Preparation and Reaction of **Y**-Ethoxy and (Phenylthio)allenylstannanes

Takeshi TAKEDA,^{*} Hiroyuki OHSHIMA, Masami INOUE, Akira TOGO, and Tooru FUJIWARA Department of Industrial Chemistry, Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184

 \checkmark -Ethoxyallenylstannane was obtained by the reaction of 2ethoxy-3-alkynenitrile or 1-ethoxy-1-(phenylthio)-2-alkyne with tributylstannyllithium in good yield. The reaction of 1,1-bis-(phenylthio)-2-alkyne with tributylstannylcopper(I) reagent gave \checkmark -(phenylthio)allenylstannane which, in turn, was treated with acetal in the presence of TiCl₄ to afford the propargyl sulfide derivative predominantly.

Preparation of γ -alkoxyallylstannane and its reaction with carbonyl compounds are the subject of recent interest as a tool for the synthesis of polyhydroxylated natural products.¹⁾ However, little attention have been directed to the γ -heteroatom substituted allenylstannanes. We wish to describe here a convenient method for the preparation of γ -ethoxy and (phenylthio)allenylstannanes (<u>2a</u> and <u>2b</u>) and the preliminary results of the reaction of <u>2b</u> with acetals in the presence of TiCl₄.

Initially we examined the preparation of ℓ -ethoxyallenylstannane (<u>2a</u>) by the reaction of 2-ethoxy-3-alkynenitrile (<u>1a</u>) with tributylstannyllithium similarly to the method for the synthesis of ℓ -ethoxyallylstannane which was recently developed by us.^{1c)} It was found, however, that ℓ -ethoxyallenylstannanes (<u>2a</u>) were obtained only when <u>1a</u> possessing an α -alkyl substituent (R²= alkyl) was employed. Therefore desulfurizative stannylation of monothioacetal (<u>1b</u>) and thioacetal (<u>1c</u>) were then examined in order to prepare ℓ -phenylthio as well as ℓ -ethoxyallenylstannanes with no ℓ -alkyl substituent.

When l-ethoxy-l-(phenylthio)-2-alkyne was treated with tributylstannyllithium in THF, the reaction was complicated and no stannylated product was obtained like the reaction of <u>la</u> which had no α -alkyl group. On the other hand, the displacement of phenylthio group proceeded with allylic inversion to give γ -ethoxyallenylstannane (<u>2a</u>) in good yield by the reaction carried out in the presence of CuBr

Table 1. Preparation of % -ethoxy and (phenylthio)alleny	lstannanes (2	2)
---	---------------	----

			·				
	R ¹ 1	R ²	x	Y	°C	<u>Time</u> h	Yield ^{a)} %
•	СН3	PhCH ₂	CN	OEt	-78	0.7	83
	СНЗ	Ph(CH ₂) ₂	CN	OEt	-78	1	88
	CH	CH ₂ (CH ₂) ₇	CN	OEt	-78	1	85
	CH ₃ (CH ₂) ₃	PhCH ₂	CN	OEt	-78	0.7	95
	CH ₃ (CH ₂) ₃	$Ph(CH_2)_2$	CN	OEt	-78	0.7	98
	CH ₂ (CH ₂) ₃	CH3CH2	CN	OEt	-78	0.5	94
	Ph(CH ₂) ₃	Ph(CH ₂) ₂	CN	OEt	-78	1	83
	CH ₂	H	PhS	OEt	0-r.t.	3	62
	CH ₂ (CH ₂) ₂	Н	PhS	OEt	0	2	75
	Ph(CH ₂) ₃	Н	PhS	OEt	0-r.t.	2	64
	CH	Н	PhS	PhS	-78-0	2	59
	сн, (сн,),	Н	PhS	PhS	-78-0	2	67
	Ph(CH ₂) ₃	н	PhS	PhS	-78-0	2	65

a) All compounds gave satisfactory spectral data.

and HMPA.

On the basis of the above observation, thioacetal (<u>lc</u>) was treated with various tributylstannylmetal species to prepare Γ -(phenylthio)allenylstannane (<u>2b</u>). After several attempts, tributylstannylcopper(I) reagent²) was found to be effective for the present transformation and the reaction proceeded regioselectively to give <u>2b</u> in good to moderate yield (Table 1).

