An Efficient Synthesis of Alterobactin A; A Super Siderophore of Marine Origin

Jingen Deng,^a Yasumasa Hamada,^b Takayuki Shioiri*^c

^a Union Laboratory of Asymmetric Synthesis, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

^b Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

^c Department of Synthetic Organic Chemistry, Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya

467-8603, Japan

Fax +81(52)8344172; E-mail: shioiri@phar.nagoya-cu.ac.jp

Received 9 September 1997

Abstract: Alterobactin A (1), a cyclic depsipeptide and a super siderophore isolated from an open-ocean bacterium, was efficiently synthesized for the first time by a convergent manner with the maximum protection of various functional groups.

Key words: alterobactin A, depsipeptidic siderophores, macrolactamization, selective OH protection and deprotection

Alterobactin A (1) was isolated together with alterobactin B (2) by Butler and co-workers from an open-ocean bacterium *Alteromonas luteoviolacea* collected off Chub Cay, Bahamas and identified as depsipeptidic siderophores¹ (Figure 1). Alterobactin A (1) has extraordinary affinity for ferric ion ($K_{Fe} = 10^{49-53}$), while alterobactin B (2) has a comparatively lower affinity for iron and may not be a true siderophore because it is formed by the base hydrolysis of alterobactin A (1) in the absence of bound iron(III). With the possible exception of enterobactin,² the ferric ion affinity of alterobactin A (1) is not exceeded by any other known siderophore and it is likely that the siderophores produced by open-ocean marine bacteria that live in an

extremely low-iron environment may well have evolved unique structures with exceptional ferric ion affinities. Alterobactin A (1) is a macrocyclic depsipeptide, which contains two types of unusual amino acids (Figure 2), two L-threo- β -hydroxyaspartic acid (3, β -OH-Asp) and one (3*R*,4*S*)-4,8-diamino-3-hydroxyoctanoic acid (4, lysinestatine, LysSta) attached to a catechol carboxylate at the N^{ω} -site, through which ferric ion is coordinated to form a six-coordinate complex.^{1b} Our interest in the exploitation of new methodology for the synthesis of aquatic natural products containing non-ribosomal amino acids³ and siderophores⁴ led us to investigate the synthesis of alterobactin A (1), a super siderophore of marine bacteria origin. Herein, we report the details of our synthetic work on alterobactin A (1).⁵

(3R,4S)-LysSta (4) Figure 2. Structure of the Unusual Amino Acids 3 and 4

Strategy

A [4+3] convergent strategy was adopted in our synthetic approach to alterobactin A (1). Fragment coupling of the two segments 28 and 31 was accomplished between Gly and Arg while macrolactamization was carried out between Gly and β -OH-Asp,⁶ because the construction of the amide bonds at glycine as C-terminus would proceed without both racemization and steric constraint. Furthermore, a β -turn structure in alterobactin A (1) along Gly-Arg- β -OH-Asp-Gly sequence^{1b} probably facilitates the macrolactamization of the linear precursor.⁷ Alterobactin A (1) contains various reactive functional groups: one amino group, one guanidino group, two carboxyl groups, two phenol groups, and three hydroxyl groups. Thus, the choice of protecting groups, especially amino and carboxyl groups, was viewed as very critical to our ultimate success. It is necessary that the γ -amine of LysSta and the β carboxylates of two β -OH-Asp should be kept inert in the amide-coupling process, and the phenol groups and hydroxyl groups should also be kept inert in the ester-forming step. The carbobenzoxy (Cbz) group was chosen to protect the y-amino group of LysSta because it would per-

Figure 1. Structures of Alterobactin A (1) and B (2) and the Disconnection Crucial for the Convergent Synthesis of Alterobactin A (1)

mit the selective deprotection of a tert-butyloxycarbonyl (Boc) group at the N-terminus of the peptide segments under acidic conditions. The benzyl (Bzl) group was chosen to block the carboxylates of two β -OH-Asp, whereas the 2,2,2-trichloroethyl (Tce) group was chosen to block the C-terminal carboxylates of the peptide segments, because the Bzl group would be kept intact under the conditions which cleave the Tce group with zinc. The tertbutyldimethylsilyl (TBS) or tert-butyldiphenylsilyl (TB-DPS) group and the Bzl group were chosen to protect the other three hydroxyl groups and two phenol groups, respectively. The protection of the two phenol groups and the two carboxylates by Bzl, protection of the γ -amine by Cbz, and the three hydroxyl groups by TBS, set the stage for removing these protecting groups simultaneously through hydrogenation in aqueous HOAc/THF at the penultimate step of the synthesis. Although most sulfonyl groups are suitable to protect the guanidino function of arginine in our approach, the 2,3,6-trimethyl-4-methoxybenzenesulfonyl (Mtr) group is considered to be favorable, because removal of the Mtr group could be readily performed under relatively mild conditions,⁸ and also there is no problem in selective deprotection of the Boc group.⁹ The organophosphorus reagents, diethyl phosphorocyanidate [DEPC, (EtO)₂- P(O)CN]¹⁰ and pentafluorophenyl diphenylphosphinate [FDPP, $Ph_2P(O)OC_6F_5$,¹¹ could be applied here in the fragmentcoupling and macrolactamization processes, respectively.

Synthesis

L-Threo- β -hydroxyaspartic Acid:

First, we synthesized the unusual amino acid β -OH-Asp derivative 12 from commercially available methyl cinnamate (5) through the stereocontrolled Sharpless dihydroxylation¹² and the transformation of the phenyl group, a carboxyl synthon,¹³ to the carboxylate group (Scheme 1). The diol derivative 6 was obtained by the Sharpless asymmetric dihydroxylation of 5 by use of ADmix- β in 68% yield with >98% ee. The enatiomeric excess (ee) was determined by ¹H NMR analysis of the bis-MTPA esters.¹⁴ The bromo ester **7** was prepared from **6** by a stereo- and regioselective transformation with 31% HBr/ HOAc¹⁵ and then stereoselectively converted into the azido ester 8 with excess sodium azide. Hydrogenation and simultaneous protection of the resulting amino group in a one-pot process afforded the Boc-amino ester 9 in good yield and no N-acetyl product was produced.^{11b} Ruthenium-catalyzed oxidation¹³ of **9** and subsequent protection by using *O-tert*-butyl-*N*,*N*'-diisopropylisourea (BDIU) smoothly gave the fully protected β -OH-Asp derivative 10 in 71% yield, which was treated with aqueous lithium hydroxide in THF, followed by treatment with benzyl bromide and potassium carbonate to give the β -OH-Asp β benzyl ester 11. The desired building block, β -OH-Asp derivative 12 was produced in 84% yield by the simultaneous deprotection of the Boc group and *tert*-butyl ester, followed by the selective protection of the amino group as Boc and the hydroxyl group as the TBS group, respectively.

Scheme 1

(3R,4S)-Lysinestatine:

Another building block (3*R*,4*S*)-LysSta derivative **21** was synthesized by the stereoselective reduction of the β -keto ester **14** and subsequent coupling with the catecholate **17**. The β -keto ester **14** was readily prepared from commercially available N^{α} -Cbz- N^{ω} -Boc-lysine (**13**) according to Rich.^{16a} Reduction of **14** with sodium borohydride in EtOH/THF at low temperature afforded a mixture of diastereomers **15**,¹⁶ whose selectivity was not influenced by the ratio of the solvents: ethanol/tetrahydrofuran (1:3, 64% de; 1:5, 66% de; 1:6, 69% de and 1:10, 66% de). Initially, the hydroxyl group of **15** was protected as the TBDPS group, and interestingly, the product **16** enriched in the (3*R*,4*S*)-diastereomer (88% de) was obtained. However, the mixture of diastereomers **16** was inseparable,¹⁷ even if **16** was converted to its catecholate derivative **18** with 84% de (Scheme 2) by coupling with 2,3-

Scheme 2

bis(benzyloxy)benzoic acid (17), which was readily prepared from 2,3-catecholic acid (19) via protection of both the hydroxyl and carboxyl groups and then selective deprotection of the carboxylate group (Scheme 3).

Fortunately, the separation of the diastereomers **15** was effectively accomplished by flash chromatography on silica gel to provide the unusual amino acid subunit, (3R,4S)-LysSta derivative **15a** as the predominant isomer with >95% de (Scheme 4). The catecholate derivative **20** was produced by the deprotection of the Boc group of **15a** and subsequent coupling with **17**. Conversion of **20** to the required LysSta building block **21** was effected by hydrolysis of the ethyl ester and subsequent blocking of the hydroxyl group as the TBS moiety (Scheme 4). To determine the stereochemistry, **15a** and its diastereomer **15b** were converted into oxazolidinones **22a** and **22b**, respectively, and the configurations at C₅-methine of **22a** and **22b** were assigned by coupling-constant $J_{4,5}$ measurements (Scheme 5).^{16b}

NHBoc NHBoc For 5R isomer: Irradiation 1) H₂, 5%Pd-C, MeOH 2) CDI, CH2Cl2, 39% CO₂E For 5S isomer: CDI, H₂, 5%Pd-C, EtOAc OFt 65% **NHCbz** 15a X=H, Y=OH **22a** 5R: δ₅ =5.05 ppm 15b X=OH, Y=H J_{4,5}=7.6 Hz **22b** 5S: δ₅ =4.58 ppm J_{4,5}=4.6 Hz Scheme 5

The Western Hemisphere (Tetradepsipeptide Segment):

Boc-Gly-OTce (24) was prepared from Boc-Gly-OH (23) by condensation of 2,2,2-trichloroethanol (TceOH) with N,N'-dicyclohexylcarbodiimide (DCC) in the presence of 4-(N,N-dimethylamino)pyridine (DMAP). Deprotection of 24 at the N-terminus with hydrogen chloride and subsequent coupling with Boc-D-Ser-OH (25) with DEPC in the presence of triethylamine (TEA) gave the dipeptide 26 in a moderate yield of 60%. Because of the non-protection of the hydroxyl group of 25, phosphonate formation seems unavoidable even if the ratio of substrates and reagent (24/25/DEPC) was changed from 1:1.1:1.3 to 1:1.2:1.2. Although the isolated yield was improved to 70% by using FDPP, phosphinate formation was still not repressed. The dipeptide 26 was deprotected with hydrogen chloride and then coupled with the LysSta derivative 21 with DEPC to give the tripeptide 27. The western hemisphere (the tetradepsipeptide segment) 28 was smoothly obtained by condensing 27 with the β -OH-Asp derivative 12 by the use of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDCI) and DMAP (Scheme 6).

