: C, 72.12; H, 5.87; N, 12.49%. Calcd for C₂₀H₁₉N₃O₂: C, 72.05; H, 5.74; N, 12.61%.

2-[N-Benzyl(trans-cinnamyl)amino]-4-oxo-4H-pyrido[1,2-a]pyrimidine 3-carboxaldehyde (9c): yellow prisms from chloroform; mp 188-190 °C; ¹H NMR (CDCl₃) δ = 4.29 (2 H, d, J= 6.3 Hz, NCH₂CH=CHPh), 4.95 (2 H, s, CH₂Ph), 6.26 (1 H, td, J= 6.3, 15.8 Hz, NCH₂CH=CHPh), 6.45 (1 H, d, J= 15.8 Hz, NCH₂CH=CHPh), 6.91 (1 H, ddd, J= 1.3, 6.6, 7.3 Hz, 7-H), 7.20-7.36 (11 H, ov, Ph and 9-H), 7.68 (1 H, ddd, J= 1.7, 6.6, 8.9 Hz, 8-H), 8.85 (1H, ddd, J= 0.7, 1.7, 7.3 Hz, 6-H), 10.22 (1H, s, CHO). Anal. Found: C, 75.92; H, 5.37; N, 10.60%. Calcd for C₂₅H₂₁N₃O₂: C, 75.93; H, 5.35; N, 10.63%.

2-{N-Benzyl[*trans*-(3-ethoxycarbonyl)-2-propenyl]amino}-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidine 3carboxaldehyde (**9d**): colorless plates from hexane-benzene; mp 123-124 °C; ¹H NMR (CDCl₃) δ = 1.27 (3 H, t, *J*= 7.3 Hz, OCH₂CH₃), 4.17 (2 H, q, *J*= 7.3 Hz, OCH₂CH₃), 4.35 (2 H, dd, *J*= 1.6, 5.6 Hz, NCH₂CH=CHCO₂Et), 4.84 (2 H, s, CH₂Ph), 5.91 (1 H, td *J*= 1.6, 15.8 Hz, NCH₂CH=CHCO₂Et), 6.90 (1 H, td, *J*= 6.6, 15.8 Hz, NCH₂CH=CHCO₂Et), 6.96 (1 H, ddd, *J*= 1.3, 6.6, 7.3 Hz, 7-H), 7.20-7.36 (6H, ov, Ph and 9-H), 7.72 (1 H, ddd, *J*= 1.7, 6.6, 8.9 Hz, 8-H), 8.88 (1 H, ddd, *J*= 0.7, 1.7, 6.9 Hz, 6-H), 10.20 (1 H, s, CHO). Anal. Found: C, 67.56; H, 5.43; N, 10.66%. Calcd for C₂₂H₂₁N₃O₄: C, 67.50; H, 5.41; N, 10.74%.

2-[N-benzyl(3-methyl-2-propenyl)amino]-4-oxo-4H-pyrido[1,2-a]pyrimidine 3-carboxaldehyde (**9e**): colorless needles from hexane-benzene; mp 139-140 °C; ¹H NMR (CDCl₃) δ = 1.44, 1.62 (each 3 H, br s, =CMe₂), 4.11 (2 H, d, J= 6.6 Hz, NCH₂CH=CMe₂), 4.90 (2 H, s, CH₂Ph), 5.21 (1 H, m, NCH₂CH=CMe₂), 6.87 (1 H, dt, J= 1.3, 6.9 Hz, 7-H), 7.10-7.36 (6 H, ov, Ph and 9-H), 7.64 (1 H, ddd, J= 1.7, 6.7, 6.9 Hz, 8-H), 8.83 (1 H, dd, J= 1.0, 7.3 Hz, 6-H), 10.17 (1 H, s, CHO). Anal. Found: C, 72.46; H, 6.18; N, 12.11%. Calcd for C₂₁H₂₁N₃O₂: C, 72.60; H, 9.06; N, 12.10%.

4-(*N*-Allylbenzylamino)-1,6-dimethyl-2-oxo-1,2-dihydropyridine 3-carboxaldehyde (**15a**): yellow plates from hexane-benzene; mp 73-75 °C; ¹H NMR (CDCl₃) δ = 2.27 (3 H, s, 6-Me), 3.43 (3 H, s, 1-Me), 3.92 (2 H, d, *J*= 5.9 Hz, NCH₂CH=CH₂), 4.57 (2 H, s, CH₂Ph), 5.14 (1 H, d, *J*= 15.8 Hz, NCH₂CH=CHH), 5.20 (1 H, d, *J*= 8.9 Hz, NCH₂CH=CHH), 5.82 (1 H, s, 5-H), 5.84 (1 H, m, NCH₂CH=CH₂), 7.15-7.35 (5 H, ov, Ph), 10.14 (1 H, s, CHO). Anal. Found: C, 72.80; H, 6.96; N, 9.77%. Calcd for C₁₈H₂₀N₂O₂: C, 72.95; H, 6.80; N, 9.45%.

4-[*N*-Benzyl(*trans*-crotyl)amino]-1,6-dimethyl-2-oxo-1,2-dihydropyridine 3-carboxaldehyde (**15b**): yellow powder; mp 87-91 °C; ¹H NMR (CDCl₃) δ = 1.67 (3 H, d, *J*= 5.0 Hz, NCH₂CH=CHC*Me*), 2.26 (3 H, s, 6-Me), 3.43 (3 H, s, 1-Me), 3.86 (2 H, d, *J*= 4.6 Hz, NCH₂CH=CHMe), 4.57 (2 H, s, CH₂Ph), 5.40-5.56 (2 H, ov, NCH₂CH=CHMe), 5.80 (1 H, s, 5-H), 7.15-7.34 (5 H, ov, Ph), 10.13 (1 H, s, CHO). Anal. Found: C, 73.48; H, 7.08; N, 9.22%. Calcd for C₁₉H₂₂N₂O₂: C, 73.52; H, 7.14; 9.03%.

4-[N-Benzyl(*trans*-cinnamyl)amino]-1,6-dimethyl-2-oxo-1,2-dihydropyridine 3-carboxaldehyde (15c): yellow oil; ¹H NMR (CDCl₃) δ = 2.27 (3 H, s, 6-Me), 3.44 (3 H, s, 1-Me), 4.08 (2 H, d, J= 6.3 Hz, NCH₂CH=CHPh), 4.62 (2 H, s, CH₂Ph), 5.84 (1 H, s, 5-H), 6.23 (1 H, td, J= 6.3, 15.8 Hz, NCH₂CH=CHPh), 6.43 (1 H, d, J= 15.8 Hz, NCH₂CH=CHPh), 7.17-7.37 (10 H, ov, Ph), 10.17 (1 H, s, CHO). Anal. Found: C, 77.84; H, 6.30; N, 7.31%. Calcd for C₂₄H₂₄N₂O₂: C, 77.39; H, 6.50; N, 7.52%.

2-(N-Allylanilino)-4-oxo-4H-pyrido[1,2-a]pyrimidine 3-carboxaldehyde (**23a**): yellow plates from hexane-benzene; mp 122 °C; ¹H NMR (CDCl₃) δ = 4.77 (2 H, d, J= 5.3 Hz, NCH₂CH=CH₂), 5.13 (1 H, d, J= 10.2 Hz, NCH₂CH=CHH), 5.22 (1 H, d, J= 17.2 Hz, NCH₂CH=CHH), 6.00 (1 H, m, NCH₂CH=CH₂),

7.00 (1 H, ddd, J= 1.3, 6.6, 7.3 Hz, 7-H), 7.10-7.39 (6 H, ov, Ph and 9-H), 7.75 (1 H, ddd, J= 1.7, 6.6, 8.9 Hz, 8-H), 8.94 (1 H, dd, J= 1.7, 7.3 Hz, 6-H), 9.86 (1 H, s, CHO). Anal. Found: C, 70.88; H, 4.96; N, 13.71%. Calcd for C₁₈H₁₅N₃O₂: C, 70.80; H, 4.95; N, 13.76%.

