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Disruption of protein–protein interactions by small molecules is achievable but presents significant hur-
dles for effective compound design. In earlier work we identified a series of thiazolidinone inhibitors of
the bacterial type III secretion system (T3SS) and demonstrated that this scaffold had the potential to be
expanded into molecules with broad-spectrum anti-Gram negative activity. We now report on one series
of thiazolidinone analogs in which the heterocycle is presented as a dimer at the termini of a series of
linkers. Many of these dimers inhibited the T3SS-dependent secretion of a virulence protein at concen-
trations lower than that of the original monomeric compound identified in our screen.

� 2009 Elsevier Ltd. All rights reserved.
A possible therapeutic solution to the problem of bacterial resis-
tance to existing antibiotics is to discover drugs that will block
pathogenic mechanisms rather than killing the infecting microbe.
These pathogenic mechanisms include secretion systems such as
the type III secretion system (T3SS) that deliver a variety of patho-
gen proteins using multicomponent oligomeric structures.
Although many of the secreted virulence proteins are species-spe-
cific, the secretion systems are more conserved across species,
indicating that disruption of such secretion systems is potentially
a broad-spectrum therapeutic strategy. Because the T3SS is not re-
quired for bacterial growth per se, this strategy might spare com-
mensals and limit bacterial resistance. In contrast, antibiotics
that inhibit microbial growth exert a strong selection pressure
for resistance.1 In recent years the T3SS machinery has become
an aggregate target for drug discovery.2–4

Previously our group identified a tris-aryl substituted 2-imino-
5-arylidenethiazolidin-4-one, compound 1, as a broad spectrum
inhibitor of Gram-negative bacterial secretion systems (Fig. 1).5

Expansion of this chemotype enabled us to define the functional
groups that could or could not be manipulated to synthetically
evolve potent new analogs. Modifications at the heterocycle amido
nitrogen were not only tolerated but gave rise to a series of novel
dipeptide-modified congeners, for example 2 and 3, that showed
enhanced potency and physiochemical properties.5,6 We consid-
All rights reserved.

).
ered the functional architecture of the T3SS and speculated that
these compounds might be fragments occupying only one of two
inter-monomer binding sites. Prompted by this hypothesis we syn-
thesized a bis-thiazolidinone dimer, 4.

We analyzed dimer 4 for inhibition of the T3SS in S. typhimuri-
um by monitoring secretion of a predominant substrate, SipA, into
culture supernatants. Supernatant proteins were TCA precipitated,
separated by SDS–PAGE and Western blotted with anti-SipA anti-
body. Evaluation of 4 showed a substantial increase in potency
over 1, with IC50 values of 5 lM versus 83 lM, respectively, but
the poor solubility of 4 precluded further biological characteriza-
tion of this compound. The significant decrease in the IC50

prompted us to prepare a panel of dimers, with the goal of improv-
ing the solubility of this compound and exploring the optimal in-
ter-thiazolidinone distance and juxtaposition. For this panel,
tethers were constructed that varied in length, flexibility, charge,
and pendent functional groups, providing divergent presentations
of the terminal thiazolidinones (Fig. 2). The linear analogs 5 and
6 expand and contract overall thiazolidinone-to-thiazolidinone
distance and give different placements of the amide function. In
contrast to the flexible amides, the para, meta, and ortho diamid-
ophenyl central cores rigidly enforce three distinct shapes (7–9).
Insertion of a proline (10) introduces two possible kinks in the
tether depending on the populations of cis and trans conforma-
tions. The five analogs that are cationic at physiological pH (11–
15) can be divided into the embedded and pendent classes. Mono-
amine 11 is highly flexible, whereas guanidine 12 will be some-
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Figure 1. The original HTS hit thiazolidinone 1, two potent N-3 dipeptide analogs 2 and 3, and the dimer 4.
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Figure 2. Dimeric analogs 5–15 use the tether to introduce spatial and functional group properties.
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what more rigid, and piperazine 13 is likely to assume the shape
determined by a di-equatorial chair conformation. The linker in
compound 14 is flexible and projects the cationic function away
from the axis of the dimer. Dipeptide 15 incorporates the beneficial
sequence of the potent mono-thiazolidinone 25,6 into the motif of
4.

The syntheses of the dimers followed either a general end-to-
end7 (Scheme 1) or a center-to-outside 8 (Scheme 2) strategy. In
all the analogs, the substituted thiazolidinone ring was assembled
by the method of Klika.9
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The analogs presenting pendent amino acids, 14 and 15, were
prepared by essentially linear routes (Scheme 3).

We evaluated these dimeric thiazolidinones for inhibition of
the T3SS in S. typhimurium by again analyzing secretion of the
SipA protein into culture supernatants. All of the dimeric com-
pounds, with the exception of 7, which was too insoluble to eval-
uate, were comparable to or slightly more potent than the original
hit compound 1 (Table 1). These data suggest that these com-
pounds may bind as 4-substituted thiazolidinone monomers, with
the additional ring and intervening tether being innocuous but
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a carboxylic acid that reacts with the complementary function to form the dimer.
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Table 1
Inhibition of SipA secretion by the dimeric analogs of 1

Compound IC50 (lM)

1 83
4 5
5 17
6 48
7 n.d.
8 80
9 22
10 55
11 65
12 47
13 44
14 48
15 49
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not overwhelmingly beneficial. Amide 4 is more potent than the
corresponding amine 11 or guanidine 12. This may indicate a role
for the carbonyl in a critical hydrogen bond and/or result from a
deleterious effect of cationic charge along the tether. The greater
potency of 5 compared with 6 would argue against the carbonyl’s
position as a critical feature. Indeed, it is the longest linear amide
5 and the most rigidly kinked ortho diaminobenzene amide 9, two
uncharged analogs, that distinguish themselves among the new
compounds by having potency significantly greater than 1. Over-
all, compound 4 remains the most potent of the dimers, and may
represent an optimum of shape, flexibility, and carbonyl place-
ment for the cognate binding site. Alternative binding sites along
the inter-protein interface are also possible and would be in
agreement with the lack of a single comprehensive structure–
activity trend among the dimers. The specific contribution of each
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individual thiazolidinone ring to the activity of the dimer remains
undetermined, and we have no evidence that these rings are act-
ing in tandem. While a definitive identification of the thiazolidi-
none binding site(s) will be best determined by structural
biology, our results are consistent with these compounds inhibit-
ing protein–protein interactions along a large oligomeric interface.
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