The experimental procedures for the preparation of these allenylstannanes ($\underline{2a}$ and <u>2b</u>) are as follows: (i) Preparation of <u>2a</u> from <u>la</u> ---- A THF solution of Bu₃SnLi (0.6 mmol) was added to a THF (1.5 ml) solution of 4-ethoxy-5-phenyl-2-hexyne-4carbonitrile (<u>la</u>) (107 mg, 0.5 mmol) at -78 °C. After being stirred for 40 min, the reaction was quenched by addition of 5% aq.NaHCO3. The organic material was extracted (ether) and dried (Na2SO4). After evaporation of the solvent, 2-ethoxy-1-phenyl-4-(tributylstannyl)-2,3-pentadiene (2a) (198 mg, 83%) was isolated by column chromatography (hexane) using neutral aluminum oxide deactivated by addition of 6% of water. (ii) Preparation of 2a from 1b ---- A THF solution of Bu₃SnLi (1 mmol) was added to a THF (3 ml)-HMPA (1 ml) solution of 1-ethoxy-1-phenylthio-2butyne (1b) (103 mg, 0.5 mmol) and CuBr (144 mg, 1 mmol) at 0 °C. After being warmed up to r.t., the reaction was quenched by addition of sat. aq. NH,Cl. The work-up and purification procedures descried above gave 1-ethoxy-3-(tributylstannyl)-l,2-butadiene (2a) (120 mg) in 62% yield. (iii) Preparation of (2b) — A THF solution of Bu₂SnLi (12 mmol) was added to a THF (12 ml) solution of CuBr (1.894 g, 13.2 mmol) and LiBr (1.146 g, 13.2 mmol) at -78 °C. After being stirred for 1 h, 1,1-bis(phenylthio)-2-heptyne (1c) (1.250 g, 4 mmol) in THF (12 ml) was added and the reaction mixture was stirred for 1 h at the same temperature and 1 h at 0 °C. The reaction was quenched by addition of sat. aq. NH₄Cl and organic material was extracted with hexane. The extract was dried (Na_2SO_4) and condensed under reduced pressure. 1-(Phenylthio)-3-(tributylstannyl)-1,2-heptadiene (2b) (1.314 g) was isolated in 67% yield by column chromatography (hexane) using silica gel containing 0.1% of hydroquinone.

f-Ethoxy and (phenylthio)allenylstannane (<u>2a</u> and <u>2b</u>) are regarded as synthetic equivalents of f-anions of propargylic ether and sulfide. Then we examined the reaction of <u>2b</u> with carbonyl compounds and it was found that TiCl₄ promoted reaction of <u>2b</u> with acetal proceeded regioselectively to give the propargylic sulfide (3) (Eq. 2, Table 2).

The following experimental procedure is representative: to a CH_2Cl_2 (2 ml) solution of 3-phenylpropionaldehyde dimethyl acetal (135 mg, 0.75 mmol) was added a CH_2Cl_2 (0.53 ml) solution of TiCl_4 (0.5 mmol) and a CH_2Cl_2 (1.5 ml) solution of 1-(phenylthio)-3-(tributylstannyl)-1,2-butadiene (226 mg, 0.5 mmol) successively at -78 °C. After being stirred for 5 min, the reaction was quenched by addition

Run	R ¹	R ²	R ³	<u>Temp</u> °C	<u>Time</u> min	Yield ^{d)} %	Ratio of stereoisomers
1 2 3 4 5 ^{a)} 6 ^{a)} 7	Сн3	$CH_3Ph(CH_2)_2(CH_3)_2CHPhPhCH_2=CHCH_3$	н н н н с ¹ 3	-78 -78 -78 -78 -78 r.t. -78	10 5 30 5 180 overnight 150	67 71 54 62 67 61 56	56 : 44 ^{e)} f) 68 : 32 ^{g)} 77 : 23 ^{e)} 87 : 13 f)
8 ^{b)} 9 10 ^{b)} 11 ^{b)} 12 ^{b)}	CH ₃ (CH ₂) ₃ Ph(CH ₂) ₃	CH_3 (CH ₃) ₂ CH Ph CH ₃ Ph	н н н н н	-23 -78 -23 -23 -23 -23	8 180 8 8 15	65 55 54 61 54	$56 : 44^{e})$ $77 : 23^{g})$ $80 : 20^{e})$ $51 : 49^{e})$ $76 : 24^{e})$

