Studies Directed Towards the Total Synthesis of (-)-Dictyostatin

Jhillu S. Yadav*^[a] and Vemula Rajender^[a]

Keywords: Aldol reactions / Natural products / Cross coupling / Stereoselective synthesis

The stereoselective synthesis of the three major fragments (C1–C9, C10–C17, and C19–C26) of an antimitotic marine macrolide, (–)-dictyostatin, has been achieved with a desymmetrization strategy and Oppolzer *syn* and *anti* aldol proto-

Introduction

Scarce, biologically potent marine macrolides with intricate structural features are always attractive synthetic targets to organic chemists. Natural products of marine origin are generally obtained in minute quantities that are insufficient for detailed biological activity studies.^[1] For instance, dictvostatin, a polyketide antimitotic marine macrolide, was first isolated in 1994 by Pettit et al.^[2] from the marine sponge Spongia sp. off the coast of Maldives and later by Wright and co-workers^[3] from Corralistidae sponges. Although it was isolated in 1994, due to its low availability, its complete stereochemical structure was not known for a further decade. In 2004, Paterson and Wright and coworkers proposed structure 1 for dictvostatin (Figure 1) on the basis of extensive high-field NMR experiments, Murata J-based configuration analysis, and molecular modeling,^[4] and it was finally confirmed by total synthesis.^[5] The 22membered macrolide is an efficient inhibitor of human cancer cell growth at low concentrations with the same mode of action as taxol, which promotes tubulin polymerization and prevents mitosis from proceeding beyond the G2/M phase of the cell cycle.^[3]

Interesting structural features combined with the important biological activity of dictyostatin has attracted several research groups to attempt its total synthesis,^[6] as well as the synthesis of its analogues^[7] and crucial intermediates.^[8] Herein, we report our efforts, en route to (–)-dictyostatin (1), at a highly stereoselective synthesis of the key intermediates (C1–C9, C10–C17, and C19–C26) of 1 (Scheme 1), comprising nine of its eleven stereocentres and including a *cis*-1,2-disubstituted olefin, a 2*Z*,4*E*-dienoate, and a terminal *Z*-diene core.

Scheme 1. Retrosynthetic analysis of 1.

Results and Discussion

As depicted in Scheme 2, the construction of the C10– C17 segment was initiated with the preparation of xanthate **6** from bicyclic alcohol $5^{[9]}$ using NaH, CS₂, and MeI at 0 °C (96%) followed by exposure of xanthate **6** to Barton– McCombie^[10] conditions (Bu₃SnH, cat. AIBN in benzene) to afford the deoxygenated symmetric volatile bicyclic olefin 7 (87%). The bicyclic olefin **7** was subjected to the key de-

Figure 1. Structure of (–)-dictyostatin (1).

2148

symmetrization reaction using the chiral hydroboration reaction of Brown et al.^[11] [(+)-Ipc₂BH, THF, 0 °C, NaOH, H_2O_2 to afford the required alcohol 8 with good enantioand regioselectivity (90% yield). Alcohol 8 was oxidized with $PCC^{[12]}$ to furnish the corresponding ketone 9 (90%). The ketone 9 was further oxidized to yield lactone 10 (92%)under Bayer-Villiger conditions^[13] (m-CPBA, NaHCO₃, CH₂Cl₂). The so-formed bicyclic lactone was then subjected to enolization using LDA in THF at -78 °C followed by treatment with MeI to furnish the methylated lactone 11 as a single diastereomer (87%). The alkylation was totally stereocontrolled by the substrate and occurs only from the exo face. Reductive ring-opening of the lactone 11 using excess LiAlH₄ resulted in the triol 12 (89%), the key intermediate in our desymmetrization strategy with four chiral centers. The 1,3-diol functionality in triol 12 was protected as the benzylidene acetal using benzaldehyde dimethyl acetal and catalytic CSA in CH₂Cl₂ at 0 °C to afford 13 (95%) and the free hydroxy group was silvlated with TBDPS-Cl to furnish the fully protected triol 14. Subsequent regioselective reductive ring-opening of the benzylidene acetal using DIBAL-H^[14] at -15 °C in CH₂Cl₂ led to alcohol 15 (92%). Oxidation of the alcohol with Dess-Martin periodinane^[15] in the presence of NaHCO₃ at 0 °C produced aldehyde 16 without any epimerization. The key intermediate Z-vinyl iodide 2 was obtained from aldehyde 16 using Stork's protocol.[16]

Scheme 2. Synthesis of the C10–C17 segment 2.

The construction of the C1–C9 fragment (Scheme 3) was initiated with the installation of *anti* centers in **3** by employing the Oppolzer *anti* aldol protocol.^[17] Thus, treatment of *N*-propionylsultam **17** with TiCl₄ (1 equiv.) and

(98%). Oxidation of the hydroxy group in the dienoate with Dess-Martin periodinane led to the construction of the C1-C9 fragment (3) in 95% yield. The ¹H and ¹³C NMR data of aldehyde 3 were identical to the reported data.^[6b] TiCl₄ (3 equiv.) DIPEA (2.2 equiv.) 78 °C, CH₂CI 2,6-lutidine, - 78 °C OPMB TBDMSOTf. 91% OHC 18 (3 equiv.) 19 77% OTBS NaBH₄, LiCl, 0 °C Dess-Martin periodinane OPMB OPMB ethanol ether 94% NaHCO₂, 0 °C, 95% CrCl₂, CHI₃ Pd(PPh₃)₄, NEt₃, THF PMBC CHO THF, 0 °C, 85% OTBS OTBS COaEt 22 23 90% PMBO DDQ. 0 °C но OTBS CO₂Et CH₂Cl₂:H₂O OTBS CO₂Et 24 95% 25 CO₂Et ÇO₂Ef Pd-CaCO₃ Dess-Martin peridinane isoquinoline OTBS NaHCO₂.95% **OTBS** EtOAc, 98% 26 3

DIPEA (1.2 equiv.) at -78 °C followed by the addition of

aldehyde 18 in CH₂Cl₂ produced the anti product along

with the syn isomer in minor quantities. These two isomers

were readily separated by column chromatography on silica

gel and yielded anti aldol compound 19 (9:1 anti/syn; 77%).

The hydroxy group of **19** was silvlated using TBDMSOTf^[18]

and 2,6-lutidine to give 20 (91%). The reductive cleavage of

the chiral auxiliary was achieved with LiBH₄ (generated in

situ) in diethyl ether to yield alcohol 21 (94%). This alcohol

was oxidized with Dess–Martin periodinane to give aldehyde **22** (95%). Takai olefination^[19] of aldehyde **22** provided

E-vinyl iodide 23 (E/Z = 20:1, 85% yield). The *E*-vinyl io-

dide 23 was then subjected to Pd-mediated cross-coupling

under Sonogashira reaction conditions^[20] using [Pd-(PPh₃)₄], catalytic CuI, and NEt₃ followed by ethyl pro-</sup>

piolate to furnish 24 in 90% yield. The oxidative removal of the PMB ether with DDQ in CH_2Cl_2/H_2O (19:1) gave

alcohol 25 (95%). The dienoate precursor 25 was treated

with the Lindlar catalyst (Pd-CaCO₃ poisoned with Pb) in

the presence of isoquinoline in benzene to give dienoate 26

Scheme 3. Synthesis of the C1–C9 segment 3.

As outlined in Scheme 4, the synthesis of the C19–C26 fragment was initiated with the Oppolzer *syn* aldol reaction^[17] between *N*-propionylsultam **17** and methacrolein using TiCl₄ (3 equiv.) and DIPEA (2.2 equiv.) at -78 °C to afford a diastereomeric mixture of *syn* and *anti* products. These two isomers were easily separated by column chromatography on silica gel to obtain the *syn* isomer **27** with good selectivity (95:5 *syn/anti*; 73%). Reductive removal of the chiral auxiliary using LiAlH₄ furnished diol **28** (94%). This diol was protected as its PMB acetal with anisaldehyde dimethyl acetal and catalytic CSA to give **29** in 93% yield.

