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Sustainable Manganese-Catalyzed C–H Activation/Hydroarylation 

of Imines 

Yu-Feng Liang,+ Leonardo Massignan,+ and Lutz Ackermann* 

Abstract: Expedient C–H additions of heteroarenes onto aldimines 

were realized by a sustainable manganese catalysis manifold within 

a removable directing group strategy. The C–H activation features 

most user-friendly reaction conditions, excellent chemo- and 

position-selectivity as well as ample substrate scope. Detailed 

experimental mechanistic studies were suggestive of an 

organometallic C–H manganesation mode of action. 

Introduction 

Transition metal-catalyzed C–H activation[1] has emerged as an 

increasingly viable tool for improving the step economy in 

molecular syntheses, with transformative applications to 

medicinal chemistry, material sciences and crop protection, 

among others.[2] During the past decades, progress has largely 

relied on complexes derived from precious 4d or 5d metals, such 

as noble rhodium, iridium, or palladium.[1] However, recent focus 

has shifted towards the use of earth-abundant, less toxic 3d 

metal complexes as catalysts for C–H functionalizations.[3] In this 

context, considerable recent advances were achieved with 

sustainable organometallic manganese catalysts,[4] with key 

contributions by Takai/Kuninobu,[5] Wang,[6]  and Ackermann,[7] 

among others.[8]  

Given the prevalence of amines in bioactive natural products 

and drugs, the direct addition of C–H bonds onto C=N double 

bonds represents a powerful approach for the rapid synthesis of 

substituted amines.[9] In this context, expensive 

pentamethylcyclopentadienyl complexes of toxic rhodium and 

cobalt allowed for addition reactions of arenes onto imines.[10] In 

sharp contrast, less expensive and less toxic manganese has 

only recently been identified as catalyst for the position-selective 

C=Het hydroarylations.[11] Despite this indisputable progress, the 

manganese catalysis regime required drastic conditions with 

Et2O as the solvent at a reaction temperature of 100 °C, thus 

calling for high-pressure technologies and special safety 

features. However, within our program on sustainable 

catalysis,[12] we have now devised most user-friendly 

manganese-catalyzed site-selective C–H 

activation/hydroarylations[13] of imines with ample substrate 

scope. Notable features of our findings include i) general 

assembly of bioactive aminomethylated indoles, key motifs in 

natural products and pharmaceuticals,[14] ii) a most user-friendly 

reaction medium for site-selective C–H functionalizations at 

ambient pressure; iii) synthetically useful removable[15] 

pyri(mi)dyl groups, and iv) detailed mechanistic insights into the 

working mode of the manganese-catalyzed C–H activation 

(Scheme 1). 

 

 

Scheme 1. Sustainable manganese-catalyzed C–H activation/ hydroarylation 

of imines. 

Results and Discussion 

    We initiated our studies by probing reaction conditions for the 

envisioned manganese-catalyzed C–H activation of 1-(pyridin-2-

yl)-1H-indole (1a) with N-benzylidene-4-

methylbenzenesulfonamide (2a). We were delighted to observe 

that the desired product 3aa was obtained in 47% yield, 

highlighting the versatility of manganese C–H activation. 

Detailed optimization studies revealed Mn2(CO)10 as the best 

catalyst (entries 1-5, Table 1). A variety of different additives, 

such as bases, ligands, and Lewis acids, failed to improve the 

catalyst’s efficacy (entries 6-11). Polar solvents, including protic 

tBuOH, proved viable for the manganese-catalyzed C–H 

activation (entries 12-20). While ethereal solvents offered the 

optimal performance (entries 18-20), nBu2O was selected as the 

ideal reaction medium because of its higher boiling point of 

142 °C, so as to avoid special high-pressure technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[*] Dr. Y.-F. Liang, L. Massignan, Prof. Dr. L. Ackermann 

 Institut für Organische und Biomolekulare Chemie 

 Georg-August-Universität Göttingen 

 Tammannstraße 2, 37077 Gottingen (Germany) 

 E-mail: Lutz.Ackermann@chemie.uni-goettingen.de 

           Homepage: http://www.ackermann.chemie.uni-goettingen.de/ 

[+] These authors contributed equally to this work. 

 Supporting information for this article is given via a link at the end of 

the document. 

10.1002/cctc.201800144

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemCatChem

This article is protected by copyright. All rights reserved.



FULL PAPER    

 

Table 1. Optimization of manganese-catalyzed C–H activation/hydroarylation. 

 

Entry [Mn] Additive Solvent Yield/%
[b]

 

1 Mn2(CO)10 – 1,4-dioxane 47 

2 MnBr(CO)5 – 1,4-dioxane 30 

3 – – 1,4-dioxane --- 

4 MnCl2 – 1,4-dioxane --- 

5 Mn(OAc)2 – 1,4-dioxane --- 

6 MnBr(CO)5 NaOAc 1,4-dioxane 45 

7 Mn2(CO)10 NaOAc  1,4-dioxane 45 

8 Mn2(CO)10 Cy2NH 1,4-dioxane 38 

9 Mn2(CO)10 PPh3 1,4-dioxane 42 

10 Mn2(CO)10 ZnBr2 1,4-dioxane 10 

11 Mn2(CO)10 BF3•OEt2 1,4-dioxane 40 

12 Mn2(CO)10 – 1,4-dioxane 42
[c]

 

13 Mn2(CO)10 – PhMe 30 

14 Mn2(CO)10 – DME 27 

15 Mn2(CO)10 – DCE 32 

16 Mn2(CO)10 – DMF 5 

17 Mn2(CO)10 – tBuOH 42 

18 Mn2(CO)10 – Et2O 88 

19 Mn2(CO)10 – iPr2O 83 

20 Mn2(CO)10 – nBu2O 85 

[a] Reaction conditions: 1a (0.50 mmol), 2a (1.00 mmol), [Mn] (10 mol %), 

additive (20 mol %), solvent (1.0 mL), at 100 °C for 24 h. [b] Isolated yield. [c] 
120 °C. DME = 1,2-dimethoxyethane; DCE = 1,2-dichloroethane; DMF = N,N-
dimethylformamide. 