Scheme 6

The Eastern Hemisphere (Tripeptide Segment):

Construction of the eastern hemisphere **31** was also initiated from Boc-Gly-OTce (**24**), which underwent the Boc-deprotection followed by coupling with the β -OH-Asp derivative **12** using DEPC in the presence of TEA. However,

the products were an inseparable mixture of the dipeptide **29** and aspartimide derivative **32** in a ratio of 7:1. Fortunately, the formation of the undesired aspartimide **32** could be entirely suppressed when TEA was replaced with *N*-methylmorpholine (NMM) and the desired dipeptide **29** was formed with almost complete selectivity (>120:1 ratio). After selective deprotection of the Boc group of **29** with trifluoroacetic acid, coupling with N^{α} -Boc-Arg(Mtr)-OH (**30**) afforded **31** in a high yield of 91% (Scheme 7).

Scheme 7

Alterobactin A:

Deprotection of the Tce group of the western hemisphere **28** was achieved by using zinc and 1M aqueous ammonium acetate, while treatment of the eastern hemisphere **31** with p-toluenesulfonic acid monohydrate resulted in the removal of the both Boc and TBS groups.^{9c} Subsequently, coupling of **33** with **34** provided the expected depsipeptide **35** accompanied by the unexpected aspartimide derivative **36**. Furthermore, it was found that **35** slowly transformed into **36** on a silica gel column and in CDCl₃, an NMR solvent (Scheme 8).

It is well-known that aspartimide formation occurs slowly or not at all in trifluoroacetic acid,^{18,19} and thus the selective deprotection of the Boc group of 31 was accomplished by using TFA in dichloromethane without liberation of the Mtr and TBS groups.8 Condensation of this deprotected western hemisphere 31 with the eastern hemisphere 33 proceeded smoothly with FDPP to give the linear depsipeptide 37 in 86% yield (Scheme 9) and this implied that the steric protection of the hydroxyl group on the β -OH-Asp subunit could prevent aspartimide formation.²⁰ In this particular coupling process, DEPC was less effective and the yield was ~44-68%. Deprotection of 37 with zinc/1M aqueous ammonium acetate under the same conditions used for the removal of the Tce group of 28 afforded a complicated mixture. As a model experiment, treatment of the tripeptide 31 under the same condition gave only the debenzylation products, which were inferred to be the aspartimide derivative and its hydrolyzate based on ¹H NMR spectroscopy and TLC analysis. Surprisingly, however, treatment of 31 with zinc in HOAc

Scheme 9

produced the Tce-cleaved compound as a single product¹⁸ (39, Scheme 10). Therefore, after removal of the Tce group at the C-terminus of 37 with zinc in HOAc and then removal of the Boc group at the N-terminus with TFA, which simultaneously cleaved the TBS group on the side chain,²¹ the macrolactamization was efficiently achieved by use of FDPP to give the macrocyclic depsipeptide 38 in a good yield of 53%.^{9c,11} Cleavage of the protective groups, except the Mtr group, was effected by a one-pot catalytic hydrogenation over Pd-carbon in HOAc/THF/ H_2O , and then deprotection of the Mtr group was readily performed with excess trifluoroacetic acid in the presence of thioanisole.²² HPLC purification and lyophilization gave alterobactin A (1, Scheme 9), which was identical to the natural product by 500 MHz ¹H NMR, 125 MHz ¹³C NMR, high-resolution FAB mass spectra, HPLC and TLC.²³ Interestingly, we found that the pH value of the solution strikingly affects the chemical shifts of the protons on the two β -OH-Asp moieties and the NMR experiments of alterobactin A (1) were performed in D_2O with pH 1.6.

Thus, we have succeeded in synthesizing alterobactin A (1), a super siderophore, which means that alterobactin B (2) has been also formally synthesized because alterobactin B is formed by base hydrolysis of 1.¹

Discussion

Two independent reports²⁴ have described the stereoselective preparation of the protected L-threo- β -hydroxyaspartic acids from D- and L-serine, respectively. Noteworthy features of our synthesis are as follows: (a) prochiral and commercially available methyl cinnamate (**5**) was used as starting material, (b) two stereogenic centers of L-threo- β -OH-Asp were built at the same time through Sharpless asymmetric dihydroxylation, (c) the α carboxylate of threo- β -OH-Asp was efficiently generated by ruthenium oxidation of the phenyl group in good yield, and (d) all reactions proceeded under relatively mild conditions.

Alterobactin A (1) contains a β -OH-Asp-Gly sequence, which is similar to the Asp-Gly sequence. The tendency of the β -carboxylate in the aspartyl residue to acylate the amido group of the next amino acid residue in a sequence, and thereby the production of the aspartimide peptides, has been often reported.^{18,19} Aspartimide formation is enhanced when the next residue is glycine.^{18,19a} Indeed, aspartimide formation was frequently encountered in our approach. The coupling of **12** with the deprotected **24** with TEA gave a mixture of the dipeptide **29** and the aspartimide **32**. However, the subsequent removal of the Boc group of **29** with TFA and coupling with N^{α} -Boc-Arg(Mtr)-OH (**30**) in the presence of TEA smoothly afforded the tripeptide **31** without any detectable formation of aspartimide. When the hydroxyl group of the aspartyl residue remains free, the aspartimide **36** was readily produced in the amide coupling-process of the deprotected tripeptide **33** and **34**. Furthermore, aspartimide formation predominates in the deprotection process of the tripeptide **31** at the C-terminus with zinc in 1M NH₄OAc-THF. Our results have shown that these aspartimide formations can be entirely suppressed under carefully selected conditions, which use a less basic amine, NMM, and protection of the hydroxyl group on the β -OH-Asp for the amide coupling, and use of a relatively weak acid, TFA and HOAc, for the deprotection at the N- and C-terminus, respectively.

Two glycyl residues and two β -OH-Asp residues are included in alterobactin A (1), and we have applied the same building units, **24** and **12**, for the construction of the peptide skeleton. In addition, the selected protective groups for the various reactive functional groups in alterobactin A (1), kept intact in the deprotection and the coupling of the peptide segments, were successfully removed in two steps under relatively mild conditions. Surprisingly, a selective deprotection of the Boc group in the tripeptide **31** which includes an N^{ω} -Mtr blocked arginine was achieved by using TFA in CH₂Cl₂ at 0°C. To our knowledge, the selective deprotection is little known.⁸

Our synthesis of alterobactin A (1) has not only proved the proposed structure, but also promises availability of this super siderophore in quantities which will be useful for the elucidation of the siderophoric mechanism in marine bacteria.

Melting points were determined on a YAMATO MP-21 and are uncorrected. IR spectra were recorded on a SHIMADZU FTIR-8100 spectrometer. ¹H NMR spectra were recorded on a JEOL EX-270 (270 MHz), JEOL GSX-400 (400 MHz), or JEOL α-500 (500 MHz) spectrometer with TMS, or sodium 3-(trimethylsilyl)propanoate- d_4 , or solvent as an internal standard, unless otherwise indicated. Abbreviations for NMR: s = singlet, d = doublet, t = triplet, q = quartet, dd= doublet of doublets, m = multiplet, and br = broad. 13 C NMR spectra were obtained at 125 MHz on a JEOL α -500 (500 MHz) spectrometer with sodium 3-(trimethylsilyl)propanoate- d_{Δ} as an internal standard. Fast atom bombardment mass spectra (FAB-MS) were recorded on a JEOL JMS-HX110A or JEOL JMS AX505HA high resolution spectrometer by using an argon beam in a glycerol or nitrobenzyl alcohol (NBA) matrix. Accurate mass measurement was obtained by using a JEOL JMS-HX110A high resolution spectrometer in the FAB mode (glycerol and NBA matrices). Optical rotations were measured on a JASCO DIP-140 digital polarimeter with a sodium lamp ($\lambda = 589$ nm, D line). Microanalysis was carried out on a YANACO CHN CORD-ER NT-5. TLC separations were conducted on 250 µm silica plates (Merck Art. 5715, Kieselgel 60 F254) with visualization by UV fluorescence, and ninhydrin, or anisaldehyde, or phosphomolybdic acid staining by heating. Chromatography was carried out on a silica gel column with Fuji Silysia BW-820 or 200, and flash chromatography was accomplished on silica gel, Fuji Silysia BW-300. HPLC was carried out on YMC-Pack C₄ (preparative column: 250×20 mm I. D., S-5 μm, 120Å; analytical column: 150 × 4.6 mm I. D., S-5 μm, 120Å) connected in series, 280 nm or 320 nm on a SHIMADZU SPD-10A UV-vis detector.

THF was distilled from sodium/benzophenone ketyl. Et_2O was distilled from LiAlH₄. CH_2Cl_2 was distilled from CaH₂. *N*-Methylmorpholine (NMM) was distilled and stored over KOH pellets. Et_3N was dried over sodium wire. DMF was dried over 4Å molecular sieves. All other commercially available reagents were used as received.

Methyl (2S,3R)-2,3-Dihydroxy-3-phenylpropionate (6):

A 500-mL three-necked flask, equipped with a mechanical stirrer, was charged with t-BuOH (100 mL), H₂O (100 mL), and AD-mix- β $[28.0 \text{ g}, 60.0 \text{ mmol of } \text{K}_3\text{Fe}(\text{CN})_6, 60.0 \text{ mmol of } \text{K}_2\text{CO}_3, 0.2 \text{ mmol of }$ (DHQD)₂-PHAL, and 0.04 mmol of K₂OsO₂(OH)₄]. Stirring at r.t. produced two clear phases with the lower aqueous phase appearing as bright yellow. MeSO₂NH₂ (1.90 g, 20.0 mmol) was added at this point. The mixture was cooled in an ice-bath whereupon some of the dissolved salts precipitated. Methyl cinnamate (5; 3.24 g, 20.0 mmol) was added at once in one portion, and the heterogeneous slurry was stirred vigorously at this temperature for 12 h and then warmed to r.t. for 12 h. After the mixture was recooled in an ice-bath, Na₂SO₃ (30 g, 238 mmol) was added and the mixture was allowed to warm to r.t. and stirred for 1 h. EtOAc was added to the reaction mixture, and after separation of the organic layer, the aqueous phase was further extracted three times with EtOAc. The combined organic extracts were washed with H₂O, dried (Na₂SO₄), and concentrated in vacuo. The crude residue was purified by chromatography (1:1 EtOAc/hexane) to afford the 1,2-diol **6** as white crystals (2.67 g, 68%; >98% ee, by 1 H NMR analysis of the (+)-MTPA-diester); mp 80-81 °C (EtOAc/hexane); $[\alpha]_{\rm D}^{26}$ –9.7 (*c* = 1.07, CHCl₃).

IR (KBr): *v* = 3492, 3384, 1717, 1458, 1323, 1308, 1275, 1223, 1111, 1049, 722, 700 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): δ = 7.31–7.42 (m, 5 H, arom), 5.02 (dd, J = 2.8, 6.8 Hz, 1 H), 4.38 (dd, J = 3.0, 5.9 Hz, 1 H), 3.82 (s, 3 H, OCH₃), 3.10 (d, J = 5.9 Hz, 1 H), 2.72 (d, J = 6.9 Hz, 1 H).

Anal. $C_{10}H_{12}O_4$ (196.2): calcd C, 61.22; H, 6.16; found: C, 61.14; H, 6.19.