FULL PAPER

Scheme 4. Synthesis of the C19-C26 segment 4.

At this juncture, the methyl center was installed by hydroboration of the unsymmetrical double bond in **29** with 9-BBN^[21] in THF at 0 °C to afford the 1,2-*anti* isomer **30** with 86% *de*. The alcohol **30** was oxidized using Dess–Martin periodinane to give aldehyde **31** and subsequently elaborated to the (*Z*)-vinyl iodide **32** using Stork's protocol. The diene precursor **32** was subjected to Stille cross-coupling^[22] with vinyltributyltin in the presence of [Pd(CH₃CN)₂Cl₂] in DMF at room temperature for 15 min to obtain the *Z*-diene **33** in 95% yield. Regioselective reductive ring-opening of the PMB acetal with DIBAL-H in CH₂Cl₂ at –15 °C furnished the alcohol **34** (91%). The primary alcohol of **34** was oxidized with Dess–Martin periodinane reagent to afford aldehyde **4**^[23] in 91% yield, thus, completing the synthesis of the C19–C26 segment of (–)-dictyostatin.

Conclusions

We have synthesized, en route to the total synthesis, three major segments of (-)-dictyostatin in a highly stereoselective manner. By using a desymmetrization approach and Oppolzer *syn* and *anti* aldol protocols, the requisite stereocenters were achieved. Takai olefination and Sonogashira and Stille cross-coupling reactions were used in the construction of the two diene systems. Attempts to couple these fragments en route to the total synthesis of (-)-dictyostatin are in progress.

Experimental Section

General: Unless otherwise mentioned, all reactions were carried out under an inert atmosphere of argon or nitrogen using standard syringe, septa, and cannula techniques. Commercial reagents were used without further purification. All solvents were purified by standard techniques. Infrared (IR) spectra were recorded with a Perkin–Elmer 683 spectrometer with NaCl optics. Spectra were calibrated against the polystyrene absorption at 1610 cm⁻¹. Samples were scanned neat, in KBr wafers or in chloroform as a thin film. Optical rotations were obtained with a Jasco DIP-360 digital polarimeter. NMR spectra were recorded in CDCl₃ with a Varian Gemini 200, Bruker 300, or Varian Unity 400 NMR spectrometer. Column chromatographic separations were carried out on silica gel (60–120 mesh). Mass spectra were obtained on a Finnigan MAT1020B or micromass VG 70-70H spectrometer operating at 70 eV using a direct inlet system.

O-(2,4-Dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-yl) S-Methyl Carbonodithioate (6): Alcohol 5^[9] (8 g, 51.9 mmol) in THF (20 mL) was added to a suspension of NaH (4.98 g, 103 mmol) in THF (20 mL) under nitrogen at 0 °C. The reaction mixture was heated at 60 °C for 30 min. After cooling the reaction mixture again to 0 °C, CS₂ (4.7 mL, 77.9 mmol) was added and the reaction mixture was stirred for 30 min. MeI (4.8 mL, 77.9 mmol) was added and the reaction mixture was stirred at room temperature for 6 h. After complete consumption of the starting material (confirmed by TLC), the reaction mixture was cooled to 0 °C and quenched with aqueous ammonium chloride solution, extracted with EtOAc $(3 \times 50 \text{ mL})$, dried with anhydrous Na₂SO₄, evaporated under reduced pressure, and purified by silica gel column chromatography using 5% EtOAc/hexane to furnish the xanthate 6 (12.09 g, 96%) as a colorless liquid. IR (KBr): $\tilde{v} = 2964, 2933, 2880, 1628, 1220,$ 1159, 1049, 935 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ = 6.4 (s, 2 H, 6-H, 7-H), 6.29 (t, J = 4.9 Hz, 1 H, 3-H), 4.48 (d, J = 3.0 Hz, 2 H, 1-H, 5-H), 2.54 (s, 3 H, SMe), 2.50-2.42 (m, 2 H, 2-H, 4-H), 0.84 (d, J = 7.3 Hz, 6 H, 2 Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 217.0, 133.7 (2 C), 82.5, 81.5 (2 C), 37.3 (2 C), 18.7, 12.1 (2 C) ppm.

2,4-Dimethyl-8-oxabicyclo[3.2.1]oct-6-ene (7): (Bu)₃SnH (14.9 mL, 56.5 mmol) followed by a catalytic amount of AIBN were added to a stirred solution of xanthate **6** (11.5 g, 47.1 mmol) in benzene (20 mL) and the reaction mixture was heated at reflux in the presence of the light of an incandescent lamp for 6 h. The residue was purified on a silica gel column using 5% EtOAc in hexane as eluent. The column fractions were distilled to remove the solvent and finally the compound was distilled at atmospheric pressure by maintaining the receiver at -78 °C to obtain the olefin **7** as a light-yellow oil (5.85 g, 87%). IR (KBr): $\tilde{v} = 2955$, 2924, 2853, 1660, 1458, 1045, 940 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 6.16$ (s, 2 H, 6-H, 7-H), 4.46 (d, J = 3.3 Hz, 2 H, 1-H, 5-H), 1.91–1.79 (m, 2 H, 2-H, 4-H), 1.60–1.52 (m, 1 H, 3-H), 0.91 (m, 1 H, 3'-H), 0.71 (d, J = 7.1 Hz, 6 H, 2 Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 130.2$ (2 C), 82.9 (2 C), 34.2, 30.3 (2 C), 17.2 (2 C) ppm.

(6R)-2,4-Dimethyl-8-oxabicyclo[3.2.1]octan-6-ol (8): Olefin 7 (5.5 g, 39.8 mmol) predissolved in THF (10 mL) was added to the white crystals of (+)-Ipc₂BH [generated in situ from (-)-α-pinene] in THF (3 mL) at -20 °C. The reaction was stirred at the same temperature for 1 h and kept in the refrigerator for 5 d at -20 °C. After this, the trialkylborane was treated with 3 N sodium hydroxide (50 mL) and 30% hydrogen peroxide (12.5 mL) and stirred at 25 °C for 5 h. The reaction mixture was extracted with diethyl ether $(3 \times 50 \text{ mL})$, dried (Na₂SO₄), and evaporated. The residue was purified by silica gel chromatography (hexane/ethyl acetate, 9:1, used as eluent) to remove the olefin and $(-)-\alpha$ -pinene alcohol and then eluted with hexane/ethyl acetate (1:1) mixture to give the alcohol as a colorless liquid (5.58 g, 90%). $[a]_D^{25} = +4.3 \ (c = 2.0, \text{CHCl}_3)$. IR (KBr): $\tilde{v} =$ 3408, 2950, 2877, 1458, 1046 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 4.21 (m, 2 H, 1-H, 5-H), 3.85 (d, J = 3.39 Hz, 1 H, 6-H), 2.67 (br., 1 H, OH), 2.16 (m, 1 H, 7-H), 1.89-1.77 (m, 2 H, 2-H, 4-H), 1.71-1.63 (m, 1 H, 7'-H), 1.59-1.51 (m, 1 H, 3-H), 0.88 (d, J =6.9 Hz, 3 H, 4-Me), 0.72 (d, J = 6.9 Hz, 3 H, 2-Me), 0.63–0.51 (m, 1 H, 3'-H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 87.3, 79.8, 71.4, 36.6, 34, 33.5, 32.7, 17.2, 17.0 ppm. MS (EI): m/z = 157.1 [M +

H]⁺. HRMS: calcd. for $C_9H_{17}O_2$ [M + H]⁺ 157.1228; found 157.1224.