2-[N-Allyl(benzenesulfonyl)amino)-4-oxo-4H-pyrido[1,2-*a*]pyrimidine 3-carboxaldehyde (**23b**): yellow prisms from hexane-benzene-ethanol; mp 192 °C (melted with decomposition); ¹H NMR (CDCl₃) δ = 4.30 (2 H, d, *J*= 6.6 Hz, NCH₂CH=CH₂), 5.04 (1 H, d, *J*= 10.2 Hz, NCH₂CH=CHH), 5.13 (1H, d, *J*= 16.8 Hz, NCH₂CH=CHH), 5.74 (1 H, tdd, *J*= 6.6, 10.2, 16.8 Hz, NCH₂CH=CH₂), 7.37 (1 H, dt, *J*= 1.3, 6.9 Hz, 7-H), 7.48-7.54 (3 H, ov, Ph), 7.62 (1 H, dd, *J*= 1.3, 8.6 Hz, 9-H), 7.82 (2 H, d, *J*= 7.3 Hz, Ph), 7.98 (1 H, ddd, *J*= 1.7, 6.9, 8.6 Hz, 8-H), 9.23 (1 H, dd, *J*= 1.7, 6.9 Hz, 6-H), 10.42 (1 H, s, CHO). Anal. Found: C, 58.69; H, 4.17; N, 11.13%. Calcd for C₁₈H₁₅N₃O₄S: C, 58.52; H, 4.09; N, 11.38%.

2-[N-Allyl(ethoxycarbonyl)amino)-4-oxo-4H-pyrido[1,2-a]pyrimidine 3-carboxaldehyde (**23c**): pale yellow prisms from 2-propanol; mp 89-90 °C; ¹H NMR (CDCl₃) δ = 1.21 (3 H, t, *J*= 7.3 Hz, OCH₂CH₃), 4.19 (2 H, q, *J*= 7.3 Hz, OCH₂CH₃), 4.62 (2 H, d, *J*= 5.6 Hz, NCH₂CH=CH₂), 5.10 (1 H, dd, *J*= 1.3, 10.2 Hz, NCH₂CH=CHH), 5.23 (1 H, dd, *J*= 1.3, 17.2 Hz, NCH₂CH=CHH), 5.97 (1 H, m, NCH₂CH=CH₂), 7.28 (1 H, dd, *J*= 6.6, 6.9 Hz, 7-H), 7.61 (1 H, d, *J*= 8.9 Hz, 9-H), 7.95 (1 H, dd, *J*= 6.6, 8.9 Hz, 8-H), 9.12 (1 H, d, *J*= 6.9 Hz, 6-H), 10.29 (1 H, s, CHO). Anal. Found: C, 60.02; H, 5.11; N, 13.77%. Calcd for C₁5H₁₅N₃O₄: C, 59.79; H, 5.02; N, 13.95%.

2-Allylamino-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidine 3-carboxaldehyde (**26**): colorless needles from hexanebenzene; mp 119 °C; ¹H NMR (CDCl₃) δ = 4.26 (2 H, ddd, *J*= 1.3, 3.0, 6.9 Hz, NCH₂CH=CH₂), 5.19 (1 H, ddd, *J*= 1.3, 1.7, 10.2 Hz, NCH₂CH=CHH), 5.27 (1 H, ddd, *J*= 1.7, 3.0, 17.2 Hz, NCH₂CH=CH*H*), 5.97 (1 H, m, NCH₂CH=CH₂), 6.92 (1 H, dd, *J*= 6.6, 7.3 Hz, 7-H), 7.26 (1 H, d, *J*= 8.9 Hz, 9-H), 7.70 (1 H, dd, *J*= 6.6, 8.9 Hz, 8-H), 8.86 (1 H, d, *J*= 7.3 Hz, 6-H), 10.29 (1 H, s, CHO). Anal. Found: C, 63.04; H, 4.88; N, 18.60%. Calcd for C₁₂H₁₁N₃O₂: C, 62.87; H, 4.84; N, 18.33%.

General Procedures for the Imine Ene Reactions. To a solution of aldehyde 9a (0.10 g, 0.32 mmol) in benzene (5 ml) aniline (10a; 0.04 ml, 0.44 mmol) was added. The mixture was heated under reflux for 20 h and the solvent was evaporated to dryness. The residue was subjected to column chromatography on silica gel with hexane/ethyl acetate = 1:4 as eluent to give 11a (0.1196 g, 97%). Product 11a was recrystallized from hexane-benzene and obtained as pale yellow plates.

5-Anilino-1-benzyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**11a**): mp 169-170 °C; IR (KBr) 3440 (NH), 1645 (CO) cm⁻¹;¹H NMR (CDCl₃) δ = 2.71 (2 H, ov, 4-H), 4.38 (1 H, d, J_{5-NH=} 9.5 Hz, exchangable with D₂O, 5-NH), 4.77, 5.59 (each 1 H, each d, J_{gem}= 15.4 Hz, CH₂Ph), 4.86 (1 H, ddd, J₃-4= 3.7, J₃-4=5.1, J₂-3=11.0 Hz, 3-H), 5.77 (1 H, m, 5-H), 6.14 (1 H, d, J₂-3= 11.0 Hz, 2-H), 6.57-6.67 (3 H, ov, Ph), 6.92 (1 H, dd, J₈-9= 4.4, J₉₋₁₀= 6.6 Hz, 9-H), 7.07-7.36 (8 H, ov, Ph and 11-H), 7.52 (1 H, dd, J₉₋₁₀= 6.6, J₁₀₋₁₁= 8.8 Hz, 10-H), 8.93 (1 H, d, J₈₋₉= 4.4 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 33.3 (4-C), 45.8 (5-C), 55.4 (CH₂Ph), 103.7 (5a-C), 104.9 (3-C), 113.4, 116.7, 127.2, 127.6, 128.6, 129.1, 138.8, 146.8 (Ph-C), 113.5 (9-C), 125.0 (11-C), 127.6 (8-C), 130.9 (2-C), 135.5 (10-C), 147.8 (11a-C), 158.0 (12a-C), 158.3 (6-C); mass *m*/z 394 (M⁺). Anal. Found: C, 76.18; H, 5.55; N, 14.13%. Calcd for C₂₅H₂₂N₄O: C, 76.12; H, 5.62; N, 14.20%.

1-Benzyl-5-isobutylamino-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-b]azepin-6(1H)-one (11b): yellow prisms from hexane-benzene; mp 108-109 °C; IR (KBr) 3280 (NH), 1640 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 0.82 (3 H, d, J_{CH-Me}= 6.6 Hz, CHMeMe), 0.83 (3 H, d, J_{CH-Me}= 7.0 Hz, CHMeMe), 1.69 (1 H, m, CHMe₂), 1.88 (1 H, br, exchangable with D₂O, 5-NH), 2.23 (1 H, dd, J_{VIC}= 7.0, J_{gem}= 11.0 Hz,

NHC*H*HCHMe₂), 2.43 (1 H, dd, J_{vic} = 6.6, J_{gem} = 11.0 Hz, NHCH*H*CHMe₂), 2.54 (1 H, td, J_{3-4} = J_{4-5} = 2.9, J_{gem} = 16.1 Hz, 4-H), 2.69 (1 H, ddd, J_{4-5} = 4.4, J_{3-4} = 4.8, J_{gem} = 16.1 Hz, 4-H), 4.89 (1 H, dddd, J_{3-5} = 1.1, J_{3-4} = 2.9, J_{3-4} = 4.8, J_{2-3} = 9.9 Hz, 3-H), 4.99 (1 H, ddd, J_{3-5} = 1.1, J_{4-5} = 2.9, J_{4-5} = 4.4 Hz, 5 H), 5.06, 5.32 (each 1 H, each d, J_{gem} = 15.4 Hz, CH₂Ph), 6.08 (1 H, d, J_{2-3} = 9.9 Hz, 2-H), 6.90 (1 H, ddd, J_{9-11} = 1.5, J_{9-10} = 6.6, J_{8-9} = 7.3 Hz, 9-H), 7.21-7.34 (6 H, ov, Ph and 11-H), 7.53 (1 H, ddd, J_{8-11} = 1.5, J_{9-10} = 6.6, J_{10-11} = 8.8 Hz, 10-H), 8.93 (1 H, dd, J_{9-11} = 1.5, J_{8-9} =7.3 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 20.7, 21.0 (CHMe₂), 28.7 (CHMe₂), 32.7 (4-C), 51.6 (5-C), 54.9 (NHCH₂CHMe₂), 55.6 (CH₂Ph), 103.7 (5a-C), 106.6 (3-C), 113.2 (9-C), 124.9 (11-C), 127.2, 127.5, 128.5, 139.0 (Ph-C), 127.7 (8-C), 130.4 (2-C), 135.3 (10-C), 147.6 (11a-C), 157.4 (12a-C), 158.5 (6-C); mass *m*/z 374 (M⁺). Anal. Found: C, 73.81; H, 7.02; N, 14.91%. Calcd for C₂₃H₂₆N₄O: C, 73.77; H, 7.00; N, 14.96%.

