Preliminary communication

A facile, systematic synthesis of ganglio-series gangliosides: Total synthesis of gangliosides GM_1 and GD_{1a} *

Akira Hasegawa, Takao Nagahama and Makoto Kiso Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-11 (Japan) (Received May 20th, 1992; accepted in revised form August 13th, 1992)

Mammals, birds, amphibians, and teleost fish all have similar brain gangliosides. These gangliosides are of the ganglio-series with predominantly, gangliotetraose, β -D-Gal- $(1 \rightarrow 3)$ - β -D-GalNAc- $(1 \rightarrow 4)$ - β -D-Gal- $(1 \rightarrow 4)$ -D-Glc, as the neutral oligosaccharide, though with a varying degree of sialylation. Since their discovery, the gangliosides have for several reasons elicited much interest. The concentration of complex gangliosides in membrane elements of the brain is suggestive of a functional role in the nervous system. Recently, the biological importance of gangliosides in the nervous system has been well documented²⁻⁷. As biologically derived gangliosides are polymolphous molecules and available in only limited quantity, the elucidation of their functions at the molecular level still remains to the carried out. We have reported⁸ the successful syntheses of several series of gangliosides and their analogues, which are based on a facile dimethyl(methylthio)sulfonium triflate^{8,9} (DMTST) or N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid^{9,10}. (TfOH) promoted, stereoselective α -glycosylation of sialic acid with suitably protected sugar residues in an acetonitrile medium. We describe herein a facile, total synthesis of gangliosides GM1 and GD1a in connection with development of the systematic synthesis of the ganglio-series of gangliosides. Ganglioside GM₁ was first synthesized by Ogawa and co-workers¹¹ after multiple steps in very low yield. For the synthesis of the both gangliosides, the core oligosaccharide 4 was selected as the glycosyl acceptor. Compound 4 has a sialyl α -(2 \rightarrow 3) unit already linked and provides free hydroxyl groups at C-3 and C-4 of the GalNAc residue for further, regioselective glycosylation at C-3, with either methyl 2,4,6-tri-O-benzoyl-3-O-benzyl-1-thio- β -D-galactopyranoside (5) or methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero- α -D-galacto-2nonulopyranosylonate)- $(2 \rightarrow 3)$ -2,4,6-tri-O-benzoyl-1-thio- β -D-galactopyranoside¹²

Correspondence to: Professor A. Hasegawa, Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-11, Japan.

^{*} Synthetic Studies on Sialoglycoconjugates, Part 42. For Part 41, see ref. 1.

(6) as the glycosyl donor. The glycosyl acceptor 4 was prepared from a known tetrasaccharide derivative 3 (ref. 13), an intermediate prepared in the total synthesis of ganglioside GM_2 .

$$\beta$$
-D-Gal-(1 \rightarrow 3)- β -D-GalNAc-(1 \rightarrow 4)- β -D-Gal-(1 \rightarrow 4)- β -D-Glc-(1 \rightarrow 1)-Cer
3
1: GM₁
3
 α -D-Neu5Ac

$$\alpha$$
-D-Neu5Ac-(2 \rightarrow 3)- β -D-Gal-(1 \rightarrow 3)- β -D-GalNAc-(1 \rightarrow 4)- β -D-Gal-(1 \rightarrow 4)- β -D-Glc-(1 \rightarrow 1)Cer
3
2: GD_{1a}
 α -D-Neu5Ac