 

    With the optimized manganese-catalyzed C–H 

activation/hydroarylation in hand, we tested its versatility with 

differently substituted imines 2 (Scheme 2). The robust 

manganese catalyst proved to be tolerant of various functional 

groups, such as methoxy, chloro, trifluoromethyl, nitro,  and 

bromo substituents in various positions (3aa-3al). Likewise, 

synthetically useful heteroarenes, such as furane and thiophene, 

were successfully converted (3am-3an). Notably, the N-

substituent on the imines 2 could be varied to even include an 

aromatic moiety (3ao-3aq), provided that an alkoxycarbonyl 

group was present. 

 

Scheme 2. Manganese-catalyzed C–H activation/hydroarylation of imines 2. 

 

    The robustness of the manganese-catalyzed C–H activation 

was then investigated with respect to the indole moiety 1 

(Scheme 3). Hence, a broad range of synthetically useful 

electrophilic groups was well tolerated, including fluoro, bromo, 

nitro and ester substituents (3ba-3ja). Thereby, either electron-

donating or electron-withdrawing groups were included on the 

benzoid indole motif. Further, even substituents in the indole’s 

C-3 position were well accepted despite of their increased steric 

hinderance (3ka-3ma). It is also notable that the manganese-

catalyzed C–H activation/hydroarylation was not limited to 

indoles. Indeed, the C–H activation was also successfully 

performed on the synthetically meaningful pyrrole to give the 

product 3na with execllent levels of site- and mono-selectivities. 

In contrast, under otherwise identical reaction conditions 3-

pyridyl-substituted furane or thiophene provided thus far less 

satisfactory results. 
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Scheme 3. Manganese-catalyzed C–H activation/hydroarylation of indoles 1. 

 

 

Scheme 4. Intermolecular competition experiments. 

 

    Given the high catalytic efficacy of the manganese-catalyzed 

hydroarylation, we became attracted to delineating its mode of 

action. To this end, competition experiments were performed, 

revealing that electron-rich indoles 1 and electron-deficient 

imines 2 inherently reacted faster (Scheme 4). These findings 

are indicative of a rate-determining nucleophilic attack of an 

organometallic manganese intermediate. Manganese-catalyzed 

hydroarylations in the presence of isotopically labeled cosolvent 

led to considerable H/D scrambling, highlighting a facile C–H 

cleavage (Scheme 5). In good agreement with this observation, 

a minor kinetic isotope effect (KIE) of only kH/kD  1.3 was 

observed (Scheme 6), again indicating fast C–H activation. 

Moreover, the well-defined cyclometalated complex 4[7i] was 

prepared, and proved competent in a catalytic and stoichiometric 

setting (Scheme 7), providing further support for complex 4 

being a key intermediate of the organometallic C–H activation 

manifold. 

 

Scheme 5. H/D exchange experiment. 

 

 

Scheme 6. Kinetic isotope effect study. 

 

 

Scheme 7. Cyclometalated complex 4 in catalytic and stoichiometric 
reactions. 
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Scheme 8. Proposed catalytic cycle. 

 

    Based on our mechanistic studies, we propose a plausible 

catalytic cycle being initiated by a facile C–H metalation to afford 

the complex 4 (Scheme 8). Coordination and subsequent 

insertion lead to the seven-membered manganacycle 6.[8j,16] 

Finally, intermediate 6 undergoes protonative demetalation, 

delivering the desired product 3aa and regenerating the 

catalytically active manganese complex 4. We suggest that the 

key C–H metalation occurs by a ligand-to-ligand hydrogen 

transfer (LLHT) regime.[17] 

 

 

Scheme 9. Traceless removal of pyridyl and tosyl group. 

 

 

Scheme 10. Late-stage diversification. 

    Finally, the pyridyl and tosyl group could be removed in a 

traceless fashion (Scheme 9). Moreover, the late-stage 

diversification of amine 3qj provided versatile access to the 

valuable indolo[1,2-a]indole 9 structural motif (Scheme 10). 

Conclusions 

In conclusion, we have reported on the efficient C–H 

activation/hydroarylation of imines by means of inexpensive and 

nontoxic manganese catalysis at ambient pressure. The 

robustness of the most user-friendly manganese catalyst was 

reflected by the general assembly of bioactive aminomethylated 

indoles in a step-economical manner, with excellent levels of 

mono-, chemo- and position-selectivities and ample scope. 

Detailed mechanistic studies provided strong support for an 

organometallic C–H activation manifold. 

Experimental Section 

Heteroarenes 1 (0.5 mmol), imines 2 (1.0 mmol), Mn2(CO)10 (19.5 mg, 10 

mol %) and nBu2O (1.0 mL) were placed in a 25 mL Schlenk flask. The 

mixture was stirred at 100 ºC for 24 h. After cooling to ambient 

temperature, the mixture was transferred into a round bottom flask with 

EtOAc (20 mL) and washed with brine (5.0 mL). The mixture was 

extracted with EtOAc (3 × 20 mL) and the combined organic layer was 

dried over Na2SO4, concentrated under reduced pressure and purified by 

column chromatography on silica gel using a mixture of n-hexane and 

EtOAc to afford the desired products 3. 
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