(4RS,5RS)-5-Anilino-1-benzyl-4-methyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (12a); colorless prisms from propan-2-ol; mp 166-168 °C; IR (KBr) 3440 (NH), 1645 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.23 (3 H, d, *J*_{4-Me}= 6.9 Hz, 4-Me), 2.97 (1 H, m, 4-H), 4.14 (1 H, br, exchangable with D₂O, 5-NH), 4.57 (1 H, td, *J*₃₋₄= *J*₃₋₅= 2.0, *J*₂₋₃=10.2 Hz, 3-H), 4.75, 5.63 (each 1 H, each d, *J*_{gem}= 15.5 Hz, CH₂Ph), 5.55 (1 H, br, 5-H), 6.06 (1 H, dd, *J*₂₋₄= 2.6, *J*₂₋₃= 10.2 Hz, 2-H), 6.57 (1 H, t, *J*_{*m*-p}= 7.6 Hz, Ph-*p*), 6.65 (2 H, d, *J*_{0-m}= 8.6 Hz, Ph-*o*), 6.90 (1 H, ddd, *J*₉₋₁₁= 1.3, *J*₉₋₁₀= 6.6, *J*₈₋₉= 7.3 Hz, 9-H), 7.09 (2 H, dd, *J*_{*m*-p}= 7.6, *J*_{0-m}= 8.6 Hz, Ph-*m*), 7.21-7.34 (6 H, ov, Ph and 11-H), 7.50 (1 H, ddd, *J*₈₋₁₀= 1.7, *J*₉₋₁₀= 6.6, *J*₁₀₋₁₁= 8.9 Hz, 10-H), 8.92 (1 H, dd, *J*₈₋₁₀= 1.7, *J*₈₋₉= 7.3 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 20.9 (4-Me), 37.4 (4-C), 50.8 (5-C), 55.3 (CH₂Ph), 104.1 (5a-C), 111.1 (3-C), 113.0, 116.3, 127.2, 127.5, 128.6, 129.1, 138.8, 147.5 (Ph-C), 113.4 (9-C), 124.9 (11-C), 127.5 (8-C), 129.2 (2-C), 135.4 (10-C), 147.7 (11a-C), 157.3 (12a-C), 158.2 (6-C). Anal. Found: C, 76.60; H, 5.94; N, 13.71%. Calcd for C₂₆H₂₄N₄O: C, 76.44; H, 5.92; N, 13.72%.

(4RS,5RS)-1-Benzyl-5-isobutylamino-4-methyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**12b**): yellow prisms from hexane-benzene; mp 104-106 °C; IR (KBr) 3300 (NH), 1645 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 0.80, 0.83 (each 3 H, each d, *J*_{CH-Me}= 6.6 Hz, CHMe₂), 1.28 (3 H, d, *J*_{4-Me}= 7.3 Hz, 4-Me), 1.41 (1 H, br, exchangable with D₂O, 5-NH), 1.61 (1 H, m, CHMe₂), 2.23 (1 H, dd, *J*_{vic}= 6.9, *J*_{gem}= 11.5 Hz, NHCHHCHMe₂), 2.34 (1 H, dd, *J*_{vic}= 6.6, *J*_{gem}= 11.5 Hz, NHCHHCHMe₂), 2.77 (1 H, m, 4-H), 4.58 (1 H, ddd, *J*₃₋₅= 1.7, *J*₃₋₄= 2.0, *J*₂₋₃= 10.2 Hz, 3-H), 4.72 (1 H, d, *J*₃₋₅= 1.7 Hz, 5-H), 5.01, 5.39 (each 1 H, each d, *J*_{gem}= 15.4 Hz, CH₂Ph), 5.97 (1 H, dd, *J*₂₋₄= 2.3, *J*₂₋₃= 10.2 Hz, 2-H), 6.89 (1 H, ddd, *J*₉₋₁₁= 1.0, *J*₉₋₁₀= 6.6, *J*₈₋₉= 7.3 Hz, 9-H), 7.21-7.35 (6 H, ov, Ph and 11-H), 7.52 (1 H, ddd, *J*₈₋₁₀= 1.7, *J*₉₋₁₀= 6.6, *J*₁₀₋₁₁= 8.6 Hz, 10-H), 8.88 (1 H, dd, *J*₈₋₁₀= 1.7, *J*₈₋₉= 7.3 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 20.6, 20.8, 20.9 (CHMe₂ and 4-Me), 28.8 (CHMe₂), 37.7 (4-C), 55.2, 55.6 (NHCH₂CHMe₂ and CH₂Ph), 56.8 (5-C), 104.4 (5a-C), 113.1, 113.2 (3- and 9-C), 124.9 (11-C), 127.1, 127.5, 128.5, 139.1 (Ph-C), 127.7 (8-C), 128.2 (2-C), 135.1 (10-C), 147.4 (11a-C), 156.8 (12a-C), 158.5 (6-C). Anal. Found: C, 74.07; H, 7.09; N, 14.14%. Calcd for C₂₄H₂₈N₄O: C, 74.19; H, 7.26; N, 14.42%.

(4RS,5RS)-1-Benzyl-5-(*tert*-butylamino)-4-methyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**12c**): colorless prisms from hexane; mp 127-129 °C; IR (KBr) 3300 (NH), 1650 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 0.95 (9 H, s, C*Me*₃), 1.18 (3 H, d, *J*_{4-Me}= 6.9 Hz, 4-Me), 1.41 (1 H, br, exchangable with D₂O, 5-NH), 2.68 (1 H, m, 4-H), 4.50 (1 H, d, *J*₂₋₃= 10.6 Hz, 3-H), 4.72-4.77 (2 H, ov, C*H*HPh and 5-H), 5.71 (1 H, d, *J*_{gem}= 15.2 Hz, CH*H*Ph), 5.98 (1 H, dd, *J*₂₋₄= 2.6, *J*₂₋₃= 10.6 Hz, 2-H), 6.90 (1 H, dd, *J*₉₋₁₀= 6.6, *J*₈₋₉= 7.3 Hz, 9-H), 7.21-7.43 (6 H, ov, Ph and 11-H), 7.55 (1 H, dd, *J*₉₋₁₀= 6.6, *J*₁₀₋₁₁= 8.9 Hz, 10-H), 8.88 (1 H, d, *J*₈₋₉= 7.3 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 20.7 (4-Me), 30.2 (C*Me*₃), 38.2 (4-C), 50.3 (5-C), 55.4 (NHCHMe3 and CH₂Ph), 109.2 (5a-C), 112.7 (3-C), 113.2 (9-C), 124.9 (11-C), 127.2, 127.8, 128.5, 139.1 (Ph-C), 127.6 (8-C), 128.3 (2-C), 134.9 (10-C), 147.2 (11a-C), 156.9 (12a-C), 157.7 (6-C). Anal. Found: C, 74.23; H, 7.41; N, 14.31%. Calcd for C₂₄H₂₈N₄O: C, 74.19; H, 7.26; N, 14.42%.

(4RS,5SR)-5-Anilino-1-benzyl-4-phenyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-b]azepin-6(1*H*)-one (13a): yellow needles from ethanol; mp 222-223 °C; IR (KBr) 3380 (NH), 1640 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 4.12 (1 H, br, 4-H), 4.32 (1 H, br, exchangable with D₂O, 5-NH), 4.79, 5.72 (each 1 H, each d, J_{gem}= 15.2 Hz, CH₂Ph), 4.97 (1 H, td, J₃-4= J₃-5= 2.0, J₂-3= 10.6 Hz, 3-H), 5.81 (1 H, br, 5-H), 6.29 (1 H, dd, J₂-4= 2.6, J₂-3= 10.6 Hz, 2-H), 6.89-7.56 (18 H, ov, Ph and 5-, 9-, and 11-H), 8.94 (1 H, d, J₈-9= 6.9 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 47.6 (4-C), 51.6 (5-C), 55.4 (CH₂Ph), 103.9 (5a-C), 108.2 (3-C), 113.2, 116.4, 126.5, 127.4, 127.7, 128.1, 128.2, 128.7, 129.0, 138.7, 143.5, 147.0 (Ph-C), 113.6 (9-C), 125.1 (11-C), 127.6 (8-C), 130.6 (2-C), 135.6 (10-C), 147.9 (11a-C), 157.4 (12a-C), 158.1 (6-C). Anal. Found: C, 79.43; H, 5.68; N, 11.72%. Calcd for C₃₁H₂₆N₄O: C, 79.12; H, 5.57; N, 11.91%.