Treatment^{11,14} of **3** with lithium iodide in pyridine for 6 h under reflux to remove the methyl ester group gave the free carboxyl derivative of **3** in 95% yield, which was converted via sequential treatment with hydrazine monohydrate, *N*acetylation, and *O*-deisopropylidenation with aqueous acetic acid into 2-(trimethylsilyl)ethyl *O*-(2-acetamido-6-*O*-benzoyl-2-deoxy- β -D-galactopyranosyl)-(1 \rightarrow 4)-*O*-[(methyl 5-acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-D-glycero- α -D-galacto-2nonulopyranosylonate)-(2 \rightarrow 3)]-*O*-(2,6-di-*O*-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-*O*-benzyl- β -D-glucopyranoside (4) {[α]_D - 1.8°, (CHCl₃)} in 88% yield. The glycosyl donor **5** was prepared from 2-(trimethylsilyl)ethyl 3-*O*-benzyl- β -Dgalactopyranoside¹⁵ via the sequence of *O*-benzoylation, conversion¹⁶ of the 2-(trimethylsilyl)ethyl group with the acetoxy group, and replacement of the anomeric

acetoxy group with the methylthio group by use of (methylthio)trimethylsilane in the presence of trimethylsilyl trifluoromethanesulfonate. Glycosylation¹⁰ of 4 with 5 in dichloromethane for 26 h at room temperature in the presence of NIS-TfOH and powdered 4A molecular sieves (MS-4A) gave a 66% yield of the desired β -glycoside 7 {[α]_D + 37.5° (CHCl₃)}. Catalytic hydrogenolysis (10% Pd-C) in ethanol-acetic acid of the benzyl groups in 7 and subsequent O-acetylation gave 8 in 78% yield. Significant signals in the ¹H NMR spectrum of 8 were at δ 5.04 (d, $J_{1,2}$ 7, 9 Hz, H-1d) and at δ 5.70 (d, $J_{3,4}$ 3.3 Hz, H-4c), which showed the newly formed glycosidic configuration to be β and the linkage position of 5 to be C-3 of GalNAc residue in 4.

On the other hand, glycosylation of 4 with 6 in dichloromethane for 25 h at room temperature in the presence of DMTST (4.0 equiv relative to the donor) and MS-4A, gave the expected hexasaccharide 13 {[α]_D + 29.2° (CHCl₃)} in 62% yield, which was converted via catalytic hydrogenolysis of the benzyl groups and subse-

quent O-acetylation into the oligosaccharide 14 { $[\alpha]_D + 8.1^\circ$ (CHCl₃)} of GD_{1a} in 90% yield. NIS-TfOH-promoted glycosylation of 4 and 6, however, did not give any product. The ¹H NMR spectrum of 14 showed the presence of seventeen, three-proton singlets at δ 1.37–2.20 (3 NCOCH₃ and 14 OCOCH₃), two three-proton singlets at 3.63 and 3.80 (2 OCH₃), a one-proton doublet at δ 5.64 (J_{3,4} 3.1 Hz) due to H-4c, and multiples at δ 7.26–8.21 due to twenty aromatic protons, indicating the assigned structure.

Treatment^{8a,17} of compounds 8 or 14 with trifluoroacetic acid in dichloromethane for 2 h at room temperature gave the corresponding 1-hydroxy compounds 9 and 15 in quantitative and 90% yields, respectively. Treatment¹⁸ of 9 or 15 with trichloroacetonitrile in dichloromethane in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for 4 h at 0° gave the corresponding α -trichloroacetimidates 10 {[α]_D + 19.5° (CHCl₃)} and 16 {[α]_D + 23.5° (CHCl₃)} in quantitative and 85% yields, respectively. Significant signals in the ¹H NMR spectra were at δ 6.55 ($J_{1,2}$ 3.5 Hz, H-1a) and 8.73 (C=NH) for 10, and at δ 6.47 ($J_{1,2}$ 4.0 Hz, H-1a) and 8.64 (C=NH) for 16, which showed the imidate to be α .

Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol¹⁹ was carried out in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and MS-4A (AW300) at 0°, affording the corresponding β -glycosides 11 {[α]_D +1.0° (CHCl₃)) and 17 {[α]_D +8.1° (CHCl₃)} in 48 and 63% yields, respectively. The observed chemical shifts and coupling constants due to the newly formed glycosidic linkages in the ¹H NMR spectra were at δ 4.58 ($J_{1,2}$ 7.5 Hz, H-1a) for 11 and at δ 4.59 (J_{1,2} 8.2 Hz, H-1a) for 17, showing the both of the anomeric configurations to be β . Other ¹H NMR data are consistent with the structures assigned. Selective reduction²⁰ of the azido group in 11 or 17 with H_2S in 5:1 pyridine-water gave the amine, which on condensation with octadecanoic acid using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (WSC) in dichloromethane, gave gangliosides GM₁ and GD_{1a} derivatives 12 and 18 in 72 and 76% yields, respectively. Finally, O-deacylation of 12 or 18 with sodium methoxide in methanol, and subsequent saponification of the methyl ester group yielded GM₁ (1) and GD_{1a} (2) in quantitative yield after chromatography on a column of Sephadex LH-20. Physicochemical data for GM_1 : $[\alpha]_D + 7.2^\circ$ (5:5:1 CHCl₃- $CH_{3}OH-H_{2}O$; ¹H NMR [49:1 (CD_{3})₂SO-D₂O] δ 0.85 (t, 6 H, 2 MeCH₂), 1.23 (s, 52 H, 26 CH₂), 1.80, 1.85 (2 s, 6 H, 2 AcN), 2.65 (dd, 1 H, J_{gem} 12.6, J_{3ea.4} 4.6 Hz, H-3e-eq), 4.17 (d, $J_{1,2}$ 8.0 Hz, H-1b), 4.25 (d, $J_{1,2}$ 7.8 Hz, H-1d), 4.29 (d, $J_{1,2}$ 7.6 Hz, H-1c), 4.85 (d, J_{1,2} 7.9 Hz, H-1a), and 5.43–5.65 (m, 2 H, H-4, 5 Cer unit). Physicochemical data for GD_{1a} (2): $[\alpha]_D$ + 4.8° (5:5:1 CHCl₃-CH₃OH-H₂O); ¹H NMR [49:1 (CD₃)₂SO-D₂O] δ 0.85 (t, 6 H, 2 MeCH₁2), 1.23 (s, 52 H, 26 CH₂), 1.76, 1.88, 1.89 (3 s, 9 H, 3 AcN), 2.60, 2.68 (2 dd, 2 H, J_{gem} 12.5, J_{3eg,4} 4.5 Hz, H-3e, f-eq), 4.18 (d, J_{1,2} 8.0 Hz, H-1b), 4.28, 4.30 (2 d, 2 H, J_{1,2} 7.7 Hz, H-1c, d), 4.80 (d, $J_{1,2}$ 7.8 Hz, H-1a), and 5.36 5.58 (2 m, 2 H, H-4,5 Cer unit).

In conclusion, a facile and stereocontrolled total synthesis of GM_1 and GD_{1a} was achieved by use of the key glycosyl acceptor 4 and the thioglycoside donors 5

and 6, promising a further development of the systematic synthesis of the ganglioseries of ganglioside. Elemental analyses, as well as the IR and ¹H NMR data (270 and 400 MHz) of all the new compounds reported here were quite satisfactory with the assigned structures.

ACKNOWLEDGMENT

This work was supported in part by a Grant-in-Aid (no. 03255207 and 03660132) for the Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.

