874 Communications SYNTHESIS

A New Convenient Synthesis of 5-Amino-1,3-thiazole-4-carboxylic Acids¹

Mamoru Suzuki, Tamon Moriya, Kazuo Matsumoto*, Muneji Miyoshi

Research Laboratory of Applied Biochemistry, Tanabe Seiyaku Ce., Ltd., 16-89, Kashima-3-chome, Yodogawa-ku, Osaka 532, Japan

1,3-Thiazole derivatives are of considerable pharmaceutical interest and they are important intermediates for the preparation of a number of drugs. We were interested in synthesizing 5-amino-1,3-thiazole-4-carboxylic acids (5) which may be regarded as a structural analog of anthranilic acid. Only a few methods for the synthesis of compounds 5 have hitherto been reported, e.g., the reaction of ethyl aminocyanoacetate with sodium dithioformate² or with triethyl orthoformate followed by treatment with hydrogen sulfide^{3,2}.

In the course of our investigations on the preparative utility of α -isocyanoacetic acid derivatives, we investigated the reaction of methyl isocyanoacetate with isothiocyanates to obtain the title compounds.

The reaction of lithiated ethyl α -isocyanoacetate with isothiocyanates has been reported⁵ to yield 5-methoxy-1,3-oxazole-2-or -4-thiocarboxamides, not compounds of the type **5**. Considering⁶ the specific properties of isocyano compounds, we expected that the reaction of methyl α -isocyanoacetate (2) with isothiocyanates (1) would afford the desired 5-amino-1,3-thiazole-4-carboxylic acids (5). In fact, we found that the reaction of methyl α -isocyanoacetate (2) with various isothiocyanates (1) in tetrahydrofuran in the presence of potassium *t*-butoxide leads to the formation of methyl 5-amino-1,3-thiazole-4-carboxylates (4) in good yields; alkaline hydrolysis of compounds **4** then gives the desired acids **5**.

$$R-N=C=S + \overline{C}=N-CH_2-COOCH_3 \xrightarrow{t-C_4H_9-OK/THF}$$

$$1 \qquad 2$$

$$K^{\oplus} S \qquad N \qquad R-N \qquad COOCH_3$$

$$3 \qquad 4$$

$$KOH/CH_3OH/H_2O \qquad R-N \qquad COOCH_3$$

We assume that the reaction proceeds via α -metallation of methyl α -isocyanoacetate (2) followed by reaction with the isothiocyanate (1) to give the intermediate potassio derivative 3; the C-atom of the isocyano group of 3 then reacts with the more nucleophilic S-atom in the ambident nucleophilic thiocarboxamide moiety of 3 to give the 1.3-thiazole 5.

The I.R. and ¹H-N.M.R. spectra of compounds 4 and 5 are in agreement with the proposed structures.

Methyl 5-Amino-1,3-thiazole-4-carboxylates (4); General Procedure: To a vigorously stirred solution of potassium t-butoxide (3.93 g, 33 mmol) in tetrahydrofuran (100 ml) is added dropwise methyl α -isocyanoacetate (2; 2.97 g, 30 mmol) followed by the isothiocyanate (1; 30 mmol). Stirring is continued for 2 h at room temperature and then acetic acid is added to neutralize the mixture. The solvent is removed in vacuo and the residue is extracted with ethyl acetate (2 × 50 ml). The extract is washed with water (20 ml), dried with anhydrous sodium sul-

Table 1. 5-Amino-1,3-thiazole-4-carboxylic Esters (4)

4 a	R CH ₃	Yield [%]	m.p. [°C]	Molecular formula ^a	
				C ₆ H ₈ N ₂ O ₂ S	(172.2)
b	C_2H_5	77	syrup	$C_7H_{10}N_2O_2S$	(240.3)
c	n - C_4H_9	70	syrup	$C_9H_{13}N_2O_2S$	(213.3)
d	c-C ₆ H ₁₁	72	syrup	$C_{11}H_{16}N_2O_2S$	(240.3)
e	C_6H_5 — CH_2 —	71	85-87°	$C_{12}H_{12}N_2O_2S$	(248.3)
f	C_6H_5	65	136-137°	$C_{11}H_{10}N_2O_2S$	(234.3)
g	4-Cl— C_6H_5 —	53	122-123°	$C_{11}H_9N_2O_2ClS^b$	(268.7)

The microanalyses were in satisfactory agreement with the calculated values: C, ±0.27; H, ±0.22; N, ±0.26; S, ±0.22.