(4RS,5SR)-1-Benzyl-5-isobutylamino-4-phenyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)one (13b): pale yellow oil; IR (NaCl) 3280 (NH), 1655 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 0.63, 0.70 (each 3 H, each d, *J*_{CH-Me}= 6.6 Hz, CH*Me*₂), 1.39-1.56 (2 H, ov, NHCH₂CHMe₂), 2.04-2.20 (2 H, ov, NHCH₂CHMe₂), 3.93 (1 H, br d, *J*₃-4= 2.6 Hz, 4-H), 4.92-4.99 (2 H, ov, 3- and 5-H), 5.04, 5.52 (each 1 H, each d, *J*_{gem}= 15.5 Hz, CH₂Ph), 6.17 (1 H, d, *J*₂₋₃= 10.2 Hz, 2-H), 6.90 (1 H, dd, *J*₈₋₉= 6.6, *J*₉₋₁₀= 7.3 Hz, 9-H), 7.19-7.57 (12 H, ov, Ph and 10- and 11-H), 8.90 (1 H, d, *J*₈₋₉= 6.6 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 20.4, 20.6 (CHMe₂), 28.5 (CHMe₂), 48.2 (4-C), 55.1, 55.6 (NHCH₂CHMe₂ and CH₂Ph), 57.3 (5-C), 103.9 (5a-C), 109.9 (3-C), 113.2 (9-C), 124.9 (11-C), 126.1, 127.1, 127.5, 127.8, 128.5, 128.6, 139.0, 144.5 (Ph-C), 127.7 (8-C), 129.7 (2-C) 135.3 (10-C), 147.5 (11a-C), 157.1 (12a-C), 158.4 (6-C); mass *m*/z 450 (M⁺). Anal. Found: C, 77.30; H, 6.91; N, 11.94%. Calcd for C₂₉H₃₀N₄O: C, 77.30; H, 6.71; N, 12.44%.

(4RS,5RS)-5-Anilino-1-benzyl-4-ethoxycarbonyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**14a**): yellow needles from propan-2-ol; mp 163-166 °C; IR (KBr) 3345 (NH), 1725, 1645 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.02 (3 H, t, J_{VIC} = 7.3 Hz, OCH₂CH₃), 3.64 (1 H, m, 4-H), 4.07-4.24 (3 H, ov, OCH₂CH₃ and NH), 4.76, 5.68 (each 1 H, each d, J_{gem} = 15.5 Hz, CH₂Ph), 5.22 (1 H, td, J_{3-4} = J_{3-5} = 2.0, J_{2-3} = 10.6 Hz, 3-H), 6.30 (1 H, dd, J_{2-4} = 2.6, J_{2-3} = 10.6 Hz, 2-H), 6.36 (1 H, br, 5-H), 6.56-6.66 (3 H, ov, Ph-*o*,*p*), 6.94 (1 H, dt, J_{9-11} = 1.3, J_8 -9= J_{9-10} = 6.9 Hz, 9-H), 7.05-7.36 (8 H, ov, Ph-*m* and Ph and 11-H), 7.55 (1 H, dd, J_{9-10} = 6.9, J_{10-11} = 8.9 Hz, 10-H), 8.94 (1 H, d, J_{8-9} = 6.9 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 14.2 (OCH₂CH₃), 47.2, 48.3 (4- and 5-C), 55.4 (CH₂Ph), 61.3 (OCH₂CH₃), 102.0(5a-C), 102.2 (3-C), 113.6, 117.1, 127.7, 128.7, 129.0, 138.5, 146.7 (Ph-C), 113.7 (9-C), 125.1 (11-C), 127.4 (8-C), 130.7 (2-C), 135.9 (10-C), 148.0 (11a-C), 157.2 (12a-C), 158.3 (6-C), 171.6 (CO). Anal. Found: C, 72.23; H, 5.56; N, 11.91%. Calcd for C₂₈H₂₆N₄O₃: C, 72.08; H, 5.62; N, 12.01%.

1-Benzyl-6,7-dimethyl-3-phenyl-1,2,3,4-tetrahydro-2,4-ethanopyrido[4,3-d]pyrimidin-5(6H)-one (17a): pale yellow crystals from hexane; mp 90-92 °C; IR (KBr) 1630 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.11 (3 H, s, 7-Me), 2.23 (2 H, ov, 10-H), 2.35 (2 H, ov, 9-H), 3.43 (3 H, s, 6-Me), 4.35, 4.47 (each 1 H, each d, Jgem= 16.9 Hz, CH₂Ph), 5.07 (1 H, d, J₄₋₁)= 4.4 Hz, 4-H), 5.14 (1 H, d, J₂-9= 5.1 Hz, 2-H), 5.40 (1 H, s, 8-H), 6.76-7.28 (10 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 21.7 (7-Me), 30.2 (6-Me), 34.8, 34.9 (9- and 10-C), 52.1 (4-C), 53.7 (CH₂Ph), 74.4 (2-C), 95.4 (8-C), 103.9 (4a-C), 117.9, 119.5, 126.8, 127.3, 128.5, 128.8, 137.4, 144.4 (Ph-C), 145.6 (7-C), 149.2 (8a-C), 161.5 (5-C); mass m/z 371 (M⁺). Anal. Found: C, 78.07; H, 7.13; N, 11.34%. Calcd for C₂₄H₂₅N₃O: C, 77.60; H, 6.78; N, 11.31%.

1-Benzyl-7,8-dimethyl-5-isobutylamino-4,5-dihydro-1*H*-pyrido[4,3-b]azepin-6(7*H*)-one (**16b**): yellow oil; IR (NaCl) 3280 (NH), 1625 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 0.86 (6 H, d, *J*_{CH-Me}= 6.6 Hz, CHMe₂), 1.73 (1 H, m, CHMe₂), 2.09 (1 H, br, exchangable with D₂O, 5-NH), 2.18 (3 H, s, 8-Me), 2.23 (1 H, dd, *J*_{Vic}= 7.3, *J*_{gem}= 11.2 Hz, NHCHHCHMe₂), 2.46 (1 H, dd, *J*_{Vic}= 6.3, *J*_{gem}= 11.2 Hz, NHCHHCHMe₂),

13091

2.56-2.59 (1 H, ov, 4-H), 3.46 (3 H, s, 7-Me), 4.60-4.74 (3 H, ov, CH₂Ph and 3-H), 4.96 (1 H, br, 5-H), 5.71 (1 H, s, 9-H), 5.88 (1 H, d, J_{2-3} = 10.2 Hz, 2-H), 7.25-7.40 (5 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 20.8 (8-Me), 21.0, 21.2 (CHMe₂), 28.7 (CHMe₂), 31.2 (7-Me), 32.7 (4-C), 53.1 (NHCH₂CHMe₂), 55.2 (CH₂Ph), 57.5 (5-C), 100.1 (9-C), 104.4 (3-C), 115.7 (5a-C), 126.5, 127.4, 128.9, 137.6 (Ph-C), 131.3 (2-C), 142.8 (8-C), 151.7 (9a-C), 163.7 (6-C). The sample for elemental analysis could not be prepared because of its liability.

1-Benzyl-3-isobutyl-6,7-dimethyl-1,2,3,4-tetrahydro-2,4-ethanopyrido[4,3-*d*]pyrimidin-5(6*H*)-one (17b) : brown oil; IR (NaCl) 1630 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 0.84 (6 H, d, *J*_{CH-Me}= 6.6 Hz, CH*Me*₂), 1.59 (1 H, m, C*H*Me₂), 1.92-2.02 (2 H, ov, NHC*H*₂CHMe₂), 2.10-2.27 (4 H, ov, 9- and 10-H), 2.21 (3 H, s, 7-Me), 3.44 (3 H, s, 6-Me), 4.11 (1 H, d, *J*₄₋₁₀= 4.6 Hz, 4-H), 4.23 (1 H, d, *J*₂₋₉= 5.6 Hz, 2-H), 4.30, 4.43 (each 1 H, each d, *J*_{gem}= 16.8 Hz, C*H*₂Ph), 5.60 (1 H, s, 8-H), 7.25-7.38 (5 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 20.8, 20.9 (CH*Me*₂), 21.2 (7-Me), 26.9 (CHMe₂), 30.1 (6-Me), 35.0 (9- and 10-C), 51.8 (NCH₂CHMe₂), 54.5 (*C*H₂Ph), 56.5 (4-C), 77.0 (2-C), 94.8 (8-C), 102.0 (4a-C), 126.6, 127.2, 128.5, 138.4 (Ph-C), 144.0 (7-C), 149.1 (8a-C), 161.6 (5-C); mass *m*/z 351 (M⁺). Anal. Found: C, 75.40; H, 8.64; N, 11.48%. Calcd for C₂₂H₂₉N₃O: C, 75.17; H, 8.32; N, 11.96%.