2.4-Dimethyl-8-oxabicyclo[3.2.1]octan-6-one (9): Pyridinium chlorochromate (PCC; 10.38 g, 48.0 mmol) was added to a solution of alcohol 8 (5 g, 32.0 mmol) in dichloromethane (50 mL) at room temperature. After stirring the reaction mixture for 3 h, 2-propanol (10 mL) was added and the solvent was removed under reduced pressure, the residue was filtered and washed with diethyl ether. The organic layer was washed with 1 N HCl (20 mL), water, and brine, dried (Na₂SO₄) and removal of solvent afforded a gummy material, which was purified by silica gel column chromatography using 20% EtOAc/hexane as eluent to afford the ketone 9 (4.43 g, 90% yield) as a light-yellow liquid. $[a]_{D}^{25} = -17.1$ (c = 1.5, CHCl₃). IR (KBr): $\tilde{v} = 2955$, 2860, 1756, 1155, 1040 cm 4.41 (dd, J = 7.5, 3.0 Hz, 1 H, 5-H), 3.65 (d, J = 3.7 Hz, 1 H, 1-H), 2.45 (dd, J = 18.1, 8.3 Hz, 1 H, 7-H), 2.20 (m, 1 H, 4-H), 2.16 (d, J = 18.1 Hz, 1 H, 7'-H), 1.97 (m, 1 H, 2-H), 1.72 (m, 1 H, 3-H), 1.42 (m, 1 H, 3'-H), 0.90 (d, J = 6.7 Hz, 3 H, 4-Me), 0.83 (d, J = 6.7 Hz, 3 H, 2-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 215.1, 80.1, 78.2, 37.5, 34.2, 33.4, 33.1, 17, 15.4 ppm. MS (EI): m/z = 155.1 [M + H]⁺. HRMS: calcd. for $C_9H_{15}O_2$ [M + H]⁺ 155.1047; found 155.1063.

6.8-Dimethyl-2.9-dioxabicyclo[3.3.1]nonan-3-one (10): Ketone 9 (3.5 g, 22.7 mmol) in CH₂Cl₂ (15 mL) was added to a suspension of NaHCO₃ (3.8 g, 45.4 mmol) in CH₂Cl₂ (20 mL) followed by m-CPBA (7.8 g, 45.4 mmol) and the mixture was stirred at ambient temperature for 10 h. The reaction mixture was diluted with dichloromethane (25 mL) and the CH2Cl2 layer was washed with a solution of sodium metabisulfite followed by a 5% NaHCO₃ solution and water, extracted with CH_2Cl_2 (2×30 mL), dried with Na_2SO_4 , concentrated under reduced pressure, and the residue purified by silica gel column chromatography using hexane/ethyl acetate (8:2) as eluent to afford the lactone 10 (3.55 g, 92%) as an oil. $[a]_{\rm D}^{25}$ = +49.8 (c = 1.1, CHCl₃). IR (KBr): $\tilde{v} = 2962$, 1743, 1226, 1190, 1121, 968 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 5.48 (d, J = 2.2 Hz, 1 H, 1-H), 4.11 (dd, J = 7.7, 4.3 Hz, 1 H, 5-H), 2.83 (dd, J = 18.3, 7.8 Hz, 1 H, 4-H), 2.54 (d, J = 18.3 Hz, 1 H, 4'-H), 2.15 (m, 1 H, 8-H), 1.98 (m, 1 H, 6-H), 1.63 (m, 1 H, 7-H), 1.14 (m, 1 H, 7'-H), 0.98 (d, J = 6.9 Hz, 3 H, 8-Me), 0.90 (d, J = 6.9 Hz, 3 H, 6-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 167.0, 100.5, 70.7, 35.3, 32.6, 29.4, 28.5, 16.6, 5.7 ppm. MS (EI): m/z = 171.1 [M + H_{1}^{+} . HRMS: calcd. for $C_{9}H_{15}O_{3}$ [M + H]⁺ 171.1021; found 171.1016.

(4R)-4,6,8-Trimethyl-2,9-dioxabicyclo[3.3.1]nonan-3-one (11): LDA [905 mg, 8.3 mmol, generated in situ from nBuLi (5.2 mL) and diisopropylamine (1.75 mL)] was added to a solution of lactone 10 (0.95 g, 5.5 mmol) in THF (15 mL) at -78 °C. The lithium enolate thus generated was alkylated with methyl iodide (0.53 mL, 8.37 mmol) whilst stirring the reaction mixture for 2 h at the same temperature. Then the reaction mixture was quenched with a saturated ammonium chloride solution. The mixture was extracted with diethyl ether $(3 \times 15 \text{ mL})$ and removal of the solvent gave the methylated lactone. Purification by silica gel column chromatography using 15% EtOAc/hexane as eluent afforded compound 11 (0.9 g, 87%) as a colorless oil. $[a]_D^{25} = +35.5$ (c = 2.6, CHCl₃). IR (KBr): \tilde{v} = 2963, 2928, 1736, 1459, 1227, 1180, 1138, 965 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 5.43 (d, J = 2.3 Hz, 1 H, 1-H), 3.69 (d, J = 4.68 Hz, 1 H, 5-H), 2.54 (q, J = 7.03 Hz, 1 H, 4-H), 2.11 (m, 1 H, 8-H), 1.97 (m, 1 H, 6-H), 1.64 (m, 1 H, 7-H), 1.47 (d, J =7.8 Hz, 3 H, 4'-Me), 1.10 (m, 1 H, 7'-H), 1.0 (d, J = 7.03 Hz, 3 H, 8-Me), 0.90 (d, J = 7.03 Hz, 3 H, 6-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 171.6, 101.1, 77.8, 35.7, 33.9, 33, 30.1, 19.6, 16.7,$ 16.1 ppm. MS (EI): $m/z = 185.1 [M + H]^+$. HRMS: calcd. for $C_{10}H_{17}O_3 [M + H]^+$ 185.1177; found 185.1180.

(2S,3R,4S,6R)-2,4,6-Trimethylheptane-1,3,7-triol (12): A solution of lactone 11 (0.85 g, 4.61 mmol) in THF (15 mL) was added to an ice-cooled suspension of LiAlH₄ (0.526 g, 13.8 mmol) in THF (10 mL) under nitrogen and the reaction mixture was stirred for 5 h at room temperature. It was then cooled to 0 °C and quenched with a saturated solution of Na₂SO₄ by portionwise addition and stirred at room temperature for 4 h. The white precipitate was filtered off through a pad of Celite, washed with ethyl acetate, dried with Na₂SO₄, concentrated, and purified by chromatography on silica gel (1:1 EtOAc/hexane) to afford the triol 12 (0.776 g, 89%) as a viscous colorless liquid. $[a]_D^{25} = +29.6$ (c = 2.05, CHCl₃). IR (KBr): $\tilde{v} = 3339$, 2961, 2923, 1722, 1461, 1278, 1027, 981 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 3.74–3.60 (m, 2 H, 1-H), 3.50 (m, 2 H, 7-H), 3.40 (dd, J = 10.1, 6.9 Hz, 1 H, 3-H), 1.88 (m, 1 H, 2-H), 1.75 (m, 2 H, 4-H, 6-H), 1.67-1.58 (m, 1 H, 5-H), 1.03-0.94 (m, 1 H, 5'-H), 0.89 (m, 6 H, 2'-Me, 4'-Me), 0.80 (d, J = 6.7 Hz, 3 H, 6'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 76.7, 68.3, 68.2, 37.1, 37, 32.3, 31.9, 16.8, 13.5, 13.4 ppm. MS (EI): *m*/*z* = 191.1 [M + H]⁺. HRMS: calcd. for $C_{10}H_{23}O_3$ [M + H]⁺ 191.1647; found 191.1648.