Methyl (2R,3S)-2-Acetoxy-3-bromo-3-phenylpropionate (7):

To the diol **6** (2.67 g, 13.6 mmol) was added 31% HBr/HOAc (21 mL), and the mixture was heated at 45 °C for 30 min. After cooling to r.t., the mixture was quenched by slowly pouring into an ice-saturated aq NaHCO₃ solution, and the aqueous layer was extracted three times with Et₂O. The combined organic extracts were washed once with H₂O and twice with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by chromatography (1:12.5 EtOAc/hexane) to give **7** as white crystals (3.19 g, 78%); mp 78–79°C (EtOAc/hexane); $[\alpha]_D^{26}+100.3$ (*c* = 1.36, CHCl₃).

IR (KBr): *v* = 1763, 1748, 1493, 1451, 1433, 1377, 1260, 1219, 1198, 1090, 702 cm⁻¹.

¹H NMR (270 MHz, $CDCl_3$): $\delta = 7.43-7.45$ (m, 2 H), 7.31–7.35 (m, 3 H), 5.64 (d, J = 6.3 Hz, 1 H), 5.34 (d, J = 6.6 Hz, 1 H), 3.71 (s, 3 H, OCH₃), 2.11 (s, 3 H, OCCH₃).

Anal. $C_{12}H_{13}O_4Br$ (301.2): calcd C, 47.86; H, 4.35; found: C, 47.73; H, 4.33.

Methyl (2S,2R)-2-Acetoxy-3-azido-3-phenylpropionate (8):

To a solution of **7** (2.93 g, 9.72 mmol) in DMF (35 mL) was added NaN₃ (2.53 g, 38.9 mmol), and the mixture was stirred at r.t. for 3 h and then heated at 40 °C for 2 h. After cooling to r.t., the mixture was diluted with EtOAc, and the organic layer was washed once with H₂O and brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude product was purified by chromatography (1:10 EtOAc/hexane) to afford the azide **8** as a colorless oil (2.20 g, 86 %); $[\alpha]_D^{26}$ -104.2 (*c* = 2.33, CHCl₃).

IR (neat): v = 2109, 1825, 1755 (br), 1455, 1439, 1375, 1221 (br), 702 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): δ = 7.35–7.40 (m, 5 H, arom), 5.23 (d, *J* = 5.0 Hz, 1 H, α-H), 5.06 (d, *J* = 5.0 Hz, 1 H, β-H), 3.69 (s, 3 H, OCH₃), 2.14 (s, 3 H, OCCH₃). Anal. $C_{12}H_{13}N_3O_4$ (263.2): calcd C, 54.75; H, 4.97; N, 15.96; found: C, 54.89; H, 5.14; N, 16.04.

Methyl (2S,3R)-2-Acetoxy-3-(*tert*-butoxycarbonylamino)-3-phenylpropionate (9):

A suspension of 5% Pd/C (532 mg) in EtOAc (7 mL) was stirred at r.t. under an H₂ atmosphere for 15 min, whereupon a solution of di*tert*-butyl dicarbonate (4.36 g, 20 mmol) and the azide **8** (1.32 g, 5.0 mmol) in EtOAc (3 mL) was added. The mixture was stirred under an H₂ atmosphere for 6 h, and then filtered through a pad of Celite. The organic phase was washed with ice-cold 1M aq KHSO₄, sat. NaHCO₃, and brine, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by chromatography (gradient from 1:5 to 1:4 EtOAc/hexane) to give **9** as a colorless oil (1.14 g, 68%); $[\alpha]_D^{26}$ +27.6 (*c* = 1.25, CHCl₃).

IR (neat): v = 3375, 1755, 1751, 1717, 1514, 1499, 1370, 1229 (br), 1169, 1086, 758, 702 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): δ = 7.25–7.37 (m, 5 H, arom), 5.40 (br s, 2 H, NH, α-H), 5.30 (s, 1 H, β-H), 3.77 (s, 3 H, OCH₃), 2.08 (s, 3 H, OCCH₃), 1.43 [s, 9 H, OC(CH₃)₃].

Anal. $\rm C_{17}H_{23}NO_6$ (337.4): calcd C, 60.53; H, 6.87; N, 4.15; found: C, 60.54; H, 7.16; N, 4.10.

α-tert-Butyl β-Methyl (2S,3S)-N-Boc-β-Acetoxyaspartic Diester (10):

To a stirred solution of 9 (1.14 g, 3.38 mmol) in EtOAc (10 mL) and MeCN (10 mL) was added a suspension of NaIO₄ (18.07 g, 84.5 mmol) in H₂O (70 mL) followed by RuCl₃·H₂O (46 mg, 0.20 mmol), and the heterogeneous slurry was vigorously stirred at r.t. for 11 h. The mixture was diluted with EtOAc, and after separation of the layers, the aqueous layer was further extracted twice with EtOAc. The combined extracts were dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was dissolved in Et₂O, and the solution was filtered through a pad of Celite. The solvent was evaporated in vacuo to give a brown foam (981 mg). The crude acid was dissolved in CH₂Cl₂ (3.5 mL) and t-BuOH (14 mL) was added followed by BDIU (3.2 mL, 13.5 mmol). The mixture was heated at 50°C for 11 h under an argon atmosphere, and after cooling to r.t., it was filtered through a pad of Celite and concentrated in vacuo. The residue was dissolved in EtOAc, and the solution was filtered through a pad of Celite and then washed with ice-cold 1 M aq KHSO₄, sat. NaHCO₃ and brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product was purified by chromatography (gradient from 1:7 to 1:6 EtOAc/hexane) to afford the acetoxy diester 10 as a colorless wax (854 mg, 70%); mp 51–52 °C (EtOAc/hexane); $[\alpha]_D^{24}$ +47.2 $(c = 0.57, \text{CHCl}_3).$

IR (KBr): *v* = 3337, 2980, 1761, 1750, 1742, 1700, 1528, 1512, 1370, 1283, 1233, 1225, 1154, 1092, 1065 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 5.53 (d, *J* = 2.4 Hz, 1 H, β-H), 5.22 (d, *J* = 9.8 Hz, 1 H, NH), 4.86 (d, *J* = 9.8 Hz, 1 H, α-H), 3.76 (s, 3 H, OCH₃), 2.13 (s, 3 H, OCCH₃), 1.45 (s, 9 H), 1.43 (s, 9 H).

Anal. $C_{16}H_{27}NO_8$ (361.4): calcd C, 53.18; H, 7.53; N, 3.88; found: C, 53.02; H, 7.61; N, 3.85.

α-tert-Butyl β-Benzyl (2S,3S)-N-Boc-β-Hydroxyaspartic Diester (11):

To a solution of **10** (722 mg, 2.0 mmol) in THF (45 mL) cooled in an ice-bath was added a 0.31 N aq LiOH solution (15 mL). The mixture was stirred at this temperature for 3 h, and then quenched by adding 1.0 N aq HCl (4.6 mL). The aqueous layer was extracted three times with EtOAc and the combined extracts were dried (Na₂SO₄) and filtered. To remove the residual HOAc, the combined filtrate was concentrated to about 15 mL, followed by azeotropic removal of the HOAc in vacuo with heptane (15 mL). The resulting acid was dissolved in DMF (7 mL) and cooled in an ice-bath, whereupon benzyl bromide (0.48 mL, 4.0 mmol) was added. Then, ground K₂CO₃ (41.5 mg, 3.0 mmol) was added to the mixture, and the suspension was stirred at this temperature for 5 h and partitioned between ice-

cold 0.2 N aq HCl and EtOAc. The organic layer was separated and washed once with H₂O and brine, and dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by chromatography (gradient from 1:9 to 1:7 EtOAc/hexane) to afford the alcohol **11** as a white solid (500 mg, 63%); mp 100–101 °C (EtOAc/hexane); $[\alpha]_D^{22}$ +19.6 (c = 1.08, CHCl₃).

IR (KBr): *v* = 3407, 2984, 1744, 1698, 1509, 1370, 1350, 1298, 1258, 1206, 1152, 1096, 1064, 747, 698 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.27–7.43 (m, 5 H, arom), 5.24 (overlapping, 1 H, NH), 5.19 (ABq, *J* = 12.0 Hz, 2 H, CH₂Ph), 4.69 (overlapping, 1 H, α-H), 4.67 (dd, *J* = 2.2, 6.6 Hz, 1 H, β-H), 3.12 (d, *J* = 6.2 Hz, 1 H, β-OH), 1.49 (s, 9 H), 1.43 (s, 9 H).

Anal. C₂₀H₂₉NO₇ (395.5): calcd C, 60.75; H, 7.39; N, 3.54; found: C, 60.76; H, 7.43; N, 3.45.

(2S,3S)-*N*-Boc- β -(*tert*-Butyldimethylsilyloxy)aspartic Acid β -Benzyl Ester (12):

To a stirred solution of the alcohol 11 (466 mg, 1.18 mmol) in CH₂Cl₂ (3.5 mL) cooled in an ice-bath was added dropwise trifluoroacetic acid (TFA, 3.5 mL). The resulting mixture was stirred at this temperature for 1 h and allowed to warm to r.t. over 4 h. The mixture was concentrated in vacuo, and the residual TFA was removed twice by diluting with CH₂Cl₂ (1 mL) and benzene (3 mL) and concentrating in vacuo. The resulting amine salt was dissolved in H₂O (6 mL) and dioxane (6 mL) and cooled in an ice-bath, whereupon Et₃N (0.41 mL, 3.0 mmol) was added dropwise with stirring, followed by Boc₂O in one portion. The mixture was stirred at this temperature for 20 min and allowed to warm to r.t. for 4 h, and then concentrated in vacuo. Ice-saturated NaHCO₃ solution (v/v, 1:1, 20 mL) was added to the residue, and then the aqueous layer was washed twice with Et2O and acidified with 6 N aq HCl to pH 4 in an ice-bath and subsequently extracted twice with CH2Cl2. The combined extracts were dried (Na₂SO₄), filtered, and concentrated in vacuo to give a white foam (468 mg). The resulting acid and imidazole (803 mg, 11.8 mmol) were dissolved in DMF (4 mL) and cooled in an ice-bath, whereupon TBSCl (889 mg, 5.9 mmol) was added in one portion. The mixture was stirred at this temperature for 30 min and allowed to warm to r.t. over 40 h under an argon atmosphere. Subsequently, the mixture was poured into ice/1 M aq KHSO₄ (v/v, 1:1) and the aqueous layer was extracted three times with EtOAc. The combined organic extracts were washed once with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The crude product was purified by chromatography (gradient from 1:8 to 1:2 EtOAc/hexane) to give 12 as an oily white solid (448 mg, 84%); $[\alpha]_D^{24}$ -6.8 (*c* = 1.88, CHCl₃).