(2RS, 4RS, 10RS)-1-Benzyl-6,7,10-trimethyl-3-phenyl-1,2,3,4-tetrahydro-2,4-ethanopyrido[4,3-*d*]pyrimidin-5(6*H*)-one (**17c**): colorless amorphous from hexane; mp 85-90 °C; IR (KBr) 1630 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.18 (3 H, d, *J*_{10-Me}= 6.9 Hz, 10-Me), 1.80 (1 H, ddd, *J*₉₋₁₀= 3.3, *J*₂₋₉= 5.3, *J*_{gem}= 12.9 Hz, 9-H_{exo}), 2.10 (3 H, s, 7-Me), 2.45 (1 H, dd, *J*₉₋₁₀= 8.9, *J*_{gem}= 12.9 Hz, 9-H_{endo}), 2.59 (1 H, m, 10-H), 3.42 (3 H, s, 6-Me), 4.34, 4.45 (each 1 H, each d, *J*_{gem}= 16.8 Hz, CH₂Ph), 4.74 (1 H, s, 4-H), 5.07 (1 H, d, *J*₂₋₉= 5.3 Hz, 2-H), 5.40 (1 H, s, 8-H), 6.76-7.28 (10 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 21.7 (7-Me), 22.9 (10-Me), 30.6 (6-Me), 43.1(9-C), 44.0 (10-C), 52.5 (CH₂Ph), 60.5 (4-C), 75.2 (2-C), 95.9 (8-C), 104.2 (4a-C), 118.2, 119.7, 127.4, 127.8, 129.0, 129.3, 138.0, 144.7 (Ph-C), 146.6 (7-C), 149.3 (8a-C), 162.0 (5-C); mass *m*/z 385 (M⁺). Anal. Found: C, 77.84; H, 7.21; N, 10.95%. Calcd for C₂₅H₂₇N₃O: C, 77.89; H, 7.06; N, 10.90%.

General Procedures for the Carbonyl Ene Reactions. A solution of aldehyde 15a (0.296 g, 1.00 mmol) in toluene (5 ml) was deoxgenated by flashing of argon stream for 30 min and heated under reflux for 24 h. The solvent was evaporated to dryness. The residue was subjected to column chromatography on silica gel with hexane/ethyl acetate= 1:3 as eluent to afford products 18a (0.2316 g, 78%) and 19 (0.0196 g, 7%).

1-Benzyl-6,7-dimethyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[4,3-*d*][1,3]oxazin-5(6*H*)-one (18a): colorless needles from hexane-benzene; mp 168-170 °C; IR (KBr) 1635 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.05-2.27 (4 H, ov, 9- and 10-H), 2.19 (3 H, s, 7-Me), 3.42 (3 H, s, 6-Me), 4.44, 4.52 (each 1 H, each d, *J*_{gem}= 16.9 Hz, CH₂Ph), 5.12 (1 H, dd, *J*₄₋₁₀= 1.1, *J*₄₋₁₀= 3.7 Hz, 4-H), 5.39 (1 H, d, *J*₂₋₉= 2.2 Hz, 2-H), 5.58 (1 H, s, 8-H), 7.24-7.38 (5 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 21.1 (7-Me), 30.0 (6-Me), 35.1, 36.2 (9- and 10-C), 52.1 (CH₂Ph), 74.4 (4-C), 89.4 (2-C), 95.8 (8-C), 106.0 (4a-C), 126.4, 127.3, 128.7, 137.6 (Ph-C), 145.0 (7-C), 148.0 (8a-C), 160.2 (5-C); mass *m*/z 296 (M⁺). Anal. Found: C, 72.86; H, 6.95; N, 9.62%.

1-Benzyl-7,8-dimethyl-1*H*-pyrido[4,3-*b*]azepin-6(7*H*)-one (**19**): orange needles from hexane-benzene; mp 154-156 °C; IR (KBr) 1620 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.24 (3 H, s, 8-Me), 3.43 (3 H, s, 7-Me), 4.32 (2 H, s, C*H*₂Ph), 5.15 (1 H, d, *J*₂₋₃= 7.6 Hz, 2-H), 5.19 (1 H, dd, *J*₃₋₄= 4.3, *J*₂₋₃= 7.6 Hz, 3-H), 5.59 (1 H, s, 9-H), 5.95 (1 H, dd, *J*₃₋₄= 4.3, *J*₄₋₅= 11.2 Hz, 4-H), 6.76 (1 H, d, *J*₄₋₅= 11.2 Hz, 5-H), 7.23-7.47 (5 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 21.1 (8-Me), 31.1 (7-Me), 54.9 (CH₂Ph), 100.2 (3-C), 115.9 (5a-C), 117.8

(9-C), 127.3, 127.7, 128.6, 146.6 (Ph-C), 129.3 (5-C), 131.4 (4-C), 137.0 (8-C), 139.0 (2-C), 161.0 (9a-C), 162.4 (6-C); mass *m*/*z* 278 (M⁺). Anal. Found: C, 77.85; H, 6.52; N, 10.16%. Calcd for C₁₈H₁₈N₂O: C, 77.67; H, 6.52; N, 10.07%.

(2RS, 4SR, 10SR)-1-Benzyl-6,7,10-trimethyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[4,3-*d*][1,3]oxazin-5(6*H*)-one (**18b**): colorless needles from hexane-benzene; mp 168-169 °C; IR (KBr) 1635 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.11 (3 H, d, *J*_{10-Me}= 7.3 Hz, 10-Me), 2.05-1.68 (1 H, ddd, *J*₉₋₁₀= 2.9, *J*₂₋₉= 5.9, *J*_{gem}= 13.2 Hz, 9-H_{ex0}), 2.20 (3 H, s, 7-Me), 2.29 (1 H, dd, *J*₉₋₁₀= 8.8, *J*_{gem}= 13.2 Hz, 9-H_{end0}), 2.61 (1 H, m, 10-H), 3.43 (3 H, s, 6-Me), 4.42, 4.51 (each 1 H, each d, *J*_{gem}= 16.9 Hz, CH₂Ph), 4.97 (1 H, s, 4-H), 5.14 (1 H, d, *J*₂₋₉= 5.9 Hz, 2-H), 5.58 (1 H, s, 8-H), 7.27-7.37 (5 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 21.3 (7- and 10-Me), 30.1 (6-Me), 43.8, 44.4 (9- and 10-C), 52.2 (CH₂Ph), 80.2 (4-C), 90.0 (2-C), 96.0 (8-C), 106.0 (4a-C), 126.6, 127.4, 128.8, 137.7 (Ph-C), 144.9 (7-C), 147.7 (8a-C), 160.2 (5-C); mass *m/z* 310 (M⁺). Anal. Found: C, 73.81; H, 7.20; N, 9.00%. Calcd for C₁₉H₂₂N₂O₂: C, 73.52; H, 7.14; N, 9.03%.

(2RS, 4SR, 10RS)-1-Benzyl-6,7-dimethyl-10-phenyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[4,3-*d*][1,3]oxazin-5(6*H*)-one (**18c**): colorless plates from hexane-benzene; mp 199-200 °C; IR (KBr) 1630 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.21 (3 H, s, 7-Me), 2.32 (1 H, ddd, *J*₉₋₁₀= 2.9, *J*₂₋₉= 6.6, *J*_{gem}= 13.2 Hz, 9-H_{exo}), 2.62 (1 H, ddd, *J*₉₋₁₀= 8.8, *J*_{gem}= 13.2 Hz, 9-H_{endo}), 3.44 (3 H, s, 6-Me), 3.71 (1 H, dd, *J*₉₋₁₀= 2.9, *J*₉₋₁₀= 8.8 Hz, 10-H), 4.48, 5.57 (each 1 H, each d, *J*_{gem}= 16.9 Hz, CH₂Ph), 5.28 (1 H, s, 4-H), 5.32 (1 H, d, *J*₂₋₉= 6.6 Hz, 2-H), 5.62 (1 H, s, 8-H), 7.17-7.39 (10 H, ov, Ph); ¹³C NMR (CDCl₃) δ = 21.3 (7-Me), 30.1 (6-Me), 44.2 (9-C), 52.3 (CH₂Ph), 55.4 (10-C), 80.8 (4-C), 90.0 (2-C), 95.8 (8-C), 105.9 (4a-C), 126.2, 126.6, 126.9, 127.4, 128.3, 128.8, 137.6, 145.3 (Ph-C), 145.0 (7-C), 147.6 (8a-C), 160.2 (5-C); mass *m/z* 372 (M⁺). Anal. Found: C, 77.65; H, 6.56; N, 7.57%. Calcd for C₂₄H₂₄N₂O₂: C, 77.39; H, 6.60; N, 7.52%.