(2R,4S)-2-Methyl-4-[(5S)-5-methyl-2-phenyl-1,3-dioxan-4-yl]pentan-1-ol (13): Benzaldehyde dimethyl acetal (0.148 mL, 0.98 mmol) and a catalytic amount of azeotropically dried CSA were added to a stirred solution of triol 12 (125 mg, 0.65 mmol) in CH₂Cl₂ (5 mL) at 0 °C. The reactionmixture was stirred at room temperature for 5 h. After the starting material was completely consumed (monitored by TLC), the reaction was quenched with aqueous NaHCO₃ and extracted with CH_2Cl_2 (3×10 mL). The organic layer was dried with anhydrous Na₂SO₄, evaporated, and purified on silica gel (5% EtOAc/hexane) to furnish the protected diol 13 (172 mg, 95%) as a colorless liquid. $[a]_{D}^{25} = +8.2$ (c = 0.65, CHCl₃). IR (KBr): $\tilde{v} = 3419, 3035, 2961, 2927, 2874, 1718, 1458, 1157, 1070,$ 752, 699 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.48 (m, 2 H, Ph-H), 7.35 (m, 3 H, Ph-H), 5.47 (s, 1 H, Ph-CH), 4.11 (dd, *J* = 11.1, 4.7 Hz, 1 H, 3-H), 3.53 (m, 2 H, 1-H), 3.42 (m, 2 H, 7-H), 2.13-2.02 (m, 1 H, 2-H), 1.96-1.86 (m, 1 H, 4-H), 1.81-1.70 (m, 1 H, 6-H), 1.68-1.59 (m, 1 H, 5-H), 1.55 (br., 1 H, OH), 1.17-1.07 (m, 1 H, 5'-H), 1.00 (d, J = 6.7 Hz, 3 H, 2'-Me), 0.97 (d, J = 6.7 Hz, 3 H, 4'-Me), 0.77 (d, J = 6.7 Hz, 3 H, 6'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 138.9$, 128.5, 128, 126.1, 101.1, 84.2, 73.2, 68.4, 37, 32.9, 30.7, 30.6, 17.2, 14.2, 12.1 ppm. MS (EI): m/z = 301.0 [M + Na]⁺. HRMS: calcd. for $C_{17}H_{26}O_3Na [M + Na]^+$ 301.1774; found 301.1762.

tert-Butyl{(2R,4S)-2-methyl-4-[(5S)-5-methyl-2-phenyl-1,3-dioxan-4-yl|pentyloxy}diphenylsilane (14): Imidazole (88 mg, 1.2 mmol) followed by TBDPS-Cl (0.168 mL, 0.64 mmol) were added to a stirred solution of alcohol 13 (120 mg, 0.4 mmol) in CH₂Cl₂ at 0 °C. The reaction mixture was stirred at room temperature for 30 min. The reaction was quenched with aqueous NaHCO₃ and extracted with CH_2Cl_2 (3×15 mL), dried with Na₂SO₄, evaporated, and purified on silica gel (5% EtOAc/hexane) to furnish the silyl ether 14 (214 mg, 97%) as an oily colorless liquid. $[a]_{D}^{25} = +20.7$ (c = 1.0, CHCl₃). IR (KBr): $\tilde{v} = 2927, 2856, 2359, 1648, 1546, 1398, 1108,$ 1024, 755 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.65 (m, 4 H, Ph-H), 7.46-7.30 (m, 11 H, Ph-H), 5.41 (s, 1 H, Ph-CH), 4.10 (dd, J = 11.1, 4.7 Hz, 1 H, 3-H), 3.48 (m, 3 H, 1-H, 7-H), 3.32 (dd, J = 1.8, 10.0 Hz, 1 H, 7-H), 2.08 (m, 1 H, 2-H), 1.81 (m, 2 H, 4-H, 6-H), 1.64 (m, 1 H, 5-H), 1.10 (m, 1 H, 5'-H), 1.03 (s, 9 H, SiMe₃), 0.94 (m, 6 H, 2'-Me, 4'-Me), 0.71 (d, J = 6.6 Hz, 3 H, 6'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 139.0, 135.5, 134.0, 129.4, 128.4,

FULL PAPER

128.0, 127.5, 126.0, 100.9, 84.6, 73.2, 69.0, 37.1, 33.0, 30.6, 30.6, 26.8, 19.2, 17.4, 13.8, 12.0 ppm. MS (EI): $m/z = 539.0 \text{ [M + Na]}^+$. HRMS: calcd. for $C_{33}H_{45}O_3Si \text{ [M + H]}^+$ 517.3132; found 517.3136.

(2S,4S,6R)-3-(Benzyloxy)-7-(tert-butyldiphenylsilyloxy)-2,4,6-trimethylheptan-1-ol (15): DIBAL-H (0.866 mL, 1.22 mmol, 20% of DIBAL-H in toluene) was slowly added to a solution of compound 14 (210 mg, 0.407 mmol) in CH₂Cl₂ at -15 °C and the reaction mixture was stirred at the same temperature while monitoring the progress of reaction by TLC. After consumption of all the starting material, the reaction mixture was quenched with a saturated aqueous potassium sodium tartrate solution and stirred at room temperature for 1 h. The reaction mixture was extracted with CH₂Cl₂ $(3 \times 15 \text{ mL})$, concentrated under reduced pressure, and purified by silica gel column chromatography to afford alcohol 15 (194 mg, 92%) as a colorless liquid. $[a]_D^{25} = -6.5$ (c = 2.5, CHCl₃). IR (KBr): \tilde{v} = 3443, 2917, 2849, 1215, 1110, 757 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.65 (m, 4 H, Ph-H), 7.38 (m, 6 H, Ph-H), 7.29 (m, 5 H, Ph-H), 4.59 (d, J = 10.9 Hz, 1 H, Ph-CH), 4.53 (d, J = 10.9 Hz, 1 H, Ph-CH), 3.61 (d, J = 5.0 Hz, 2 H, 1-H), 3.47 (m, 2 H, 7-H), 3.23 (dd, J = 8.1, 2.8 Hz, 1 H, 3-H), 1.90 (m, 1 H, 2-H), 1.80 (m, 2 H, 4-H, 6-H), 1.62 (m, 1 H, 5-H), 1.02–1.06 (m, 10 H, SiMe₃, 5'-H), 0.97 (d, J = 6.6 Hz, 3 H, 2'-Me), 0.95 (d, J = 6.7 Hz, 3 H, 4'-Me), 0.89 (d, J = 6.9 Hz, 3 H, 6'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 138.2, 135.58, 135.55, 133.8, 129.5, 128.3, 127.6, 127.5, 87.7, 75.1, 68.7, 66.7, 38.4, 37.8, 33.3, 33.2, 26.8, 19.2, 17.8, 15.3, 14.8 ppm. MS (EI): $m/z = 541.0 [M + Na]^+$. HRMS: calcd. for C₃₃H₄₆O₃SiNa [M + Na]⁺ 541.3108; found 541.3110.