Table 2. The reaction of γ -(phenylthio)allenylstannane (2b) with acetal

a) AlCl₃ was used instead of TiCl_4 . b) The reaction was carried out by addition of a CH_2Cl_2 solution of TiCl_4 to a CH_2Cl_2 solution of $\underline{2b}$ and acetal at -23 °C. c) Diethyl acetal. d) The structures of these compounds are supported by IR and NMR spectra. e) Determined by 60 MHz and 200 MHz ¹H NMR spectra. f) The ratio was not determined. g) The two isomers were separated each other by TLC.

of a phosphate buffer solution (pH 7). The usual work-up and purification (silica gel TLC, hexane-AcOEt = 9:1) gave 5-methoxy-7-phenyl-4-(phenylthio)-2-heptyne (ll0 mg) in 71% yield.

The vicinal coupling constants of the two methine protons \mathcal{O} to phenylthio and methoxy groups of 3 obtained by the reaction of isobutyraldehyde (runs 3 and 9) and benzaldehyde (runs 4, 5, and 10) suggest that the major products are the threo adducts ($\mathbb{R}^1 = \mathbb{CH}_3$, $\mathbb{R}^2 = (\mathbb{CH}_3)_2\mathbb{CH}$; 7 Hz (\mathbb{CCl}_4), $\mathbb{R}^1 = \mathbb{CH}_3$, $\mathbb{R}^2 = \mathbb{Ph}$; 7.1 Hz (\mathbb{CDCl}_3), $\mathbb{R}^1 = \mathbb{CH}_3(\mathbb{CH}_2)_3$, $\mathbb{R}^2 = (\mathbb{CH}_3)_2\mathbb{CH}$; 7 Hz (\mathbb{CCl}_4), $\mathbb{R}^1 = \mathbb{CH}_3(\mathbb{CH}_2)_3$, $\mathbb{R}^2 = \mathbb{Ph}$; 9 Hz (\mathbb{CCl}_4)) and the others are the erythro diastereoisomers ($\mathbb{R}^1 = \mathbb{CH}_3$, $\mathbb{R}^2 = (\mathbb{CH}_3)_2\mathbb{CH}$; 5 Hz (\mathbb{CCl}_4), $\mathbb{R}^1 = \mathbb{CH}_3(\mathbb{CH}_2)_3$, $\mathbb{R}^2 = \mathbb{Ph}$; 4.4 Hz (\mathbb{CDCl}_3), $\mathbb{R}^1 = \mathbb{CH}_3(\mathbb{CH}_2)_3$, $\mathbb{R}^2 = (\mathbb{CH}_3)_2\mathbb{CH}$; 5 Hz (\mathbb{CCl}_4), $\mathbb{R}^1 = \mathbb{CH}_3(\mathbb{CH}_2)_3$, $\mathbb{R}^2 = \mathbb{Ph}$; 6 Hz (\mathbb{CCl}_4)). The preferential formation of the threo adduct in the present reaction is well explained by assuming the non-cyclic transition states depicted in Fig. 1.

The authors gratefully acknowledge the financial support of the Saneyoshi Foundation.

References

- a) J. P. Quintard, B. Elissondo, and M. Pereyre, J. Org. Chem., <u>48</u>, 1559 (1983); b) M. Pereyre, B. Elissondo, and J. P. Quintard, "Selectivity - a Goal for Synthetic Efficiency," ed by W. Bartman and B. M. Trost, Verlag Chemie, Weinheim (1984), p.201; c) T. Takeda, K. Ando, H. Oshima, M. Inoue, and T. Fujiwara, Chem. Lett., <u>1986</u>, 345; d) G. E. Keck, D. E. Abbott, and M. R. Wiley, Tetrahedron Lett., <u>28</u>, 139 (1987); e) M. Koreeda and Y. Tanaka, ibid., <u>28</u>, 143 (1987).
- 2) K. Ruitenberg, H. Westmijze, J. Meijer, C. J. Elsevier, and D. Vermeer, J. Organomet. Chem., 241, 417 (1983).

(Received April 17, 1987)