A solution of aldehyde 9a (0.100 g, 0.31 mmol) in xylene (5 ml) was similarly deoxygenated and heated under reflux for 20 h. The solvent was evaporated to dryness. The residue was subjected to column chromatography on silica gel with hexane/ethyl acetate = 3:2, 1:1, and 2:3 as eluent to afford products 22 (0.0401 g, 42%), 21a (0.0330 g, 33%), and 20a (0.0224 g, 22%), respectively.

1-Benzyl-5-hydroxy-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**20a**): colorless needles from hexane-benzene; mp 146-147 °C; IR (KBr) 3380 (OH), 1610 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.55-2.72 (2 H, ov, 4-H), 4.00 (1 H, br, exchanged with D₂O, 5-OH), 5.14, 5.21 (each 1 H, each d, *J*_{gem}= 14.8 Hz, CH₂Ph), 5.21 (1 H, ddd, *J*₃₋₄= 5.6, *J*₃₋₄= 6.9, *J*₂₋₃= 8.9 Hz, 3-H), 5.58 (1 H, br, 5-H), 6.12 (1 H, d, *J*₂₋₃= 8.9 Hz, 2-H), 6.89 (1 H, ddd, *J*₉₋₁₁= 1.3, *J*₉₋₁₀= 6.6, *J*₈₋₉= 7.3 Hz, 9-H), 7.21-7.36 (6 H, ov, Ph and 11-H), 7.55 (1 H, ddd, *J*₈₋₁₀= 1.7, *J*₉₋₁₀= 6.6, *J*₁₀₋₁₁= 8.9 Hz, 10-H), 8.83 (1 H, ddd, *J*₈₋₁₁= 1.0, *J*₈₋₁₀= 1.7, *J*₈₋₉= 7.3 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 33.0 (4-C), 54.6 (CH₂Ph), 67.2 (5-C), 102.3 (5a-C), 110.3 (3-C), 113.3 (9-C), 124.8 (11-C), 127.1, 127.4, 128.5, 138.6 (Ph-C), 127.1 (8-C), 132.6 (2-C), 135.8 (10-C), 147.3 (11a-C), 156.6 (12a-C), 159.1 (6-C); mass *m*/z 319 (M⁺), 301 (M⁺ - H₂O). Anal. Found: C, 71.57; H, 5.33; N, 13.07%. Calcd for C₁₉H₁₇N₃O₂: C, 71.45; H, 5.37; N, 13.16%.

1-Benzyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[1',2':1,2]pyrimido[4,5-*d*][1,3]oxazin-5(5*H*)-one (21a): yellow prisms from hexane-benzene; mp 158-159 °C; IR (KBr) 1665 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.07-2.28 (4 H, ov, 12- and 13-H), 4.76, 5.07 (each 1 H, each d, J_{gem} = 15.8 Hz, C*H*2Ph), 5.28 (1 H, d, J_{4-13} = 4.4 Hz, 4-H), 5.57 (1 H, dd, J_{2-12} = 2.9, J_{2-12} = 3.7 Hz, 2-H), 6.90 (1 H, dd, $J_{8.9}$ = 6.6, $J_{7.8}$ = 8.1 Hz, 8-H), 7.26-7.35 (6 H, ov, Ph and 10-H), 7.56 (1 H, dd, $J_{8.9}$ = 6.6, J_{9-10} = 8.8 Hz, 9-H), 8.93 (1 H, d, $J_{7.8}$ = 8.1 Hz, 7-H); ¹³C NMR (CDCl₃) δ = 35.6, 35.7 (12- and 13-C), 48.6 (*C*H₂Ph), 74.6 (4-C), 88.0 (2-C), 95.8 (4a-C), 112.8 (8-C), 124.4 (10-C), 127.4, 127.8, 128.7, 138.0 (Ph-C), 127.9 (7-C), 135.9 (9-C), 150.6 (10a-C), 153.7 (11a-C), 155.1 (5-C); mass m/z 319 (M⁺). Anal. Found: C, 71.60; H, 5.41; N, 13.20%. Calcd for C₁₉H₁₇N₃O₂: C, 71.45; H, 5.37; N, 13.16%.

1-Benzyl-pyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**22**): red needles from hexane-benzene; mp 148-150 °C; IR (KBr) 1655 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 4.68 (2 H, s, CH₂Ph), 5.07 (1 H, dd, J₃₋₄= 5.1, J₂₋₃= 8.1 Hz, 3-H), 5.13 (1 H, d, J₂₋₃= 8.1 Hz, 2-H), 5.69 (1 H, dd, J₃₋₄= 5.1, J₄₋₅= 11.0 Hz, 4-H), 6.37 (1 H, d, J₄₋₅= 11.0 Hz, 5-H), 6.95 (1 H, dd, J₈₋₉= 5.1, J₉₋₁₀= 6.6 Hz, 9-H), 7.22-7.59 (7 H, ov, Ph and 10- and 11-H), 8.87 (1 H, d, J₈₋₉= 5.1 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 53.9 (CH₂Ph), 103.9 (5a-C), 115.1 (9-C), 117.6 (3-C), 125.4 (11-C), 127.5 (8-C), 128.3, 128.4, 128.9, 138.5 (Ph-C), 129.0 (5-C), 129.3 (4-C), 136.9 (10-C), 138.4 (2-C), 150.0 (11a-C), 157.2 (12a-C), 167.8 (6-C); mass *m/z* 301 (M⁺), 210 (M⁺ - C7H7). Anal. Found: C, 75.59; H, 4.83; N, 13.79%. Calcd for C₁₉H₁₅N₃O: C, 75.73; H, 5.02; N, 13.95%.

(4RS,5RS)1-Benzyl-5-hydroxy-4-methyl-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**20b**): colorless needles from hexane-benzene; mp 164-165 °C; IR (KBr) 3380 (OH), 1615 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.28 (3 H, d, J4-Me= 7.3 Hz, 4-Me), 2.74-2.80 (2 H, ov, OH and 4-H), 4.82 (1 H, dd, J₃-4= 2.9, J₂-3= 9.5 Hz, 3-H), 5.05, 5.32 (each 1 H, each d, J_{gem}= 15.4 Hz, CH₂Ph), 5.51 (1 H, br d, J₅-OH= 7.3 Hz, 5-H), 6.05 (1 H, dd, J₂-4= 2.2, J₂-3= 9.5 Hz, 2-H), 6.90 (1 H, dd, J₉-10= 6.6, J₈-9= 8.1 Hz, 9-H), 7.26-7.36 (6 H, ov, Ph and 11-H), 7.54 (1 H, dd, J₉-10= 6.6, J₁₀-11= 8.8 Hz, 10-H), 8.85 (1 H, d, J₈-9= 8.1 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 19.4 (4-Me), 38.5 (4-C), 55.4 (CH₂Ph), 71.7 (5-C), 102.4 (5a-C), 113.7 (9-C), 114.9 (3-C), 125.3 (11-C), 127.6, 127.8, 128.9, 139.1 (Ph-C), 127.8 (8-C), 130.3 (2-C), 136.2 (10-C), 148.1 (11a-C), 157.1 (12a-C), 159.2 (6-C); mass *m*/z 333 (M⁺), 315 (M⁺ - H₂O). Anal. Found: C, 72.04; H, 5.78; N, 12.78%. Calcd for C₂₀H₁₉N₃O₂: C, 72.05; H, 5.74; N, 12.61%.