IR (neat): v = 1761, 1723, 1667, 1501, 1256, 1165, 1132, 839, 781 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.31–7.38 (m, 5 H, arom), 5.26 (d, *J* = 8.6 Hz, 1 H, NH), 5.15 (ABq, *J* = 11.9 Hz, 2 H, *CH*₂Ph), 4.84 (br s, 2 H, α-H, β-H), 1.43 [s, 9 H, OC(CH₃)₃], 0.86 [s, 9 H, SiC(CH₃)₃], 0.08 (s, 3 H, SiCH₃), 0.01 (s, 3 H, SiCH₃).

Anal. C₂₂H₃₅NO₇Si (453.6): calcd C, 58.26; H, 7.77; N, 3.09; found: C, 57.73; H, 7.76; N, 3.06.

Ethyl (4*S*)-4-(Benzyloxycarbonylamino)-8-(*tert*-butyloxycarbonylamino)-3-oxooctanoate (14):

To a stirred solution of N^{α} -Cbz- N^{ω} -Boc-Lys-OH (**13**; 1.90 g, 5.0 mmol) in THF (15 mL) at 0°C was added carbonyldiimidazole (CDI; 973 mg, 6.0 mmol). The mixture was stirred at this temperature for 1 h and at r.t. for 3 h, and then cooled to -18°C before the magnesium enolate solution in THF (15 mL) [prepared from ethyl hydrogen malonate (1.32 g, 10.0 mmol) and 2 M *i*-PrMgCl (30 mmol) in THF (12.5 mL) at -18°C for 45 min and at r.t. for 2.5 h] was added dropwise. After the mixture was stirred at -18°C for 1 h and allowed to warm to r.t., stirring was continued for 4.5 h, and then the mixture was poured into ice/1 M aq KHSO₄. The aqueous layer was extracted three times with EtOAc and the combined organic phases were washed with sat. NaHCO₃ and brine, dried (Na₂SO₄), and evaporated

in vacuo. The crude product was purified by chromatography (gradient from 1:2.5 to 1:2 EtOAc/hexane) to give the β -keto ester **14** as a white solid (1.86 g, 83%); mp 70–71 °C (EtOAc/hexane); $[\alpha]_D^{26}$ –19.9 (c = 1.97, MeOH).

IR (KBr): *v* = 3357, 1736, 1717, 1686, 1678, 1526, 1277, 1252, 1169, 1032 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): $\delta = 7.36$ (br s, 5 H, arom), 5.54 (d, J = 6.3 Hz, 1 H, 4-NH), 5.11 (s, 2 H, CH₂Ph), 4.58 (br s, 1 H, 8-NH), 4.40–4.47 (m, 1 H, 4-H), 4.19 (q, J = 6.9 Hz, 2 H, OCH₂Me), 3.55 (ABq, J = 15.8 Hz, 2 H, 2-CH₂), 3.07–3.11 (m, 2 H, 8-CH₂), 1.88–1.95 (m, 1 H, 5-H), 1.32–1.67 (m, 5 H, 5-H, 6- and 7-CH₂), 1.42 [s, 9 H, OC(CH₃)₃], 1.27 (t, J = 6.9 Hz, 3 H, CH₃).

Anal. $C_{23}H_{34}N_2O_7$ (450.5): calcd C, 61.32; H, 7.60; N, 6.22; found: C, 61.25; H, 7.49; N, 6.24.

Ethyl (3*R*,4*S*)-4-(Benzyloxycarbonylamino)-8-(*tert*-butyloxycarbonylamino)-3-hydroxyoctanoate (15a):

To a stirred solution of the oxo ester 14 (2.70 g, 6.0 mmol) in EtOH/ THF (v/v, 6:1; 105 mL) at -78°C was added portionwise NaBH₄ (248 mg, 7.5 mmol). The mixture was stirred at this temperature for 1.5 h, and the reaction was quenched by pouring the mixture into icecold 10 % aq citric acid (50 mL). The mixture was concentrated in vacuo, and then diluted with H2O (50 mL). The aqueous layer was extracted three times with EtOAc and the combined organic phase was washed once with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo to give a mixture of the starting material 14 and diastereomers of the alcohol 15 [(3R,4S)/(3S,4S) 85:15 by ¹H NMR analysis] as a white solid. The crude product was purified by flash chromatography (2:1 Et₂O/hexane) to recover 14 (245 mg, 9%) and provide the desired diastereomer (3R,4S)-15a as a white solid (1.80 g, 66%, 73 % conversion; >95% de by ¹H NMR analysis); mp 91–92°C (Et₂O/hexane). The analytical sample was recrystallized twice from Et₂O/hexane $(>98\% \text{ de}); [\alpha]_{D}^{26} - 9.4 (c = 1.10, \text{CHCl}_{3}).$

IR (KBr): *v* = 3355, 3326, 1732, 1690, 1541, 1281, 1244, 1175, 1061, 1019 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.29–7.39 (m, 5 H, arom), 5.10 (s, 2 H, *CH*₂Ph), 4.97 (d, *J* = 7.7 Hz, 1 H, NH), 4.56 (br s, 1 H, NH), 4.16 (q, *J* = 7.1 Hz, 2 H, OCH₂CH₃), 4.14–4.19 (m, 1 H, 3-H), 3.63–3.65 (m, 1 H, 4-H), 3.35 (br s, 1 H, 3-OH), 3.09 (br s, 2 H, 8-CH₂), 2.45–2.54 (m, 2 H, 2-CH₂), 1.59–1.62 (m, 3 H), 1.42 [s, 9 H, OC(CH₃)₃], 1.30–1.49 (m, 3 H), 1.26 (t, *J* = 7.1 Hz, 3 H, OCH₂CH₃). Anal. C₂₃H₃₆N₂O₇ (452.6): calcd C, 61.05; H, 8.01; N, 6.19; found: C, 60.82; H, 7.84; N, 6.13.

2,3-Bis(benzyloxy)benzoic Acid (17):

To a solution of catecholic acid (**19**; 1.54 g, 10.0 mmol) and benzyl bromide (5.4 mL, 45.0 mmol) in DMF (20 mL) was added pulverized K_2CO_3 (8.29 g, 60.0 mmol). The mixture was stirred at r.t. for 5 h and then poured into ice-water. The aqueous layer was extracted three times with EtOAc and the combined organic phases were washed with ice-cold 1 M aq KHSO₄, H₂O, and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by chromatography (gradient from 1:15 to 1:10 EtOAc/hexane) to give a tribenzylated product as a white wax (4.15 g, 98%); mp 40 °C (EtOAc/hexane).

IR (KBr): v = 1709 (br), 1578, 1497, 1469, 1456, 1375, 1366, 1319, 1283, 1258, 1132, 1035, 750, 746, 696 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): δ = 7.24–7.45 (m, 16 H, arom), 7.14 (dd, *J* = 1.8, 7.9 Hz, 1 H, catechol 4-H), 7.08 (dd, *J* = 8.3, 15.9 Hz, 1 H, catechol 5-H), 5.31 (s, 2 H, CH₂Ph), 5.13 (s, 2 H, CH₂Ph), 5.06 (s, 2 H, CH₂Ph).

Anal. C₂₈H₂₄O₄ (424.5): calcd C, 79.23; H, 5.70; found: C, 79.12; H, 5.78.

The resulting tribenzylated product (2.53 g, 5.96 mmol) was dissolved in THF (75 mL) and cooled in an ice-bath, whereupon a solution of LiOH•H₂O (1.00 g, 23.8 mmol) in H₂O (25 mL) was added. The mixture was allowed to warm to r.t. and stirred for 3 days, and then diluted with H₂O (75 mL). The aqueous layer was washed twice with Et_2O and then acidified with 1 N aq HCl (24 mL) to pH ca. 4, and then extracted three times with CH_2Cl_2 . The combined organic phases were dried (Na_2SO_4), filtered, and concentrated in vacuo. The crude product was recrystallized from EtOAc/hexane to provide the acid **17** as white crystals (1.84 g, 92%); mp 113–114 °C (EtOAc/hexane).

IR (KBr): v = 3032, 1694 (br), 1578, 1474, 1456, 1416, 1377, 1314 (br), 1262, 1086, 752, 698 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): $\delta = 11.34$ (br s, 1 H, CO₂H), 7.73–7.76 (dd, J = 1.8, 9.8 Hz, 1 H, catechol 4-H), 7.16–7.50 (m, 12 H, arom), 5.27 (s, 2 H, CH₂Ph), 5.20 (s, 2 H, CH₂Ph).

Anal. $C_{21}H_{18}O_4$ (334.4): calcd C, 75.44; H, 5.42; found: C, 75.40; H, 5.43.

Ethyl (*3R*,*4S*)-4-(Benzyloxycarbonylamino)-8-[2,3-bis(benzyloxy)-benzoylamino]-3-hydroxyoctanoate (20):

The lysinestatine derivative 15a (1.58 g, 3.5 mmol) was treated with 4 N HCl/dioxane (15 mL) at 0°C for 1 h and then at r.t. for 45 min. The mixture was concentrated in vacuo, and the residual HCl was removed by diluting with dioxane (3 mL) and toluene (9 mL) and evaporating in vacuo. The resulting amine salt (a white solid) and 2,3bis(benzyloxy)benzoic acid (17; 1.46 g, 4.4 mmol) were dissolved in DMF (15 mL) and cooled in an ice-bath, whereupon DEPC (0.67 mL, 4.4 mmol) was added dropwise with stirring. After 15 min, Et₃N (1.12 mL, 8.1 mmol) was added, and the mixture was stirred at 0°C for 4 h and subsequently allowed to warm to r.t. over 13 h. The mixture was diluted with EtOAc/benzene (v/v, 3:1; 60 mL), and the organic layer was washed twice with ice-cold 1 M aq KHSO4, once with sat. NaHCO₃, and once with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by chromatography (gradient from 1:1 to 1.5:1 EtOAc/hexane) to give 20 as a white solid (2.02 g, 86%); mp 114–115 °C (EtOAc/hexane); $[\alpha]_{\rm D}^{26}$ –9.3 (c = 1.22, CHCl₃).

IR (KBr): *v* = 3306, 1728, 1684, 1639, 1576, 1541, 1246, 1057, 747, 696 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.94 (br s, 1 H, LysSta 8-NH), 7.72 (dd, J = 1.6, 7.8 Hz, 1 H, catechol 6-H), 7.28–7.48 (m, 15 H, 3 × C₆H₅), 7.12 (d, J = 6.9 Hz, 1 H, catechol 4-H), 7.06 (t, J = 7.9 Hz, 1 H, catechol 5-H), 5.15 (s, 2 H, CH₂Ph), 5.09 (br s, 1 H), 5.06 (s, 2 H, CH₂Ph), 5.05 (ABq, J = 12.0 Hz, 2 H, CH₂Ph), 4.16 (q, J = 7.1 Hz, 2 H, OCH₂CH₃), 3.98–4.01 (m, 1 H, 3-H), 3.57–3.60 (m, 1 H, 4-H), 3.41 (d, J = 4.0 Hz, 1 H, 3-OH), 3.32–3.39 (m, 1 H, 8-H), 3.11–3.17 (m, 1 H, 8-H), 2.46–2.51 (m, 2 H, 3-CH₂), 1.54–1.57 (m, 1 H), 1.24–1.44 (m, 5 H), 1.27 (t, J = 7.1 Hz, 3 H, OCH₂CH₃). Anal. C₃₉H₄₄N₂O₈ (668.9): calcd C, 70.04; H, 6.63; N, 4.19; found: C, 69.86; H, 6.62; N, 4.01.