(2R,4S,6R)-3-(Benzyloxy)-7-(tert-butyldiphenylsilyloxy)-2,4,6-trimethylheptanal (16): A solution of alcohol 15 (100 mg, 0.19 mmol) in CH₂Cl₂ (3 mL) was added to a suspension of Dess-Martin periodinane (122 mg, 0.28 mmol) and NaHCO₃ (32 mg, 0.38 mmol) in CH2Cl2 (3 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. Afterwards, the reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with a saturated aqueous NaHCO₃ solution (3×10 mL). The combined organic layers were dried with Na₂SO₄, evaporated in vacuo, and purified by column chromatography over silica gel (10% EtOAc/hexane) to afford aldehyde 16 (91 mg, 92%) as a slightly yellow oil. $[a]_{D}^{25} = -14.8$ (c = 0.55, CHCl₃). IR (KBr): $\tilde{v} = 2927$, 2856, 2364, 1708, 1462, 1108, 701 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 9.77 (d, J = 2.2 Hz, 1 H, CHO), 7.66–7.63 (m, 5 H, Ph-H), 7.42–7.35 (m, 5 H, Ph-H), 7.29–7.22 (m, 5 H, Ph-H), 4.55–4.43 (ABq, J = 11.3 Hz, 2 H, Ph- CH_2), 3.52–3.41 (m, 3 H, 3-H, 7-H), 2.68 (ddg, J = 6.7, 2.2, 1.8 Hz, 1 H, 2-H), 1.84–1.72 (m, 1 H, 4-H), 1.63–1.54 (m, 2 H, 5-H, 6-H), 1.30 (m, 1 H, 5'-H), 1.04-1.0 (m, 12 H, SiMe₃, 2'-Me), 0.96-0.92 (m, 6 H, 4'-Me, 6'-Me) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 204.7, 135.5, 135.4, 133.7, 129.4, 128.2, 127.52, 127.5, 127.4, 83.8, 74.2, 68.5, 49.2, 37.8, 33.3, 33.0, 26.9, 19.3, 18.0, 14.8, 11.8 ppm. MS (EI): $m/z = 539.1 \text{ [M + Na]}^+$. HRMS: calcd. for C₃₃H₄₈O₃NSi $[M + NH_4]^+$ 534.3398; found 534.3398.

(2*R*,4*S*,5*R*,6*S*,*Z*)-5-(Benzyloxy)-8-iodo-2,4,6-trimethyloct-7-enyloxy)*tert*-butyldiphenylsilane (2): A suspension of (iodomethyl)triphenylphosphonium iodide (205 mg, 0.38 mmol) in THF (10 mL) was treated with NaHMDS (1 M in THF, 0.310 mL, 0.31 mmol) and the resulting solution was stirred for 20 min at room temperature. The resulting dark-red solution was cooled to -78 °C and HMPA (0.04 mL, 0.23 mmol) was added followed by aldehyde 16 (80 mg, 0.15 mmol) in THF (10 mL) at -78 °C. The reaction mixture was stirred for an additional 1 h at the same temperature. Then it was diluted with hexane (10 mL), filtered through Celite, concentrated in vacuo, and purified on silica gel (5% EtOAc/hexane) to afford vinyl iodide 2 (75 mg, 76%) as a colorless liquid. $[a]_{25}^{25} = +5.4$ (*c* = 0.6, CHCl₃). IR (KBr): $\bar{\nu}$ = 3067, 2926, 1645, 1259, 1107, 1075, 700 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.67–7.64 (m, 5 H, Ph-H), 7.41–7.35 (m, 5 H, Ph-H), 7.30–7.23 (m, 5 H, Ph-H), 6.25 (dd, *J* = 8.8, 7.3 Hz, 1 H, 7-H), 6.06 (d, *J* = 7.3 Hz, 1 H, 8-H), 4.52 (s, 2 H, Ph-CH₂), 3.53 (dd, *J* = 9.8, 4.9 Hz, 1 H, 1-H), 3.35 (dd, *J* = 9.8, 7.3 Hz, 1 H, 1'-H), 3.12 (t, *J* = 4.7 Hz, 1 H, 5-H), 2.84–2.72 (m, 1 H, 6-H), 1.81–1.62 (m, 2 H, 2-H, 4-H), 1.48–1.39 (ddd, *J* = 13.2, 7.5, 5.0 Hz, 1 H, 3-H), 1.28 (m, 1 H, 3'-H), 1.04 (s, 9 H, SiMe₃), 1.01 (d, *J* = 6.7 Hz, 3 H, 6'-Me), 0.98 (d, *J* = 6.6 Hz, 3 H, 4'-Me), 0.92 (d, *J* = 6.7 Hz, 3 H, 2'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 143.7, 135.6, 129.4, 128.1, 127.5, 127.4, 127.2, 86.4, 81.5, 74.4, 68.8, 42.5, 37.8, 33.9, 33.3, 29.6, 26.8, 18.3, 17.3, 15.8 ppm. MS (EI): *m/z* = 663.0 [M + Na]⁺. HRMS: calcd. for C₃₄H₄₉INO₂Si [M + NH₄]⁺ 658.2572; found 658.2578.

N-[(2S,3S)-3-Hydroxy-5-(4-methoxybenzyloxy)-2-methylpentanoyl]bornane-10,2-sultam (19): Titanium tetrachloride (1.5 mL, 13.8 mmol) was added dropwise to a 0.2 M solution of (R)-N-propionylbornane-10,2-sultam^[18] (17; 1.25 g, 4.6 mmol) in CH₂Cl₂ at -78 °C under nitrogen. Diisopropylethylamine (1.75 mL, 10.1 mmol) was added very slowly to the resulting yellow slurry to give a deep-red solution, which was stirred at -78 °C. After 1.5 h, aldehyde 18 (2.6 g, 13.8 mmol) was added slowly over a period of 15 min and the mixture was stirred at -78 °C for an additional 1.5 h. The reaction was quenched with aqueous NH₄Cl and the mixture was warmed to ambient temperature. The reaction mixture was diluted with water and extracted with CH_2Cl_2 (3 × 50 mL), dried with anhydrous Na₂SO₄, evaporated under reduced pressure, and purified on silica gel using 20% EtOAc/hexane as eluent to furnish the anti aldol product 19 (2.94 g, 77%) as a colorless oil. $[a]_{D}^{25} = -20.9$ (c = 2.3, CHCl₃). IR (KBr): $\tilde{v} = 3485$, 2929, 2362, 1692, 1513, 1459, 1329, 1245, 1129 cm⁻¹. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.26$ (d, J = 8.7 Hz, 2 H, Ph-H), 6.87 (d, J = 8.7 Hz, 2 H, Ph-H), 4.44 (dd, J = 16.3, 11.3 Hz, 2 H, Ph-CH₂), 3.90 (m, 2 H, 2-H, HC-N), 3.80 (s, 3 H, Ph-OMe), 3.72-3.58 (m, 2 H, 5-H), 3.50 (ABq, J = 13.7 Hz, 2 H, CH₂-SO₂), 3.22 (m, 1 H, 3-H), 3.09(d, J = 7.1 Hz, 1 H, OH), 2.17-2.02 (m, 2 H, 4-H), 1.97-1.84 (m,)4 H), 1.43-1.25 (m, 3 H), 1.17 (m, 6 H, 2 Me), 0.96 (s, 3 H, Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 175.1, 159.1, 130.0, 129.3, 113.7, 74.1, 72.9, 67.6, 65.3, 55.2, 53.1, 48.2, 47.6, 45.3, 44.6, 38.4, 34.0, 32.8, 26.4, 20.7, 19.8, 13.7 ppm. MS (EI): m/z = 488.0 $[M + Na]^+$. HRMS: calcd. for $C_{24}H_{35}O_6NSNa [M + Na]^+$ 488.2082; found 488.2079.