(2RS, 4SR, 13SR)-1-Benzyl-13-methyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[1',2':1,2]pyrimido[4,5-*d*]-[1,3]oxazin-5(5*H*)-one (**21b**): yellow prisms from hexane-benzene; mp 163-165 °C; IR (KBr) 1660 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.13 (3 H, d, *J*_{13-Me}= 6.6 Hz, 13-Me), 1.67 (1 H, ddd, *J*₁₂₋₁₃= 2.9, *J*₂₋₁₂= 5.9, *J*_{gem}= 13.2 Hz, 12-H_{exo}), 2.29 (1 H, dd, *J*₁₂₋₁₃= 8.8, *J*_{gem}= 13.2 Hz, 12-H_{endo}), 2.62 (1 H, m, 13-H), 4.74, 5.05 (each 1 H, each d, *J*_{gem}= 15.4 Hz, CH₂Ph), 5.13 (1 H, s, 4-H), 5.29 (1 H, d, *J*₂₋₁₂= 5.9 Hz, 2-H), 6.90 (1 H, ddd, *J*₈₋₁₀= 1.5, *J*₈₋₉= 6.6, *J*₇₋₈= 7.3 Hz, 8-H), 7.26-7.36 (6 H, ov, Ph and 10-H), 7.55 (1 H, ddd, *J*₇₋₉= 1.5, *J*₈₋₉= 6.6, *J*₉₋₁₀= 8.8 Hz, 9-H), 8.92 (1 H, ddd, *J*₇₋₉= 0.7, *J*₇₋₉= 1.5, *J*₇₋₈= 7.3 Hz, 7-H); ¹³C NMR (CDCl₃) δ = 21.5 (13-Me), 43.7 (12-C), 44.1 (13-C), 48.4 (CH₂Ph), 80.1 (4-C), 88.3 (2-C), 95.2 (4a-C), 112.7 (8-C), 124.3 (10-C), 127.3, 127.6, 128.6, 137.8 (Ph-C), 127.6 (7-C), 135.8 (9-C), 150.4 (10a-C), 153.6 (11a-C), 154.5 (5-C); mass *m*/z 333 (M⁺). Anal. Found: C, 72.34; H, 5.86; N, 12.69%. Calcd for C₂₀H₁₉N₃O₂: C, 72.05; H, 5.74; N, 12.61%.

(2RS, 4SR, 13RS)-1-Benzyl-13-phenyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[1',2':1,2]pyrimido[4,5-*d*]-[1,3]oxazin-5(5*H*)-one (**21c**): pale brown prisms from hexane-benzene; mp 193-195 °C; IR (KBr) 1665 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.26 (1 H, ddd, J₁₂₋₁₃= 3.7, J₂₋₁₂= 5.9, J_{gem}= 13.2 Hz, 12-H_{exo}), 2.65 (1 H, dd, J₁₂₋₁₃= 8.8, J_{gem}= 13.2 Hz, 12-H_{endo}), 3.71 (1 H, dd, J₁₂₋₁₃= 3.7, J₁₂₋₁₃= 8.8 Hz, 13-H), 4.79, 5.14 (each 1 H, each d, J_{gem}= 15.8 Hz, CH₂Ph), 5.46 (1 H, d, J₂₋₁₂= 5.9 Hz, 2-H), 5.48 (1 H, s, 4-H), 6.90 (1 H, dd, J₈₋₉= 6.6, J₇₋₈= 8.1 Hz, 8-H), 7.19-7.39 (11 H, ov, Ph and 10-H), 7.56 (1 H, dd, J₈₋₉= 6.6, J₉₋₁₀= 8.8 Hz, 9-H), 8.93 (1 H, d, J₇₋₈= 8.1 Hz, 7-H); ¹³C NMR (CDCl₃) δ = 45.3 (12-C), 48.6 (CH₂Ph), 54.8 (13-C), 80.9 (4-C), 88.4 (2-C), 95.3 (4a-C), 112.7 (8-C), 124.4 (10-C), 126.4, 126.8, 127.4, 127.7, 128.5, 128.6, 137.8, 145.0 (Ph-C), 127.8 (7-C), 136.0 (9-C), 150.6 (10a-C), 153.6 (11a-C), 154.6 (5-C); mass *m*/z 395 (M⁺). Anal. Found: C, 76.21; H, 5.44; N, 10.38%. Calcd for C₂₅H₂₁N₃O₂: C, 75.93; H, 5.35; N, 10.63%. (4RS,5RS)-1-Benzyl-4-ethoxycarbonyl-5-hydroxy-4,5-dihydropyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**20d**): pale yellow prisms from hexane-benzene; mp 117-119 °C; IR (KBr) 3340 (OH), 1730, 1615 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.32 (3 H, t, J_{VIC} = 7.3 Hz, OCH₂CH₃), 3.23 (1 H, br, exchangable with D₂O, 5-OH), 3.56 (1 H, m, 4-H), 4.25 (2 H, q, J_{VIC} = 7.3 Hz, OCH₂CH₃), 5.10 (1 H, d, J_{gem} = 15.5 Hz, CHHPh), 5.31-5.37 (2 H, ov, CHHPh and 3-H), 6.15 (1 H, br, 5-H), 6.24 (1 H, dd, J_{2-4} = 2.3, J_{2-3} = 9.9 Hz, 2-H), 6.93 (1 H, t, J_{8-9} = J_{9-10} = 6.9 Hz, 9-H), 7.26-7.36 (6 H, ov, Ph and 11-H), 7.60 (1 H, dd, J_{9-10} = 6.9, J_{10-11} = 8.9 Hz, 10-H), 8.88 (1 H, d, J_{8-9} = 6.9 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 14.2 (OCH₂CH₃), 48.8 (4-C), 55.2 (CH₂Ph), 61.3 (OCH₂CH₃), 67.9 (5-C), 100.4 (5a-C), 105.8 (3-C), 113.5 (9-C), 124.9 (11-C), 127.2 (12-C), 127.4, 127.5, 128.6, 138.4 (Ph-C), 131.4 (2-C), 136.2 (10-C), 147.9 (11a-C), 156.6 (12a-C), 158.7 (6-C). Anal. Found: C, 64.58; H, 5.51; N, 10.58%. Calcd for C₂₂H₂₁N₃O₄: C, 67.50; H, 5.41; N, 10.74%.

(2RS, 4SR, 13SR)-1-Benzyl-13-ethoxycarbonyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[1',2':1,2]pyrimido-[4,5-*d*][1,3]oxazin-5(5*H*)-one (**21d**): colorless needles from hexane-benzene; mp 182-183 °C; lR (KBr) 1715, 1665 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 1.30 (3 H, t, J_{ViC} = 7.3 Hz, OCH₂CH₃), 2.26 (1 H, dd, J_{12-13} = 9.2, J_{gem} = 13.5 Hz, 12-H_{endo}), 2.62 (1 H, ddd, J_{12-13} = 3.3, J_{2-12} = 5.9, J_{gem} = 13.5 Hz, 12-H_{endo}), 2.62 (1 H, ddd, J_{12-13} = 3.3, J_{2-12} = 5.9, J_{gem} = 13.5 Hz, 12-H_{endo}), 3.37 (1 H, ddd, J_{12-13} = 3.3, J_{12-13} = 9.2 Hz, 13-H), 4.20 (2 H, q, J_{vic} = 7.3 Hz, OCH₂CH₃), 4.83, 5.01 (each 1 H, each d, J_{gem} = 15.5 Hz, CH₂Ph), 5.37 (1 H, d, J_{2-12} = 5.9 Hz, 2-H), 5.82 (1 H, s, 4-H), 6.93 (1 H, ddd, J_{8-10} = 1.3, J_{8-9} = 6.6, J_{7-8} = 7.3 Hz, 8-H), 7.24-7.35 (6 H, ov, Ph and 10-H), 7.59 (1 H, dd, J_{8-9} = 6.6, J_{9-10} = 8.6 Hz, 9-H), 8.93 (1 H, d, J_{7-8} = 7.3 Hz, 7-H); ¹³C NMR (CDCl₃) δ = 14.6 (OCH₂CH₃), 38.8 (12-C), 49.1 (13-C), 53.7 (CH₂Ph), 61.7 (OCH₂CH₃), 77.4 (4-C), 88.4 (2-C), 94.2 (4a-C), 113.4 (8-C), 124.9 (10-C), 127.9 (7-C), 127.4, 129.2, 138.0 (Ph-C), 136.7 (9-C), 151.2 (10a-C), 154.0 (11a-C), 155.1 (5-C), 172.7 (CO). Anal. Found: C, 67.60; H, 5.39; N, 10.64\%. Calcd for C₂₂H₂₁N₃O₄: C, 67.50; H, 5.41; N, 10.74\%.

The thermal reaction of aldehyde 23a in decxygenated xylene solution for 50 h gave products 24 (32%) and 25 (31%) along with the unreacted 23a (33%).