(3*R*,4*S*)-4-(Benzyloxycarbonylamino)-8-[2,3-bis(benzyloxy)benzoylamino]-3-(*tert*-butyldimethylsilyloxy)octanoic Acid (21):

To a stirred solution of the ester 20 (1.20 g, 1.79 mmol) in THF (35 mL) was added dropwise an aq solution of 0.24 N LiOH at 0°C, and then the mixture was stirred at this temperature for 3 h and diluted with H₂O (35 mL). Aq 1N HCl (0.31 mL) was added to the mixture to quench the reaction, and the aqueous layer was subsequently saturated with NaCl and extracted three times with EtOAc/benzene (v/v, 1:1). The combined extracts were dried (Na₂SO₄), filtered, and concentrated in vacuo to give a white solid (1.14 g). The resulting acid and imidazole (1.22 g, 17.9 mmol) were dissolved in DMF (6 mL) and cooled in an ice-bath, whereupon TBSCl (1.35 g, 8.97 mmol) was added in one portion. The mixture was stirred at 0°C for 15 min and allowed to warm to r.t. over 17.5 h under an argon atmosphere. The reaction was quenched by partitioning between ice-cold 1 M aq KHSO₄ solution and EtOAc. The organic layer was separated and the aqueous layer was further extracted twice with EtOAc. The combined organic extracts were washed with ice-cold 1 M aq KHSO₄ and brine, dried (Na₂SO₄), filtered and concentrated in vacuo. The residue was dissolved THF/MeOH (v/v, 2:1, 24 mL), and an aq solution of K₂CO₃ (273 mg, 1.97 mmol) in H₂O (8 mL) was added to this solution at 0°C. The mixture was stirred at this temperature for 1.5 h, and then poured into ice-cold 0.2 N aq HCl to quench the reaction. The aqueous layers were extracted three times with EtOAc, and the combined extracts were washed once with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by chromatography (gradient from 1:4 to 2:1 EtOAc/hexane) to give the acid **21** as an oily white solid (1.17 g, 87%); $[\alpha]_D^{24}$ –10.1 (*c* = 1.11, CHCl₃).

IR (CHCl₃): ν = 3378, 1717 (br), 1653, 1647, 1576, 1539, 1456, 1262, 1217, 1084, 756, 698 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.97 (br s, 1 H, 8-NH), 7.71 (dd, J = 1.8, 7.9 Hz, 1 H, catechol 6-H), 7.29–7.47 (m, 15 H, 3 × C₆H₅), 7.13 (d, J = 6.7 Hz, 1 H, catechol 4-H), 7.08 (t, J = 7.9 Hz, 1 H, catechol 5-H), 5.15 (s, 2 H, CH₂Ph), 5.06 (s, 2 H, CH₂Ph), 5.05 (ABq, J = 11.9 Hz, 2 H, CH₂Ph), 4.93 (d, J = 8.5 Hz, 1 H, 4-NH), 4.15 (br s, 1 H, 3-H), 3.60 (br s, 1 H, 4-H), 3.28 (br s, 1 H, 8-H), 3.20 (br s, 1 H, 8-H), 2.44–2.51 (m, 2 H, 3-CH₂), 1.56 (br s, 1 H), 1.22–1.33 (m, 5 H), 0.87 [s, 9 H, SiC(CH₃)₃], 0.06 (s, 3 H, SiCH₃), 0.05 (s, 3 H, SiCH₃).

Anal. $C_{43}H_{54}N_2O_8Si$ (755.0): calcd C, 68.41; H, 7.21; N, 3.71; found: C, 68.17; H, 7.30; N, 3.69.

Boc-Gly-OTce (24):

To a stirred solution of Boc-Gly-OH (**23**; 4.96 g, 28.3 mmol), 2,2,2-trichloroethanol (3.4 mL, 35.4 mmol) and DMAP (864 mg, 7.1 mmol) in CH₂Cl₂ (150 mL) at 0°C was added DCC (6.72 g, 32.5 mmol) in one portion. The mixture was stirred at this temperature for 2 h, allowed to warm to r.t., stirred for 18 h, and then filtered through a pad of Celite. The filtrate was washed with ice-cold 1 M aq KHSO₄ solution, sat. NaHCO₃ solution and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by chromatography (gradient from 1:8 to 1:6 EtOAc/hexane) to give the ester **24** as a white solid (7.98 g, 92%); mp 70–71°C (EtOAc/hexane).

IR (KBr): v = 3416, 1782, 1771, 1690 (br), 1518 (br), 1371, 1281, 1262, 1154 (br), 819, 723 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): δ = 5.01 (br s, 1 H, NH), 4.80 (s, 2 H, CH₂Tce), 4.07 (d, *J* = 5.6 Hz, 2 H, CH₂N), 1.46 [s, 9 H, OC(CH₃)₃]. Anal. C₉H₁₄NO₄Cl₃ (306.6): calcd C, 35.26; H, 4.60; N, 4.57; found: C, 35.11; H, 4.54; N, 4.57.

Boc-D-Ser-Gly-OTce (26):

Boc-Gly-OTce (24; 2.30 g, 7.5 mmol) was treated with 4 N HCl/dioxane (15 mL) at 0°C. The mixture was stirred at this temperature for 1 h, then warmed to r.t. for 1.5 h, and concentrated in vacuo. The residue was dissolved in dioxane (3 mL) and toluene (9 mL), and the volatiles were removed in vacuo. The resulting amine salt and Boc-D-Ser-OH (25; 1.69 g, 8.25 mmol) were dissolved in DMF (20 mL), and then DEPC (1.5 mL, 9.75 mmol) at 0°C was added to this solution with stirring. After 15 min, Et₃N (2.3 mL, 16.9 mmol) was added and the mixture was stirred at 0°C for 5 h and then at r.t. for 2 h, and diluted with EtOAc/benzene (v/v, 3:1). The organic layer was washed twice with ice-cold 1 M aq KHSO₄ solution, once with sat. NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product was purified by chromatography (gradient from 1:1 to 1.5:1 EtOAc/hexane) to afford the dipeptide 26 as a white solid (1.77 g, 60%); mp 92–93°C (EtOAc/hexane); $[\alpha]_{\rm D}^{26}$ +27.8 (c = 1.04, CHCl₃).

IR (KBr): v = 3310 (br), 3092, 1767, 1680 (br), 1541, 1368, 1298, 1254, 1057, 927 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ = 7.22 (br s, 1 H, Gly NH), 5.56 (br s, 1 H, Ser NH), 4.78 (ABq, *J* = 11.9 Hz, 2 H, CH₂CCl₃), 4.26 (dd, *J* = 6.1, 18.3 Hz, 1 H, Gly α-H), 4.24 (br s, 1 H, Ser α-H), 4.17 (dd, *J* = 5.5, 18.3 Hz, 1 H, Gly α-H), 4.12 (br s, 1 H, Ser β-H), 3.69 (br s, 1 H, Ser β-H), 2.91 (br s, 1 H, OH), 1.46 [s, 9 H, OC(CH₃)₃].

Anal. $C_{12}H_{19}Cl_3N_2O_6$ (393.6): calcd C, 36.62; H, 4.86; N, 7.12; found: C, 36.51; H, 4.82; N, 7.08.

Tripeptide 27:

Boc-D-Ser-Gly-OTce (26; 673 mg, 1.71 mmol) was treated with 4 N HCl/dioxane (8 mL) at 0 °C. The mixture was stirred at this temperature for 30 min and then at r.t. for 1.5 h, and concentrated in vacuo. The residue was dissolved in dioxane (2 mL) and toluene (6 mL), and the volatiles were evaporated in vacuo. The resulting amine salt and the acid component 21 (1.17 g, 1.55 mmol) were dissolved in DMF (5 mL), and DEPC (0.26 mL, 1.71 mmol) was added to this solution at 0°C. After the mixture was stirred for 15 min, NMM (0.36 mL, 3.26 mmol) was added, and the mixture was stirred at 0 °C for 40 h and then diluted with EtOAc/benzene (v/v, 3:1). The organic phases were washed twice with ice-cold 1 M aq KHSO₄ solution, once with sat. NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product was purified by chromatography (gradient from 1.5:1 to 3.5:1 EtOAc/hexane) to recover the acid component 21 as a colorless oil (400 mg, 34% recovery) and to afford the tripeptide 27 as a white solid (813 mg, 51%, 77% conversion); mp 42–43 °C (EtOAc/hexane); $[\alpha]_D^{23}$ +9.2 (*c* = 0.96, MeOH). IR (KBr): v = 3380 (br), 2953, 2930, 1771, 1701, 1649 (br), 1576, 1536 (br), 1454, 1262, 1175, 1082 (br), 837, 777, 733, 698 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): δ = 7.98 (t, *J* = 5.1 Hz, 1 H, LysSta 8-NH), 7.69 (dd, *J* = 2.0, 7.6 Hz, 1 H, catechol 6-H), 7.66 (t, *J* = 3.6 Hz, 1 H, Gly NH), 7.28–7.49 (m, 15 H, 3 × C₆H₅), 7.05–7.15 (m, 2 H, catechol 5-H, 4-H), 5.19 (s, 2 H, CH₂Ph), 5.08 (overlapping d, *J* = 5.3 Hz, 1 H, Ser NH), 5.05 (s, 2 H, CH₂Ph), 5.01 (s, 2 H, CH₂Ph), 4.70 (ABq, *J* = 11.9 Hz, 2 H, CH₂CCl₃), 4.54–4.55 (m, 1 H, Ser α-H), 4.20 (dd, *J* = 6.0, 17.9 Hz, 1 H, Gly α-H), 4.14 (overlapping dd, *J* = 4.3 Hz, 1 H, Ser β-H), 4.07 (overlapping m, 1 H, LysSta 3-H), 4.00 (dd, *J* = 5.1, 18.0 Hz, 1 H, Gly α-H), 3.67 (overlapping dd, *J* = 4.6 Hz, 1 H, Ser β-H), 3.59–3.66 (m, 1 H, LysSta 4-H), 3.17–3.34 (m, 2 H, LysSta 8-CH₂), 2.53 (br s, 2 H, LysSta 2-CH₂), 2.00 (br s, 1 H, Ser OH), 1.89 (br s, 1 H), 1.22–1.69 (m, 5 H), 0.89 [s, 9 H, SiC(CH₃)₃], 0.08 [s, 6 H, Si(CH₃)₂].