N-[(2S,3S)-3-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2-methylpentanovllbornane-10,2-sultam (20): 2,6-Lutidine (0.878 mL, 7.5 mmol) followed by TBS-OTf (1.3 mL, 5.6 mmol) were added to a solution of alcohol 19 (1.75 g, 8.7 mmol) in CH₂Cl₂ (30 mL) at -78 °C and the reaction mixture was stirred at -78 °C for 30 min. The reaction mixture was quenched with saturated NH₄Cl and extracted with CH₂Cl₂ (3×30 mL), dried with anhydrous Na₂SO₄, and evaporated under reduced pressure to yield a white solid, which on purification over silica gel (10% EtOAc/hexane) afforded the TBS-substituted product 20 (1.97 g, 91%) as a white crystalline solid. $[a]_{D}^{25} = -15.2$ (c = 1.0, CHCl₃). IR (KBr): \tilde{v} $= 2956, 2929, 1694, 1513, 1331, 1248, 1212, 1134, 1060 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 7.22 (d, J = 8.6 Hz, 2 H, Ph-H), 6.85 (d, J = 8.6 Hz, 2 H, Ph-H), 4.35 (s, 2 H, Ph-CH₂), 4.30 (m, 1 H, 3-H), 3.86 (t, J = 5.5 Hz, 1 H, HC-N), 3.78 (s, 3 H, Ph-OMe), 3.48 (m, 2 H, H₂C-SO₂), 3.43 (d, J = 6.2 Hz, 2 H, 5-H), 3.34 (m, 1 H, 2-H), 1.96–1.76 (m, 4 H), 1.63 (m, 2 H, 4-H), 1.41–1.24 (m, 3 H), 1.13 (d, J = 6.9 Hz, 3 H, 2'-Me), 1.01 (s, 3 H, Me) 0.89 (s, 3 H, Me), 0.86 (s, 9 H, SiMe₃), 0.11 (s, 3 H, SiMe), 0.05 (s, 3 H, SiMe) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 173.5, 158.9, 130.7, 129.1, 113.5, 72.4, 69.3, 66.1, 65.1, 55.1, 53, 47.9, 47.5, 46.4, 44.5,

38.4, 32.7, 32.2, 26.3, 25.8, 20.5, 19.7, 17.9, 9.3, -4.4, -5.4 ppm. MS (EI): $m/z = 602.0 [M + Na]^+$. HRMS: calcd. for $C_{30}H_{49}NO_6N$ -aSiS $[M + Na]^+$ 602.2947; found 602.2959.

(2R,3S)-3-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2methylpentan-1-ol (21): LiCl (660 mg, 15.5 mmol) and NaBH₄ (590 mg, 15.5 mmol) at 0 °C were placed in a 100 mL round-bottomed flask equipped with a magnetic bar. Ethanol (30 mL) was added and the suspension was stirred at room temperature for 1 h to generate LiBH4 as a white suspension The suspension was cooled to 0 °C and aldol compound 20 (1.8 g, 3.1 mmol) was added in diethyl ether (20 mL). The reaction mixture was stirred for 2 h. Afterwards the volatiles were removed in vacuo, the residue was quenched with aqueous NH₄Cl solution, extracted with EtOAc $(3 \times 30 \text{ mL})$, dried with anhydrous Na₂SO₄, evaporated, and purified on silica gel (20% EtOAc/hexane) to furnish 21 (1.06 g, 94%) as an oily liquid. $[a]_{D}^{25} = -2.6$ (*c* = 0.5, CHCl₃). IR (KBr): $\tilde{v} = 3443$, 3015, 2955, 2927, 1250, 1216, 1082, 758 cm⁻¹. ¹H NMR (300 MHz, $CDCl_3$): $\delta = 7.25$ (d, J = 8.6 Hz, 2 H, Ph-H), 6.89 (d, J = 8.6 Hz, 2 H, Ph-H), 4.46–4.37 (ABq, J = 11.5 Hz, 2 H, Ph-CH₂), 3.88 (dd, J = 10.1, 5.8 Hz, 1 H, 1-H), 3.80 (s, 3 H, Ph-OMe), 3.75–3.70 (dd, J = 10.9, 3.9 Hz, 1 H, 1' -H), 3.54 -- 3.47 (m, 3 H, 3 -H, 5 -H), 1.88 --1.81 (q, J = 6.4 Hz, 2 H, 4-H), 1.79–1.72 (m, 1 H, 2-H), 0.99 (d, J $= 7.1 \text{ Hz}, 3 \text{ H}, 2' \text{-Me}, 0.88 \text{ (s, 9 H, SiMe}, 0.08 \text{ (s, 3 H, SiMe}), 0.08 \text{ (s, 3 H, SiMe}), 0.08 \text{ (s, 3 H, SiMe}), 0.08 \text{ (s, 6 H, SiMe}), 0.08 \text{ (s,$ 0.07 (s, 3 H, SiMe) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 159.1, 130.3, 129.2, 113.7, 74, 72.6, 66.4, 65.2, 55.2, 38.9, 34.4, 25.8, 17.9, 13.9, -4.5, -4.6 ppm. MS (EI): $m/z = 391.0 [M + Na]^+$. HRMS: calcd. for C₂₀H₃₆O₄NaSi [M + Na]⁺ 391.2280; found 391.2295.

(2S,3S)-3-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-2methylpentanal (22): A solution of alcohol 21 (500 mg, 1.35 mmol) in CH₂Cl₂ (10 mL) was added to a suspension of Dess-Martin periodinane (690 mg, 1.63 mmol) and NaHCO₃ (230 mg, 2.7 mmol) in CH2Cl2 (10 mL) at 0 °C and the reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was then diluted with CH₂Cl₂ (15 mL) and washed with saturated aqueous NaHCO₃ $(3 \times 15 \text{ mL})$. The combined organic layers were dried with Na₂SO₄, evaporated in vacuo, and purification by silica gel column chromatography (10% EtOAc/hexane) afforded aldehyde 22 (472 mg, 95%) as a yellow oil. $[a]_{D}^{25} = +21.1$ (c = 1.6, CHCl₃). IR (KBr): $\tilde{v} = 2930, 2856, 1710, 1250, 1102, 770 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 9.72 (d, J = 2.0 Hz, 1 H, CHO), 7.25 (d, J = 8.6 Hz, 2 H, Ph-H), 6.88 (d, J = 8.6 Hz, 2 H, Ph-H), 4.41 (dd, $J = 15.1, 11.5 \text{ Hz}, 2 \text{ H}, \text{Ph-CH}_2), 4.15 \text{ (td, } J = 6.4, 5.09 \text{ Hz}, 1 \text{ H},$ 3-H), 3.81 (s, 3 H, Ph-OMe), 3.52 (t, J = 6.4 Hz, 2 H, 5-H), 2.52 (m, 1 H, 2-H), 1.79 (m, 2 H, 4-H), 1.10, (d, J = 6.9 Hz, 3 H, 2'-Me), 0.87 (s, 9 H, SiMe₃), 0.06 (s, 6 H, SiMe₂) ppm. ¹³C NMR (CDCl₃, 75 MHz): *δ* = 204.6, 159.1, 130.3, 129.2, 113.7, 72.6, 70.4, 65.9, 55.2, 51.6, 34.6, 25.7, 18.0, 10.0, -4.6, -4.4 ppm. MS (EI): m/z = 389.0 $[M + Na]^+$. HRMS: calcd. for $C_{20}H_{34}O_4NaSi [M + Na]^+$ 389.2119; found 389.2121.