REFERENCES

- 1 A. Hasegawa, T. Nagahama, H. Ohki, and M. Kiso, J. Carbohydr. Chem., in press.
- 2 (a) S. Tsuji, T. Yamakawa, M. Tanaka, and Y. Nagai, J. Neurochem., 50 (1988) 414-423; (b) S. Tsuji,
 S. Yamashita, and Y. Nagai, J. Biochem., 104 (1988) 498-503.
- 3 Y. Hirabayashi, A. Hyogo, T. Nakao, K. Tsuchiya, Y. Suzuki, M. Matsumoto, K. Kon, and S. Ando, J. Biol. Chem., 265 (1990) 8144-8151.
- 4 (a) M. Tiemeyer, Y. Yasuda, and R.L. Schnaar, J. Biol. Chem., 264 (1989) 1671-1681; (b) M. Tiemeyer, P. S-Hill, and R.L. Schnaar, J. Biol. Chem., 265 (1990) 11990-11999.
- 5 C.M. Gammon, K.K. Vaswani, and R.W. Ledeen, Biochemistry, 26 (1987) 6239-6243.
- 6 T. Hama, Y. Kushima, M. Miyamoto, M. Kubota, N. Takei, and H. Hatanaka, *Neuroscience*, 40 (1991) 445-452.
- 7 R.L. Hopfer, S.W. Johnson, M. Masserini, A. Giuliani, and J.A. Alhadeff, *Biochem. J.*, 266 (1990) 491-496.
- 8 (a) A. Kameyama, H. Ishida, M. Kiso, and A. Hasegawa, *Carbohydr. Res.*, 209 (1991) c1-c4; (b) H. Prabhanjan, M. Kiso, and A. Hasegawa, *Carbohydr. Res.*, 222 (1991) c1-c4.
- 9 (a) P. Fügedi and P.J. Garegg, Carbohydr. Res., 149 (1986) c9-c12; (b) T. Murase, H. Ishida, M. Kiso, and A. Hasegawa, Carbohydr. Res., 184 (1988) c1-c4; (c) A. Hasegawa, H. Ohki, T. Nagahama, H. Ishida, and M. Kiso, Carbohydr. Res., 212 (1991) 277-281.
- (a) P. Konradsson, D.R. Mootoo, R.E. McDevitt, and B. Fraser-Reid, J. Chem. Soc., Chem. Commun., (1990) 270-272; (b) G.H. Veeneman, S.H. van Leeuwen, and J.H. van Boom, Tetrahedron Lett., 31 (1990) 1331-1334; (c) A. Hasegawa, T. Nagahama, H. Ohki, K. Hotta, H. Ishida, and M. Kiso, J. Carbohydr. Chem., 10 (1991) 493-496.
- 11 M. Sugimoto, M. Numata, K. Koike, Y. Nakahara, and T. Ogawa, *Carbohydr. Res.*, 156 (1986) c1-c5.
- 12 A. Kameyama, H. Ishida, M. Kiso, and A. Hasegawa, Carbohydr. Res., 200 (1990) 269-285.
- 13 A. Hasegawa, T. Nagahama, H. Ohki, and M. Kiso, J. Carbohydr. Chem., in press.
- 14 F. Elsinger, J. Schreiker, and A. Eshenmoser, Helv. Chim. Acta, 43 (1960) 113-118.
- 15 T. Murase, A. Kameyama, K.P.R. Kartha, H. Ishida, M. Kiso, and A. Hasegawa, J. Carbohydr. Chem., 8 (1989) 265-283.
- 16 K. Jansson, T. Frejd, J. Kihlberg, and G. Magnusson, Tetrahedron Lett., 27 (1986) 753-756.
- 17 K. Jansson, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnusson, J. Dahmen, G. Noori, and K. Stenvall, J. Org. Chem., 53 (1988) 5629-5647.
- 18 (a) R.R. Schmidt and G. Grundler, Synthesis, (1981) 885–887; (b) M. Numata, M. Sugimoto, K. Koike, and T. Ogawa, Carbohydr. Res., 163 (1987) 209–225.
- (a) Y. Ito, M. Kiso, and A. Hasegawa, J. Carbohydr. Chem., 8 (1989) 285-294; (b) R.R. Schmidt and P. Zimmermann, Angew. Chem. Int. Ed. Engl., 25 (1986) 725-726.
- 20 T. Adachi, Y. Yamada, I. Inoue, and M. Saneyoshi, Synthesis, (1977) 45-46.