Table 2. 5-Amino-1,3-thiazole-4-carboxylic Acids (5)

5	R	Yield [%]	m.p. [°C]	Molecular formula ^a	
c	n-C ₄ H ₉	88	135-136° (dec)	C ₈ H ₁₂ N ₂ O ₂ S	(200.3)
d	c-C ₆ H ₁₁	78	135-136° (dec)	$C_{10}H_{14}N_2O_2S$	(226.3)
e	C_6H_5 — CH_2 —	86	146-147° (dec)	$C_{11}H_{10}N_2O_2S$	(234.3)
f	C_6H_5	62	164-167° (dec)	$C_{10}H_8N_2O_2S$	(220.3)

^a The microanalyses were in satisfactory agreement with the calculated values: C, ± 0.08 ; H, ± 0.08 ; N, ± 0.08 ; S, ± 0.26 . Exception: **5e**; C, -0.43.

Table 3. Spectral Data of Compounds 4 and 5

Com- pound	I.R. ^a ν [cm ⁻¹]	1 H-N.M.R. (solvent/TMS $_{ m int}$) $^{ m b}$ δ [ppm]			
		N=CH	NH	OCH ₃	
4a	3360, 3100, 1665°	7.80	7.25	3.90°	
4b	3320, 3090, 1662 ^d	7.82	7.25	3.92°	
4c	3320, 3090, 1662 ^d	7.80	7.30	3.92e	
4d	3300, 3090, 1660 ^d	7.80	7.30	3.92e	
4e	3350, 3050, 1660°	7.80	7.75	3.91e	
4f	3270, 3100, 1660°	7.91	9.70	3.98e	
4g	3250, 3090, 1662°	7.98	9.75	4.03°	
5e	3320, 3100, 1670°	7.98	7.50		
5d	3300, 3100, 1662°	8.00	7.42 ^f		
5e	3400, 3100, 1700°	7.95	8.05 ^f		
5f	3120, 3080, 1670°	8.25	7.10^{f}		

^a I.R. spectra measured on a Shimadzu IR-27 G infrared spectrometer.

fate, and concentrated in vacuo. The resultant residue is column-chromatographed on silica gel (120 g) using chloroform as eluent to give the product 4 which is recrystallized from ethyl acetate/diisopropyl ether.

5-Amino-1,3-thiazole-4-carboxylic Acids (5c, d, e); General Procedure:

A mixture of ester 4c, d, e (8 mmol), 85% potassium hydroxide (1.6 g, 24.2 mmol), methanol (10 ml), and water (5 ml) is stirred for 2 h at $50-60\,^{\circ}\mathrm{C}$. Then, water (10 ml) is added to the mixture and methanol is re-

moved in vacuo. The residue is acidified with concentrated hydrochloric acid with cooling. The resultant crystals are collected by suction and recrystallized from aqueous ethanol.

5-Anilino-1,3-thiazole-4-carboxylic Acid (5f):

Potassium Salt of **5f**: A mixture of ester **4f** (550 mg, 2.3 mmol), 85% potassium hydroxide (1.0 g, 15.2 mmol), methanol (7 ml), and water (3 ml) is stirred for 3 h at 60 °C. The precipitate is then collected by suction with cooling to give the potassium salt of **5f**; yield: 400 mg; m.p. 250-252 °C (dec).

I.R. (Nujol): v = 3300, 3070, 1710 cm⁻¹.

¹H-N.M.R. (DMSO- d_6 /TMS_{int}): δ = 11.71 (s, 1 H, NH); 8.13 (s, 1 H, CH); 6.7-7.0 ppm (m, 5 H_{arom}).

Free Acid **5f:** The potassium salt (400 mg) is dissolved in acetic acid (10 ml) at 80 °C and water (5 ml) is added to the solution to precipitate colorless prisms of **5f;** yield: 320 mg (62%); m.p. 164-167 °C. M.S.: m/e = 220 (M⁺).

Received: April 20, 1982

^b Cl: calc. 13.19, found 13.40.

b 1H-N.M.R. spectra measured on a Hitachi Perkin-Elmer R-20 A high resolution N.M.R. spectrometer.

c In nujol.

d Film.

e In CDCl3.

In DMSO-d6.

^{*} Address for correspondence.

Synthesis of Amino Acids and Related Compounds; 25. Part 24: T. Moriya, N. Yoneda, M. Miyoshi, K. Matsumoto, *J. Org. Chem.* 47, 94 (1982).

² A. H. Cook, S. I. Heilbron, A. L. Levy, J. Chem. Soc. 1947, 1594.

A. K. Sen, G. Chattopadhyay, Indian J. Chem. [B] 17, 222 (1979).

⁴ A. K. Sen, A. K. Mukhopadhyay, *Indian J. Chem.* [B] **20,** 275 (1981).

D. Hoppe, Angew. Chem. **86**, 889 (1974); Angew. Chem. Int. Ed. Engl. **13**, 800 (1974).

⁶ K. Matsumoto, J. Agric. Chem. Soc. Jpn. 51, R 109 (1977).

T. Ho, Hard and Soft Acids and Bases Principle in Organic Chemistry. Academic Press, New York · San Francisco · London, 1977, p. 128, 166-167.