Anal. C₅₀H₆₃Cl₃N₄O₁₁Si (1030.5): calcd C, 58.28; H, 6.16; N, 5.44; found: C, 58.08; H, 6.16; N, 5.48.

Depsitetrapeptide 28:

The tripeptide **27** (421 mg, 0.41 mmol), the acid component **12** (161 mg, 0.36 mmol), and DMAP (6 mg, 0.05 mmol) were dissolved in CH₂Cl₂ (2.5 mL) and cooled in an ice-MeOH bath, whereupon EDCI (102 mg, 0.53 mmol) was added. The mixture was stirred at this temperature for 30 min, and then in an ice-bath for 24 h. After dilution with EtOAc, the organic layer was washed with ice-cold 1 M aq KHSO₄ solution, sat. NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by chromatography (3:5 then 1:1 EtOAc/hexane) to recover the tripeptide **27** (88 mg, 21% recovery) and give the depsipeptide **28** as a white solid (427 mg, 82%; 87% conversion); mp 53–54 °C (EtOAc/hexane); $[\alpha]_D^{23} + 2.8$ (*c* = 1.06, CHCl₃).

IR (KBr): v = 3393, 2955, 2932, 1763, 1719, 1701, 1686, 1655, 1647, 1638, 1541, 1509, 1499, 1260, 1163, 1132, 839, 781, 735, 698 cm⁻¹. ¹H NMR (270 MHz, CDCl3): $\delta = 7.95$ (br s, 1 H, LysSta 8-NH), 7.69 (dd, J = 2.3, 7.3 Hz, 1 H, catechol 6-H), 7.30–7.49 (m, 22 H, $4 \times C_6$ H₅, Gly NH, β-OHAsp NH), 7.07–7.13 (m, 2 H, catechol 5-H, 4-H), 5.36 (d, J = 9.2 Hz, 1 H, Ser NH), 5.14 (s, 2 H, CH₂Ph), 5.13 (s, 2 H, CH₂Ph), 5.09 (overlapping br s, 1 H, LysSta 4-NH), 5.05 (d, J = 1.3 Hz, 2 H, CH₂Ph), 5.02 (s, 2 H, CH₂Ph), 4.81–4.84 (m, 3 H, Ser α-H, β-OHAsp α-H, β-H), 4.66 (s, 2 H, CH₂CCl₃), 4.51 (br s, 1 H, Ser α-H), 4.42 (dd, J = 5.3, 11.2 Hz, 1 H, Ser β-H), 4.04–4.15 (m, 3 H, LysSta 3-H, Gly α-CH₂), 3.59 (br s, 1 H, LysSta 4-H), 3.30 (br s, 1 H, LysSta 8-H), 3.19 (br s, 1 H, LysSta 8-H), 2.46 (br s, 2 H, LysSta 2-CH₂), 1.64 (br s 1 H), 1.41 [s, 9 H, OC(CH₃)₃], 1.27–1.42 (m, 5 H), 0.86 [s, 9 H, SiC(CH₃)₃], 0.84 [s, 9 H, SiC(CH₃)₃], 0.07 [s, 6 H, Si(CH₃)₂], 0.05 (s, 3 H, SiCH₃), -0.03 (s, 3 H, SiCH₃).

Anal. $C_{72}H_{96}Cl_3N_5O_{17}Si_2$ (1466.1): calcd C, 58.99; H, 6.60; N, 4.78; found: C, 58.79; H, 6.44; N, 4.87.

Dipeptide 29:

A mixture of Boc-Gly-OTce (24; 115 mg, 0.38 mmol) and 4 N HCl/ dioxane (2 mL) was stirred at 0°C for 30 min and at r.t. for 1 h, and then concentrated in vacuo. The residue was dissolved in dioxane (1 mL) and toluene (3 mL), and the volatiles were removed in vacuo. The resulting amine salt and the acid component 12 (138 mg, 0.3 mmol) were dissolved in DMF (1 mL), whereupon DEPC (68 µL, 0.45 mmol) at 0°C was added to this solution. After the mixture was stirred for 15 min, NMM (79 µL, 0.72 mmol) was added, and then the mixture was further stirred at 0°C for 20 h. After dilution with benzene/EtOAc (v/v, 1:3, 20 mL), the organic layer was washed with icecold 1 M aq KHSO₄ solution, sat. NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product was purified by chromatography (1:8 EtOAc/hexane) to give the dipeptide 29 as an oily white solid (165 mg, 86%; 29, aspartimide 32 > 120:1 from ¹H NMR).

IR (neat): v = 3422, 3359, 2955, 2932, 1759, 1723, 1717, 1682, 1498, 1368, 1256, 1165, 1129, 839, 782, 727 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): $\delta = 7.31 - 7.35$ (m, 5 H, arom), 7.01 (br s, 1 H, Gly NH), 5.36 (br s, β-OHAsp NH), 5.13 (ABq, J = 11.9 Hz, 2 H, CH₂Ph), 4.94 (d, J = 3.0 Hz, β -OHAsp β -H), 4.79 (ABq, J = 11.9Hz, CH₂CCl₃), 4.66 (d, J = 8.3 Hz, β-OHAsp α-H), 4.18 (br s, 2 H, Gly α-CH₂), 1.44 [s, 9 H, OC(CH₃)₃], 0.86 [s, 9 H, SiC(CH₃)₃], 0.08 (s, 3 H, SiCH₃), 0.02 (s, 3 H, SiCH₃). FAB-MS: $m/z = 641, 643, 645 (MH^+)$.

Tripeptide 31:

To a solution of the dipeptide 29 (151 mg, 0.24 mmol) in CH₂Cl₂ (1.5 mL) at 0°C was added dropwise TFA (1.5 mL). The mixture was stirred at 0 °C for 2 h, and then concentrated in vacuo. The residue was dissolved in CH2Cl2 (1 mL) and benzene (3 mL), and the volatiles were removed in vacuo. The resulting amine salt and Boc-Arg(Mtr)-OH (143 mg, 0.29 mmol) were dissolved in DMF (1 mL), whereupon DEPC (54 µL, 0.36 mmol) at 0°C was added. After 15 min, TEA (79 µL, 0.57 mmol) was added and the mixture was stirred at 0°C for 16 h, then diluted with EtOAc/benzene (v/v, 3:1, 20 mL). The organic layer was washed with ice-cold 1 M aq KHSO₄ solution, sat. NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product was purified by chromatography (1:1 then 1.5:1 EtOAc/hexane) to give the tripeptide 31 as a white solid (217 mg, 91%); mp 73–74°C (EtOAc/hexane); $[\alpha]_D^2$ -13.3 (c = 1.00, CHCl₃).

IR (KBr): v = 3416, 3343, 2955, 2934, 1759, 1686, 1624, 1586, 1551, 1508, 1474, 1458, 1368, 1308, 1256, 1163, 1121, 839 cm⁻¹. ¹H NMR (270 MHz, CDCl₃): δ = 7.53 (br s, 1 H, NH), 7.27–7.31 (m, 6 H, C₆H₅, NH), 6.94 (d, J = 8.9 Hz, 1 H, β -OHAsp NH), 6.53 (s, 1 H, Mtr 5-H), 6.19 (br s, guanidino), 5.11 (ABq, J = 12.0 Hz, 2 H, CH₂Ph), 4.97 (s, 1 H, β -OHAsp β -H), 4.90 (d, J = 8.6 Hz, β -OHAsp α -H), 4.75 (s, 2 H, CH₂CCl₃), 4.01–4.14 (m, 3 H, Arg α -H, Gly α -CH₂), 3.81 (s, 3 H, Mtr OCH₃), 3.12–3.14 (m, 2 H, Arg δ-CH₂), 2.70 (s, 3 H, Mtr 2-CH₃), 2.63 (s, 3 H, Mtr 6-CH₃), 2.12 (s, 3 H, Mtr 3-CH₃), 1.27–1.67 (m, 4 H, Arg β -CH₂, γ -CH₂), 1.42 [s, 9 H, OC(CH₃)₃], 0.88 [s, 9 H, SiC(CH₃)₃], 0.07 (s, 3 H, SiCH₃), 0.05 (s, 3 H. SiCH₂).

Anal. C₄₂H₆₃Cl₃N₆O₁₂SSi (1010.9): calcd C, 49.92; H, 6.28; N, 8.32; found: C, 50.05; H, 6.33; N, 8.46.

Linear Depsiheptapeptide 37:

To a stirred solution of the depsitetrapeptide 28 (172 mg, 0.12 mmol) in THF (1.5 mL) was added zinc powder (460 mg, 7.04 mmol), followed by 1 M aq NH₄OAc (0.3 mL). The heterogeneous slurry was vigorously stirred at r.t. for 20 h, then diluted with EtOAc (20 mL), and filtered through a pad of Celite. The combined filtrate was washed with ice-cold 1 M aq KHSO4 solution, and brine, dried (Na_2SO_4) , and concentrated in vacuo. The residue was purified by chromatography (1:1 EtOAc/hexane then 25:1 CH₂Cl₂/MeOH) to give the acid 33 as a white solid (136 mg, 87%).

IR (KBr): *v* = 3450, 3350, 2953, 2932, 1759, 1721, 1655, 1649, 1576, 1541, 1499, 1456, 1260, 1213, 1163, 1130, 839, 781, 698 cm⁻¹

¹H NMR (270 MHz, CDCl₃): δ = 8.20 (t, J = 5.4 Hz, 1 H, LysSta 8-NH), 7.66 (dd, J = 3.1, 6.7 Hz, 1 H, catechol 6-H), 7.24–7.48 (m, 20 H, $4 \times C_6 H_5$), 7.12–7.20 (m, 2 H, catechol 5-H, 4-H), 7.02 (t, J =4.6 Hz, 1 H, Gly NH), 5.62 (d, J = 9.9 Hz, 1 H, β -OHAsp NH), 5.29 (d, J = 9.2 Hz, 1 H, NH), 5.15 (s, 2 H, CH₂Ph), 5.08–5.12 (m, 4 H, CH₂Ph, CHPh, NH), 5.04 (s, 2 H, CH₂Ph), 4.90 (d, J = 12.5 Hz, 1 H, CHPh), 4.79 (d, J = 9.9 Hz, 1 H, β -OHAsp α -H), 4.74 (d, J = 2.3 Hz, 1 H, β -OHAsp β -H), 4.67–4.71 (m, 1 H, Ser α -H), 4.52–4.57 (m, 1 H, Ser β -H), 4.35 (dd, J = 6.3, 11.2 Hz, 1 H, Ser β -H), 4.19–4.20 (m, 1 H, LysSta 3-H), 3.99–4.07 (m, 1 H, Gly α-H), 3.72–3.79 (m, 1 H, Gly α-H), 3.49–3.54 (m, 1 H, LysSta 4-H), 3.20–3.31 (m, 2 H, LysSta 8-CH₂), 2.43-2.59 (m, 2 H, LysSta 2-CH₂), 1.62-1.65 (m, 1 H), 1.40 [s, 9 H, OC(CH₃)₃], 1.17-1.46 (m, 5 H), 0.87 [s, 9 H, SiC(CH₃)₃], 0.84 [s, 9 H, SiC(CH₃)₃], 0.10 (s, 3 H, SiCH₃), 0.08 (s, 3 H, SiCH₃), 0.05 (s, 3 H, SiCH₃), 0.02 (s, 3 H, SiCH₃).