tert-Butyl[(3*S*,4*R*,*E*)-6-Iodo-1-(4-methoxybenzyloxy)-4-methylhex-5-en-3-yloxyldimethylsilane (23): Anhydrous (flame-dried under argon) CrCl₂ (1.1 g, 8.4 mmol, 10 equiv.) in THF (10 mL) was stirred for 30 min at room temperature, generating a creamy gray-green suspension. CHI₃ (667 mg, 1.69 mmol, 2 equiv.) in THF at 0 °C was then added to this mixture followed by aldehyde **22** (310 mg, 0.84 mmol, 1 equiv.) in THF at 0 °C. The resulting dark-red mixture was stirred for 3 h at the same temperature. After completion of the reaction (confirmed by TLC) the reaction mixture was filtered through Celite and the residue washed with diethyl ether. The filtrate was then washed with saturated aqueous solution of sodium thiosulfate and brine solution. The organic layer was dried with Na₂SO₄ and concentrated in vacuo to afford the crude *trans*-vinyl iodide, which was purified by silica gel column chromatography (hexane/EtOAc = 95:5) to give *trans*-vinyl iodide **23** (352 mg, 85%) as a colorless oil. $[a]_{25}^{25} = +15.1$ (c = 1.0, CHCl₃). IR (KBr): $\tilde{v} = 2954$, 2929, 1612, 1249, 1096, 835 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 7.20$ (d, J = 8.6 Hz, 2 H, Ph-H), 6.84 (d, J = 8.6 Hz, 2 H, Ph-H), 6.44 (dd, J = 14.5, 8.1 Hz, 1 H, 5-H), 5.95 (dd, J = 14.5, 0.75 Hz, 1 H, 6-H), 4.37 (dd, J = 19.0, 11.5 Hz, 2 H, Ph-CH₂), 3.80 (s, 3 H, Ph-OMe), 3.72 (td, J = 6.0, 4.1 Hz, 1 H, 3-H), 3.42 (t, J = 6.4 Hz, 2 H, 1-H), 2.30 (m, 1 H, 4-H), 1.65 (q, J = 6.4 Hz, 2 H, 2-H), 1.00 (d, J = 6.9 Hz, 3 H, 4'-Me), 0.88 (s, 9 H, SiMe₃), 0.04 (s, 3 H, SiMe), 0.03 (s, 3 H, SiMe) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 159.2$, 148.3, 130.4, 129.2, 113.7, 75.3, 72.6, 72.0, 66.3, 55.1, 46.1, 34.0, 26.0, 18.2, 15.2, -4.24, -4.29 ppm. MS (EI): m/z = 513.0 [M + Na]⁺. HRMS: calcd. for C₂₁H₃₅O₃NaSi [M + Na]⁺ 513.1292; found 513.1294.

Ethyl (6R,7S,E)-7-(tert-Butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-6-methylnon-4-en-2-ynoate (24): CuI (26.4 mg, 0.13 mmol) and tetrakis(triphenylphosphane)palladium (80 mg, 0.069 mmol) were added to a solution of vinyl iodide 23 (340 mg, 0.69 mmol) in NEt₃ (2 mL). The reaction mixture was stirred for 30 min at room temperature, after which a solution of ethyl propionate (0.141 mL, 1.3 mmol, 2 equiv.) in THF was added dropwise over 10 min. After 2 h, the volatiles were removed in vacuo and purified by silica gel column chromatography (10% EtOAc/hexane) to obtain the enynoate compound 24 (287 mg, 90%) as a colorless oil. $[a]_{D}^{25} = +40.5$ (c = 0.5, CHCl₃). IR (KBr): \tilde{v} = 2954, 2930, 2210, 1708, 1614, 1252, 1097 cm⁻¹. ¹H NMR (300 MHz, CDCl3): δ = 7.26 (d, J = 8.6 Hz, 2 H, Ph-H), 6.89 (d, J = 8.6 Hz, 2 H, Ph-H), 6.49 (dd, J = 16.0, 8.1 Hz, 1 H, 5-H), 5.54 (dd, J = 16.0, 0.94 Hz, 1 H, 4-H), 4.41 (dd, $J = 21.1, 11.5 \text{ Hz}, 2 \text{ H}, \text{Ph-CH}_2), 4.25 (q, J = 7.0 \text{ Hz}, 2 \text{ H}, \text{CH}_3$ - CH_2 -CO₂), 3.80 (s, 3 H, Ph-OMe), 3.76 (m, 1 H, 7-H), 3.44 (t, J =6.4 Hz, 2 H, 9-H), 2.38 (m, 1 H, 6-H), 1.65 (m, 2 H, 8-H), 1.31 (t, J = 7.1 Hz, 3 H, CH_3 -CH₂-CO₂), 1.03 (d, J = 6.9 Hz, 3 H, 6'-Me), 0.88 (s, 9 H, SiMe₃), 0.04 (s, 3 H, SiMe), 0.03 (s, 3 H, SiMe) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 159.1, 154.1, 153.8, 130.4, 129.2, 113.7, 107.2, 85.4, 79.7, 72.5, 72.2, 66.3, 61.8, 55.2, 43.3, 34.3, 25.8, 18, 15.2, 14, -4.4 ppm. MS (EI): $m/z = 483.0 \text{ [M + Na]}^+$. HRMS: calcd. for C₂₆H₄₀NaO₅Si [M + Na]⁺ 483.2537; found 483.2538.

Ethyl (6R,7S,E)-7-(tert-Butyldimethylsilyloxy)-9-hydroxy-6-methylnon-4-en-2-ynoate (25): DDQ (153 mg, 0.67 mmol) was added portionwise to a solution of PMB ether 24 (260 mg, 0.56 mmol) in a mixture of CH₂Cl₂ and water (5:1, 15 mL) at 0 °C under vigorous stirring. After completion (confirmed by TLC), the reaction mixture was quenched with a saturated NaHCO₃ solution and extracted with CH_2Cl_2 (3×15 mL), dried with anhydrous Na₂SO₄, and concentrated under reduced pressure to yield a viscous oil, which was purified by silica gel column chromatography (15% EtOAc/hexane) to afford the alcohol 25 (182 mg, 95%) as a colorless oil. $[a]_{D}^{25} = +15.5$ (c = 0.8, CHCl₃). IR (KBr): $\tilde{v} = 3019, 2925$, 2212, 1702, 1465, 1215, 758 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 6.47 (dd, J = 16.0, 8.1 Hz, 1 H, 5-H), 5.60 (dd, J = 16.0, 1.3 Hz)1 H, 4-H), 4.25 (q, J = 7.1 Hz, 2 H, CH₃-CH₂-CO₂), 3.81 (td, J =4.7, 2.2 Hz, 1 H, 7-H), 3.71 (m, 2 H, 9-H), 2.50 (m, 1 H, 6-H), 1.83 (br., 1 H, OH), 1.67 (m, 2 H, 8-H), 1.32 (t, J = 7.1 Hz, 3 H, CH_3 - CH_2 - CO_2), 1.05 (d, J = 6.7 Hz, 3 H, 6'-Me), 0.90 (s, 9 H, SiMe₃), 0.09 (s, 3 H, SiMe), 0.07 (s, 3 H, SiMe) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 154.05, 153.6, 107.4, 85.1, 79.9, 73.2, 61.8, 59.7, 43.2, 35.7, 25.8, 17.9, 14.6, 14.03, -4.5, -4.4 ppm. MS (EI): m/z = 341.1 $[M + H]^+$. HRMS: calcd. for $C_{18}H_{33}O_4Si [M + H]^+$ 341.2143; found 341.2152.