1-Phenyl-1,4-dihydro-2,4-ethano-2*H*-pyrido[1',2':1,2]pyrimido-4,5-*d*][1,3]oxazin-5(5*H*)-one (**24**): pale yellow prisms from hexane-benzene; mp 165-166 °C; IR (KBr) 1670 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 2.24 2.50 (4 H, ov, 12- and 13-H), 5.65 (1 H, d, J₄₋₁₃= 5.6 Hz, 4-H), 5.68 (1 H, d, J₂₋₁₂= 5.3 Hz, 2-H), 6.91 (1 H, ddd, J₈₋₁₀= 1.3, J₈₋₉= 6.6, J₇₋₈= 7.3 Hz, 8-H), 7.19-7.45 (6 H, ov, Ph and 10-H), 7.52 (1 H, ddd, J₇₋₉= 1.7, J₈₋₉= 6.6, J₉₋₁₀= 8.9 Hz, 9-H), 8.93 (1 H, dd, J₇₋₉= 1.7, J₇₋₈= 7.3 Hz, 7-H); ¹³C NMR (CDCl₃) δ = 35.4, 36.2 (12- and 13-C), 74.6 (4-C), 91.5 (2-C), 97.0 (4a-C), 113.2 (8-C), 124.8 (10-C), 126.1, 126.4, 129.1, 141.3 (Ph-C), 127.5 (7-C), 135.7 (9-C), 150.1 (10a-C), 154.3 (11a-C), 154.3 (5-C). Anal. Found: C, 70.87; H, 5.01; N, 13.71%. Calcd for C₁₈H₁₅N₃O₂: C, 70.80; H, 4.95; N, 13.76%.

1-Phenylpyrido[1',2':1,2]pyrimido[4,5-*b*]azepin-6(1*H*)-one (**25**): red prisms from hexane-benzene; mp 158 °C; IR (KBr) 1665 (CO) cm⁻¹; ¹H NMR (CDCl₃) δ = 5.75 (1 H, dd, *J*₃₋₄= 5.3, *J*₂₋₃= 7.3 Hz, 3-H), 6.09 (1 H, d, *J*₂₋₃= 7.3 Hz, 2-H), 6.18 (1 H, dd, *J*₃₋₄= 5.3, *J*₄₋₅= 11.2 Hz, 4-H), 6.90 (1 H, d, *J*₄₋₅= 11.2 Hz, 5-H), 7.00-7.38 (7 H, ov, Ph and 9- and 11-H), 7.57 (1 H, ddd, *J*₈₋₁₀= 1.7, *J*₉₋₁₀= 6.7, *J*₁₀₋₁₁= 8.9 Hz, 10-H), 8.98 (1 H, ddd, *J*₈₋₁₁= 0.7, *J*₈₋₁₀= 1.7, *J*₈₋₉= 7.3 Hz, 8-H); ¹³C NMR (CDCl₃) δ = 108.4 (5a-C), 115.2 (9-C), 117.7, 122.2, 128.8, 144.0 (Ph-C), 120.7 (3-C), 125.7 (11-C), 127.7 (8-C), 127.8 (5-C), 128.6 (4-C), 133.1 (2-C), 136.0 (10-C), 150.1 (11a-C), 158.0 (12a-C), 160.3 (6-C). Anal. Found: C, 75.34; H, 4.55; N, 14.60%. Calcd for C₁₈H₁₃N₃O: C, 75.24; H, 4.56; N, 14.63%.

X-Ray Single-crystal Structure Analyses of Dihydroazepine 12a and [1,3]Oxazine 18c. Single crystals of compound 12a and 18c were obtained from propan-2-ol as prisms. A crystal of approximate

dimensions 0.160 x 0.200 x 0.680 mm was used for data collection of 12c, one of 0.380 x 0.600 x 1.000 of 18c. All measurements were made on a Rigaku AFC5S diffractometer by employing graphite-monochromated Mo-K α radiation. The unit-cell dimensions were obtained by least-squares analysis of 15 reflections within the range of 8.82 < 2θ < 14.25° for compound 12c, and 24 reflections within the range of 35.87 < 2θ < 39.54° for compound 18c, respectively. The crystal data for compound 12c are given: crystal system: triclinic; space group: P1 (#2); cell constants: a 10.610 (8)Å, b: 11.49 (1)Å, c: 9.788 (8)Å, V: 1079 (2)Å³; α: 11.216 (6)°, β: 96.36 (7)°, y: 77.56 (6)°; Z value: 2; Dc: 1.257 g cm⁻³. The crystal data for compound **18c** are shown as follows: crystal system: triclinic; space group: P1 (#2); cell constants: a 10.765 (3)Å, b: 12.010 (2)Å, c: 8.065 (5)Å; V: 977.5 (5)Å³, α : 106.94 $(2)^{\circ}$, β : 97.23 $(3)^{\circ}$, γ : 79.41 $(2)^{\circ}$; Z value: 2; Dc: 1.265 g cm⁻³. The ω -2 θ scan technique to a maximum 2 θ -value of 55° was used. Scans of (1.68 + 0.33 tan θ)° were made at a speed 32° min⁻¹ for compound **12c** and of $(1.63 + 0.30 \tan \theta)^{\circ}$ at a speed of 32° min⁻¹ for compound **18c**. A total of 5229 observed reflections (unique: 4958; Rint= 0.065) for 12c and 4729 observed reflections (unique: 4488; $R_{int} = 0.018$) for **18c** was collected. All calculations were performed using TEXAN program.¹¹ Atoms other than hydrogen were refined anisotropically. The structures were solved by direct methods (MITHRIL)¹² and refined by least-squares to R 0.056 (compound 12c) and 0.044 (compound 18c). ORTEP¹³ drawings of compounds 12c and 18c are shown in Figs. 1 and 2.7

Fig. 1. ORTEP drawing of compound 12c with crystallographic numbering scheme.

Fig. 2. ORTEP drawing of compound 18c with crystallographic numbering scheme.

Acknowledgment

We thank Professors M. Tashiro and S. Kanemasa of Kyushu University for measurements of elemental analyses and NMR spectra.

References and Notes

- Inazumi, T.; Harada, E.; Mizukoshi, T.; Kuroki, R.; Kakehi, A.; Noguchi, M. J. Chem. Soc., Perkin Trans. 1 1994, 565.
- (2) Kuroki, R.; Akao, R.; Inazumi, T.; Noguchi, M. Tetrahedron 1994, 50, 1063.

- (3) (a) Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. Engl. 1978, 17, 476. (b) Snider, B. B.; Phillips, G. B. J. Org. Chem. 1983, 49, 183.
- (4) (a) Motoki, S.; Watanabe, T.; Saito, T. Tetrahedron Lett. 1989, 30, 189. (b) Choi, S. S.-M.; Kirby, G. W.; Mahajan, M. P. J. Chem. Soc., Chem. Commun. 1990, 138. (c) Saito, T.; Watanabe, T.; Kitazawa, S.; Hayashi, Y.; Motoki, S. J. Chem. Soc., Perkin Trans. 1 1991, 959. (d) Saito, T.; Shundo, Y.; Kitazawa, S.; Motoki, S. J. Chem. Soc., Chem. Commun. 1992, 600. Also see Taber, D. F.; 'Intramolecular Diels-Alder and Alder Ene Reactions,' Springer Verlag, New York, 1984, ch 3.
- (5) Examples of the carbonyl and imine ene reactions catalyzed by Lewis acids were found in reviews; (a) Snider, B. B. Acc. Chem. Res. 1980, 13, 426. (b) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 876. (c) Borzilleri, R. M.; Weinreb, S. M. Synthesis 1995, 347.
- (6) Acid catalysts gave substantially no effects on the azepine-ring formation in our systems: Noguchi, M.; Mizukoshi, T.; Nishimura, S. unpublished results.
- (7) The author has deposited atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 2EZ, UK.
- (8) Noguchi, M.; Mizukoshi, T.; Uchida, T.; Kuroki, Y. in the succeeding paper.
- (9) George, T.; Mehta, D. V.; Dabholkar, D. A. J. Org. Chem. 1971, 36, 2192.
- (10) Butt, M. A.; Elvidge, J. A. J. Chem. Soc. 1963, 4483.
- (11) TEXAN TEXRAY, Structure Analysis Package, Molecular Structures Corporation, 1985.
- (12) Gilmore, C. J. J. Appl. Crystallogr. 1984, 17, 42.
- (13) Johnson, C. K. ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.

(Received in Japan 25 July 1996; accepted 26 August 1996)