To a stirred solution of the tripeptide 31 (38 mg, 0.038 mmol) in CH₂Cl₂ (1 mL) at 0°C was added dropwise TFA (1 mL). The mixture was stirred at 0°C for 2 h, and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (1 mL) and benzene (3 mL), and the volatiles were removed in vacuo. The resulting amine salt and the above acid (33; 44 mg, 0.033 mmol) were dissolved in DMF (0.2 mL), and NMM (16 µL, 0.15 mmol) at 0 °C was added dropwise, followed by solid FDPP (38 mg, 0.098 mmol) in one portion. The mixture was stirred at 0°C for 42 h, diluted with EtOAc. The organic layer was washed with ice-cold 1 M aq KHSO4 solution, sat. NaHCO3 solution, and brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product was purified by chromatography (gradient from 1:1 to 2:1 EtOAc/hexane) to give the depsiheptapeptide 37 as a white solid (63 mg, 86%); mp 81–82 °C (EtOAc/hexane); $[\alpha]_D^{25}$ +2.5 (*c* = 0.86, CHCl₃). IR (KBr): *v* = 3351 (br), 2953, 2932, 1759, 1721, 1675 (br), 1541,

1501, 1260, 1163, 1123, 839, 781, 698 cm⁻¹.

¹H NMR (270 MHz, CDCl₃): δ = 8.10 (br s, 1 H, LysSta 8-NH), 7.78 (br s, 1 H, Gly NH), 7.62 (d, J = 7.3 Hz, 1 H, catechol 6-H), 6.96–7.45 (m, 31 H, arom, NH), 6.50 (s, 1 H, Mtr 5-H), 6.20 (br s, 3H, guanidino), 5.83 (br s, 1 H, NH), 5.34 (d, J = 8.9 Hz, 1 H, NH), 4.95–5.14 (m, 12 H, $5 \times CH_2$ Ph, $2 \times \beta$ -OHAsp α -H), 4.75 (s, 2 H, CH₂CCl₃), 4.60–4.72 (m, 3 H, 2 × β -OHAsp β -H, Ser α -H), 4.46 (d, J = 7.9 Hz, 1 H, Ser β -H), 3.96–4.24 (m, 5 H, Ser β -H, 3 × Gly α -H, LysSta 3-H), 3.79 (s, 3 H, Mtr OCH₃), 3.70 (d, J = 14.4 Hz, 1 H, Gly α -H), 3.43 (br s, 1 H, LysSta 4-H), 3.29 (br s, 1 H, LysSta 8-H), 3.12 (br s, 3 H, LysSta 8-H, Arg δ-CH₂), 2.70 (s, 3 H, Mtr 2-CH₃), 2.63 (s, 3 H, Mtr 6-CH₃), 2.43–2.53 (m, 2 H, LysSta 2-CH₂), 2.11 (s, 3 H, Mtr 3-CH₃), 1.75 (br s, 1 H), 1.41 [s, 9 H, OC(CH₃)₃], 1.25–1.47 (m, 9 H), 0.88 [s, 9 H, SiC(CH₃)₃], 0.83 [s, 18 H, 2×SiC(CH₃)₃], 0.06 [s, 6 H, Si(CH₃)₂], 0.05 (s, 3 H, SiCH₃), 0.01 (s, 3 H, SiCH₃), -0.03 [s, 6 H, Si(CH₃)₂].

Anal. C₁₀₇H₁₄₈Cl₃N₁₁O₂₆SSi₃ (2227.8): calcd C, 57.71; H, 6.69; N, 6.92; found: C, 57.52; H, 6.66; N, 6.98.

Cyclic Depsiheptapeptide 38:

Linear depsiheptapeptide 37 (100 mg, 0.045 mmol) was dissolved in HOAc followed by zinc powder (294 mg, 4.5 mmol). The suspension was vigorously stirred at r.t. for 4.5 h, diluted with EtOAc, and filtered through a pad of Celite. The filtrate was washed with ice-cold 1 M aq KHSO₄ solution, and brine, dried (Na₂SO₄), and filtered. The organic solvent was concentrated in vacuo to 15 mL followed by azeotropic removal of HOAc in vacuo with heptane (15 mL) to afford the free acid as a white solid (90 mg, 96%).

¹H NMR (270 MHz, CDCl₃): δ = 8.10 (br s, 1 H, NH), 7.72 (br s, 1 H, NH), 7.62 (d, J = 7.6 Hz, 1 H, catechol 6-H), 7.05–7.47 (m, 31 H, arom, catechol, and NH), 6.50 (s, 1 H, Mtr 5-H), 6.35 (br s, guanidino), 5.60 (br s, 1 H, NH), 5.33 (d, J = 8.9 Hz, 1 H, NH), 4.92–5.18 (m, 12 H, $5 \times CH_2$ Ph, $2 \times \beta$ -OHAsp α -H), 4.74–4.78 (m, 3 H, $2 \times \beta$ -OHAsp α-H, Ser α-H), 4.52–4.57 (m, 1 H), 4.37 (br s, 1 H), 4.01-4.20 (m, 3 H), 3.80 (br s, 1 H), 3.79 (s, 3 H, Mtr OCH₃), 3.48 (br s, 1 H, LysSta 4-H), 3.10 (br s, 4 H, LysSta 8-CH₂), 2.67 (s, 3 H, Mtr 2-CH₃), 2.60 (s, 3 H, Mtr 6-CH₃), 2.51 (br s, 2 H, LysSta 2-CH₂), 2.10 (s, 3 H, Mtr 3-CH₃), 1.25–1.66 (m, 10 H), 1.39 [s, 9 H, OC(CH₃)₃], 0.85 [s, 9 H, SiC(CH₃)₃], 0.81 [s, 9 H, SiC(CH₃)₃], 0.80 [s, 9 H, SiC(CH₃)₃], 0.06 (s, 3 H, SiCH₃), 0.03 (s, 3 H, SiCH₃), 0.02 [s, 6 H, Si(CH₃)₂], -0.04 (s, 3 H, SiCH₃), -0.06 (s, 3 H, SiCH₃).

The resulting acid (90 mg, 0.043 mmol) was treated with TFA (2.5 mL) in CH₂Cl₂ (2.5 mL) at 0°C. The mixture was vigorously stirred at this temperature for 2.5 h, and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (1 mL) and benzene (3 mL), and the volatiles were removed in vacuo. The deprotected product was dissolved in DMF (10 mL). NMM (24 µL, 0.22 mmol) at 0 °C was added to this mixture, followed by a solution of FDPP (33 mg, 0.086 mmol) in DMF (1 mL). The mixture was stirred at 0°C for 30 min and then allowed to warm to r.t. for 38 h. After removal of DMF by distillation below 20°C, the residue was dissolved in EtOAc and the organic layer was washed with ice-cold 1 M aq KHSO₄ solution, sat. NaHCO₃ solution, and brine, dried (Na₂SO₄), and concentrated in vacuo. The crude product was purified by chromatography (25:1 CH₂Cl₂/MeOH) to give the cyclic depsipeptide 38 as white crystals (42 mg, 53%); mp 108–109 °C (CH₂Cl₂/hexane); $[\alpha]_D^{25}$ –28.8 (c = 0.83, CHCl₃).

IR (KBr): v = 3335 (br), 2951, 2932, 1744, 1620 (br), 1539 (br), 1456, 1379, 1308, 1260 (br), 1121, 889, 783, 698 cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.81$ (br s, 0.5 H, guanidino), 8.56 (d, J = 4.4 Hz, 1 H, Arg NH), 8.27 (d, J = 8.3 Hz, 1 H, β -OHAsp NH), 8.13 (t, J = 5.4 Hz, 1 H, LysSta 8-NH), 8.04 (br s, 1H, Gly NH), 7.75 (d, J = 7.8 Hz, 1 H, Ser NH), 7.49 (d, J = 7.1 Hz, 1 H, catechol 6-H), 7.10–7.45 (m, 29 H, arom, Gly NH, β -OHAsp NH), 6.97(d, J = 8.8 Hz, 1 H, LysSta 4-NH), 6.67 (s, 1 H, Mtr 5-H), 6.41 (br s, guanidino), 5.19 (s, 2 H, CH₂Ph), 5.10 (ABq, J = 12.5 Hz, 2 H, CH₂Ph), 5.05 (s, 2 H, CH₂Ph), 5.01 (s, 2 H, CH₂Ph), 4.97 (ABq, J = 10.6 Hz, 2 H, CH₂Ph), 4.85 (d, J = 5.0 Hz, 2 H, CH₂Ph), 4.85 (d, J = 5.0 Hz, 2 H, β-OHAsp α-H, LysSta 3-OH), 4.83 (d, J = 3.7 Hz, 1 H, β-OHAsp α -H), 4.76 (d, J = 4.6 Hz, 1 H, β -OHAsp β -H), 4.67 (br s, 2H, β -OHAsp β -H, Ser α -H), 4.24 (d, J = 10.5 Hz, 1 H, Ser β -H), 4.11–4.13 (m, 1 H, Ser β -H), 4.06 (dd, J = 7.8, 12.2 Hz, 1 H, Gly α -H), 3.82–3.85 (m, 2 H, Arg α-H, Gly α-H), 3.77 (s, 5 H, Mtr OCH₃, Lys-Sta 3-H, Gly α -H), 3.67 (d, J = 13.4 Hz, 1 H, Gly α -H), 3.31–3.32 (overlapping m, 1 H, LysSta 4-H), 3.21-3.24 (overlapping m, 1 H, LysSta 8-H), 3.11–3.13 (m, 1 H, LysSta 8-H), 3.01 (d, J = 4.4 Hz, 2 H, Arg α-CH₂), 2.59 (s, 3 H, Mtr 2-CH₃), 2.52 (s, 3 H, Mtr 6-CH₃), 2.30–2.33 (d, J = 12.5 Hz, 1 H, LysSta 2-H), 2.21 (dd, J = 9.16, 15.0 Hz, 1 H, LysSta 2-H), 2.04 (s, 3 H, Mtr 3-CH₃), 1.15–1.55 (m, 10 H), 0.79 [s, 9 H, SiC(CH₃)₃], 0.78 [s, 9 H, SiC(CH₃)₃], -0.01 (s, 3H, SiCH₃), -0.02 (s, 3 H, SiCH₃), -0.05 [s, 6 H, Si(CH₃)₂].

Anal. C₉₄H₁₂₃N₁₁O₂₃SSi₂ (1864.0): calcd C, 60.60; H, 6.65; N, 8.27; found: C, 60.52; H, 6.79; N, 8.42.

Alterobactin A (1):

To a solution of the cyclic depsipeptide 38 (37 mg, 0.020 mmol) in HOAc/THF/H₂O (v/v/v, 3:1:1; 4.5 mL) was added 5% Pd/C. The suspension was stirred at r.t. for 12.5 h under a H₂ atmosphere, filtered through a pad of Celite, and the pad was washed twice with HOAc/ THF/H₂O (3:1:1) and three times with THF/H₂O (v/v, 1:1). The combined filtrate was concentrated in vacuo and any residual HOAc and H₂O were removed by adding heptane and toluene, and concentrating in vacuo. The residue was triturated and washed three times with Et₂O to afford the product retaining the Mtr group as a white solid (24 mg). The above Mtr-protected product was treated with TFA (6 mL), followed by thioanisole (0.24 mL). The mixture was vigorously stirred at r.t. for 7 h and concentrated in vacuo. The residual thioanisole was removed under high vacuum. The crude product was triturated and washed three times with Et₂O and then further purified by reversephase HPLC (C₄; MeCN/H₂O/TFA, 10:90:0.1; 7.5 mL/min) and lyophilized to afford alterobactin A (1) as a grey-white solid (15 mg, 81%); R_f 0.32 (silica gel, BuOH/H₂O/AcOH, 3:3:1).

¹H NMR (500 MHz, D₂O): δ = 7.21 (d, J = 7.9 Hz, 1 H, catechol 6-

H), 7.08 (d, J = 7.9 Hz, 1 H, catechol 4-H), 6.87 (t, J = 7.9 Hz, 1 H, catechol 5-H), 5.16 (d, J = 3.1 Hz, 1 H, β -OHAsp α -H), 5.03 (d, J =3.1 Hz, 1 H, β -OHAsp α -H), 4.96 (d, J = 3.1 Hz, 1 H, β -OHAsp β -H), 4.86 (d, J = 3.1 Hz, 1 H, β -OHAsp β -H), 4.70 (overlapping m, 1 H, Ser α-H), 4.64 (dd, J = 5.2, 11.3 Hz, 1 H, Ser β-H), 4.40 (dd, J =1.8, 10.9 Hz, 1 H, Ser β-H), 4.35 (m, 1 H, LysSta 3-H), 4.12 (overlapping m, 1 H, Arg α -H), 4.08 (ABq, J = 17.1 Hz, 2H, Gly α -CH₂), 4.03 (ABq, J = 17.1 Hz, 2 H, Gly α -CH₂), 3.39 (m, 3 H, LysSta 4-H and 8-H), 3.20 (t, J = 6.7 Hz, 2 H, Arg δ -CH₂), 2.58 (d, J = 5.5 Hz, 2 H, LysSta 2-CH₂), 1.77–1.86 (m, 2 H, Arg β-CH₂), 1.60–1.76 (m, 6 H, Arg 2-CH2, LysSta 5-CH2 and 7-CH2), 1.54-1.58 (m, 1 H, LysSta 6-H), 1.41-1.48 (m, 1 H, LysSta 6-H).

¹³C NMR (125 MHz, D₂O): δ = 177.5 (Arg C=O), 177.3 (OHAsp β-C=O), 176.9 (OHAsp β-C=O), 175.4 (LysSta C=O), 175.2 (Gly C=O), 173.9 (Gly C=O), 173.7 (Ser C=O), 173.3 (OHAsp α-C=O), 173.0 (DHB C=O), 172.3 (OHAsp α -C=O), 159.6 (Arg C=NH), 149.6 (DHB C-2), 147.4 (DHB C-3), 122.5 (DHB C-5), 122.2 (DHB C-4), 121.7 (DHB C-6), 119.9 (DHB C-1), 73.0 (OHAsp C_β), 72.8 (OHAsp C_{β}), 70.0 (LysSta C-3), 67.7 (Ser C_{β}), 58.9 (OHAsp C_{α}), 58.3 (Arg C_{α}), 58.2 (OHAsp C_{α}), 58.0 (LysSta C-4), 54.5 (Ser C_{α}), 45.3 (Gly C_α), 45.2 (Gly C_α), 43.2 (Arg C_δ), 41.6 (LysSta C-8), 40.7 (LysSta C-2), 30.9 (LysSta C-7), 30.3 (Arg C_{β}), 29.2 (LysSta C-5), 26.9 (Arg C,), 25.0 (LysSta C-6).

FAB-MS in H₂O: m/z = 928 (MH⁺).

FAB-HRMS (NBA) in H_2O : $C_{36}H_{54}N_{11}O_{18}$ (MH⁺): m/z calcd 928.3649, found 928.3723.

We thank Professor Alison Butler of University of California, Santa Barbara, for kindly sending us the sample of natural alterobactins and their NMR spectra. The high resolution FAB mass of alterobactin A was determined by Dr. Hideaki Murata of Meijo University, to whom the authors' thanks are due. One of the authors (J. D.) is grateful to the Japan Society for a Promotion of Science and the Miyata Foundation for a postgraduate fellowship. This work was financially supported in part by the Ministry of Education, Science, Sports and Culture, Japan.

- (1) a) For isolation and purification of alterobactins, see: Reid, R. T.; Butler, A. Limnol. Oceanogr. 1991, 36, 1783. b) For structural determination and iron affinity, see: Reid, R. T.; Live, D. H.; Faulkner, D. J.; Butler, A. Nature 1993, 366, 455. (see also: Chem. Brit. 1994, 30, 174).
- (2) Loomis, L. D.; Raymond, K. N. Inorg. Chem. 1991, 30, 906.
- (3) a) Shioiri, T.; Hamada, Y. In Studies in Natural Products Chemistry, Stereoselective Synthesis; Rahman, A.-U., Ed.; Elsevier: Amsterdam, 1989; Vol. 4 (Part C), p 83. b) Deng, J. Ph. D. Dissertation, Nagoya City University, Nagoya, 1995. c) Wipf, P. Chem. Rev. 1995, 95, 2115.

d) For recent examples of our work, see Noguchi, H.; Aoyama, T.; Shioiri, T; Tetrahedron Lett. 1997, 38, 2883.

e) Sasaki, S.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1997, 38, 3013.

(4) a) Shioiri, T.; Hamada, Y.; Matsuura, F. Tetrahedron 1995, 51, 3939.

b) see also: Deng, J. Chemistry (The Chinese Chem. Soc., Taipei) 1997, 55, 81.

(5) a) For a preliminary account of the synthesis of alterobactin A, see: Deng, J.; Hamada, Y.; Shioiri, T. J. Am. Chem. Soc. 1995, 117, 7824. b) see also: Deng, J.; Hamada, Y.; Shioiri, T. In Peptide Chem-

istry 1995, Nishi, N., Ed.; Protein Research Foundation: Osaka, 1996 p 109.

Symbols and abbreviations are in accordance with the recom-(6)mendations of the IUPAC-IUB Commission on Biochemical Nomenclature: Eur. J. Biochem. 1984, 138, 9.

- (7) a) Kopple, K. D. J. Pharm. Sci. 1972, 61, 1345.
 b) Tamaki, M.; Akabori, S.; Muramatsu, I. J. Am. Chem. Soc. 1993, 115, 10492.
 c) Ehrlich, A.; Rothemund, S.; Brudel, M.; Beyermann, M.; Corming, L. & Biegert, M. Tetrahadaen Lett. 1993, 24, 4781.
- Carpino, L. A.; Bienert, M. *Tetrahedron Lett.* **1993**, *34*, 4781.
 (8) Fujino, M.; Wakimasu, M.; Kitada, C. *Chem. Pharm. Bull.* **1981**, *29*, 2825.
- (9) a) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570.
 b) Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592.
- c) Deng, J.; Hamada, Y.; Shioiri, T.; Matsunaga, S.; Fusetani, N. Angew. Chem., Int. Ed. Engl. **1994**, 33, 1729.
- (10) Takuma, S.; Hamada, Y.; Shioiri, T. Chem. Pharm. Bull. 1982, 30, 3147.
- (11) a) Chen, S.; Xu, J. *Tetrahedron Lett.* **1991**, *32*, 6711.
 b) Dudash, J., Jr.; Jiang, J.; Mayer, S. C.; Joullie, M. M. Synth. *Commun.* **1993**, *23*, 349.
 c) Deng, J.; Hamada, Y.; Shioiri, T. *Tetrahedron Lett.* **1996**, *37*, 2261.
- (12) a) Denis, J.-N.; Correa, A.; Greene, A. E. J. Org. Chem. 1990, 55, 1957.
 b) Wang, Z. Ma, Kalla, H. Ca, Shamilan, K. D. J. Org. Cham.

b) Wang, Z.-M.; Kolb, H. C.; Sharpless, K. B. J. Org. Chem. 1994, 59, 5104.

(13) Shioiri, T.; Matsuura, F.; Hamada, Y. *Pure & Appl. Chem.* 1994, 66, 2151, and references cited therein.

- (14) Sharpless, K. B.; Amberg, W.; Beller, M.; Chen, H.; Hartung, J.; Kawanami, Y.; Lubben, D.; Manoury, E.; Ogino, Y.; Shibata, T.; Ukita, T. J. Org. Chem. **1991**, *56*, 4585.
- (15) Fleming, P. R.; Sharpless, K. B. J. Org. Chem. 1991, 56, 2869.
- (16) a) Maibaum, J.; Rich, D. H. J. Org. Chem. 1988, 53, 869.
 b) Dufour, M.-N.; Jouin, P.; Poncet, J.; Pantaloni, A.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1986, 1895.
 c) Hoffman, R. V.; Tao, J. J. Org. Chem. 1997, 62, 2292.
- (17) Salituro, F. G.; Agarwal, N.; Hofmann, T.; Rich, D. H. J. Med. Chem. **1987**, *30*, 286.
- (18) Yang, C. C.; Merrifield, R. B. J. Org. Chem. 1976, 41, 1032.
- (19) a) Schon, I.; Kisfaludy, L. Int. J. Peptide Protein Res. 1979, 14, 485.
 - b) Bondanszky, M.; Tolle, J. C.; Deshmane, S. S.; Bondaszky, A. Int. J. Peptide Protein Res. 1978, 12, 57.
- (20) Okada, Y.; Iguchi, S. J. Chem. Soc., Perkin Trans. 1 1988, 2129.
- (21) The assignments are based on a ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of **38**.
- (22) Kiso, Y.; Inai, M.; Kitagawa, K.; Akita, T.; Moritoki, H. Chem. Pharm. Bull. **1983**, *31*, 1818.
- (23) TLC: $R_f 0.32$; 250 µm silica gel plate (Merck Art. 5715, Kieselgel 60 F_{254}); BuOH/H₂O/HOAc (3:3:1).
- (24) a) Wagner, R.; Tilly, J. W. J. Org. Chem. 1990, 55, 6289.
 b) Palomo, C.; Cabre, F.; Ontoria, J. M. Tetrahedron Lett. 1992, 33, 4819.