Ethyl (2*Z*,4*E*,6*R*,7*S*)-7-(*tert*-Butyldimethylsilyloxy)-9-hydroxy-6methylnona-2,4-dienoate (26): Isoquinoline (0.2 mL) followed by the Pd/CaCO₃ catalyst poisoned with Pb (30 mg) were added to a solution of alcohol 25 (125 mg, 0.36 mmol) in benzene (10 mL) under hydrogen. The reaction mixture was stirred at room temperature for 15 min, washed with a 0.8 M HCl solution $(2 \times 5 \text{ mL})$ to remove isoquinoline from the reaction mixture, extracted with diethyl ether (3×10 mL), dried with Na₂SO₄, and the solvents evaporated in vacuo. The crude product was purified by silica gel column chromatography (20% EtOAc/hexane) to furnish the dienoate 26 (122 mg, 98%) as yellow oil. $[a]_D^{25} = -5.1$ (c = 0.5, CHCl₃). IR (KBr): $\tilde{v} = 3020, 2928, 2361, 1710, 1640, 1463, 1253, 1215,$ 763 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.39 (dd, J = 15.4, 11.3 Hz, 1 H, 3-H), 6.54 (t, J = 11.3 Hz, 1 H, 4-H), 5.99 (dd, J =15.4, 7.7 Hz, 1 H, 2-H), 5.59 (d, J = 11.3 Hz, 1 H, 5-H), 4.18 (q, J = 7.1 Hz, 2 H, CH_3 - CH_2 - CO_2), 3.86 (m, 1 H, 7-H), 3.72 (m, 2 H, 9-H), 2.54 (m, 1 H, 6-H), 1.83 (s, 1 H, OH), 1.68 (m, 2 H, 8-H), 1.30 (t, J = 7.1 Hz, 3 H, CH_3 -CH₂-CO₂), 1.07 (d, J = 6.9 Hz, 3 H, 6'-Me), 0.90 (s, 9 H, SiMe₃), 0.09 (s, 3 H, SiMe), 0.07 (s, 3 H, SiMe) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 166.5, 146.7, 145.04, 126.9, 116.2, 73.8, 59.8, 60.1, 42.6, 35.3, 25.8, 18.01, 14.6, 14.2, -4.5, -4.3 ppm. MS (EI): m/z = 343.1 [M + H]⁺. HRMS: calcd. for $C_{18}H_{35}O_4Si [M + H]^+$ 343.2299; found 343.2289.

Ethyl (2Z,4E,6R,7S)-7-(tert-Butyldimethylsilyloxy)-6-methyl-9oxonona-2,4-dienoate (3): A solution of alcohol 26 (100 mg, 0.29 mmol) in CH₂Cl₂ (3 mL) was added to a suspension of Dess-Martin periodinane (148 mg, 0.35 mmol) and NaHCO₃ (49 mg, 0.58 mmol) in CH₂Cl₂ (5 mL) at 0 °C and the reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was diluted with CH₂Cl₂ (10 mL) and washed with aqueous NaHCO₃ solution $(2 \times 10 \text{ mL})$. The organic layer was dried with Na₂SO₄, evaporated under reduced pressure, and the crude product was purified by silica gel column chromatography (10% EtOAc/hexane) to yield aldehyde **3** (94.4 mg, 95%) as slightly yellow oil. $[a]_D^{25} = +4.7$ (c = 0.45, CHCl₃). IR (KBr): $\tilde{v} = 2957, 2932, 2857, 1715, 1638, 1465, 1254,$ 1184, 1090, 1028 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 9.77$ (s, 1 H, CHO), 7.39 (dd, J = 15.4, 11.3 Hz, 1 H, 3-H), 6.54 (t, J =11.3 Hz, 1 H, 4-H), 5.96 (dd, J = 15.4, 7.9 Hz, 1 H, 2-H), 5.62 (d, J = 11.3 Hz, 1 H, 5-H), 4.19 (m, 3 H, CH₃-CH₂-CO₂, 7-H), 2.50 (m, 3 H, 6-H, 8-H), 1.30 (t, J = 7.1 Hz, 3 H, CH₃-CH₂-CO₂), 1.09 (d, J = 6.9 Hz, 3 H, 6'-Me), 0.87 (s, 9 H, SiMe₃), 0.08 (s, 3 H, SiMe), 0.04 (s, 3 H, SiMe) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 201.6, 166.4, 144.6, 145.2, 127.6, 116.7, 70.9, 59.9, 48.2, 43.3, 25.7, 18.0, 14.9, 14.2, -4.6, -4.5 ppm. MS (EI): m/z = 341.0 [M + H]⁺. HRMS: calcd. for C₁₈H₃₆NO₄Si [M + NH₄]⁺ 358.2408; found 358.2410.

N-[(2R,3R)-3-Hydroxy-2,4-dimethylpent-4-enoyl]bornane-10,2-sultam (27): Titanium tetrachloride (2 mL, 18.4 mmol) was added dropwise to a 0.2 M solution of (R)-N-propionylbornane-10,2-sultam^[18] (17; 5 g, 18.4 mmol) in CH₂Cl₂ at -78 °C under nitrogen. To the resulting yellow slurry, diisopropylethylamine (3.82 mL, 22.1 mmol) was added slowly and the resulting deep-red solution was stirred at -78 °C. After 1.5 h, methacrolein (4.5 mL, 55.3 mmol) was added slowly and the mixture was stirred at -78 °C for an additional 1.5 h. The reaction was quenched with aqueous NH₄Cl and the mixture was warmed to ambient temperature. The reaction mixture was then diluted with water and extracted with CH_2Cl_2 (3 × 50 mL), dried with Na₂SO₄, and evaporated under reduced pressure to yield the crude syn aldol product, which on purification by silica gel column chromatography (15% EtOAc/hexane) gave the syn aldol product 27 (6.4 g, 73%) as a white solid. $[a]_D^{25}$ = $-81.3 (c = 1.0, CHCl_3)$. IR (KBr): $\tilde{v} = 3505, 2961, 2885, 2360, 1676,$ 1455, 1331, 1270, 1214, 1132, 1062 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 5.15 (s, 1 H, 5-H), 4.97 (s, 1 H, 5'-H), 4.42 (s, 1 H, 3-H), 3.91 (t, J = 6.4 Hz, 1 H, HC-N), 3.56–3.44 (m, 3 H, H₂C-SO₂,

OH), 3.27 (dq, J = 7.1, 2.4 Hz, 1 H, 2-H), 2.07 (m, 2 H), 1.91 (m, 3 H), 1.72 (s, 3 H, 4-Me), 1.45–1.29 (m, 2 H), 1.20 (d, J = 7.1 Hz, 3 H, 2'-Me), 1.15 (s, 3 H, Me), 0.98 (s, 3 H, Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 177$, 142.9, 111.9, 72.8, 64.9, 52.9, 48.3, 47.7, 44.5, 41.4, 38.2, 32.7, 26.3, 20.7, 19.8, 19.4, 10.9 ppm. MS (EI): *m*/*z* = 364.1 [M + Na]⁺. HRMS: calcd. for C₁₇H₂₇NO₄NaS [M + Na]⁺ 364.1558; found 364.1556.

(2S,3R)-2,4-Dimethylpent-4-ene-1,3-diol (28): The syn aldol 27 (3.37gr, 9.87 mmol) in THF (15 mL) was added to a suspension of LiAlH₄ (570 mg, 14.8 mmol) in THF (15 mL) under nitrogen at 0 °C and the mixture was stirred for 3 h at room temperature. Then it was quenched with saturated aqueous Na₂SO₄ at 0 °C. The solids were filtered, washed with diethyl ether, the filtrate dried with Na₂SO₄, evaporated under reduced pressure, and purified by silica gel column chromatography (20% EtOAc/hexane) to afford diol 28 (1.19 g, 94%) as a colorless oil. $[a]_D^{25} = +12.6$ (c = 0.8, CHCl₃). IR (KBr): $\tilde{v} = 3416, 2918, 1650, 1216, 1021 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 5.01 (s, 1 H, 5-H), 4.93 (s, 1 H, 5'-H), 4.25 (d, J = 1.8 Hz, 1 H, 3-H), 3.71 (m, 2 H, 1-H), 2.62 (br., 2 H, OH), 1.90 (m, 1 H, 2-H), 1.72 (s, 3 H, 4-Me), 0.90 (d, J = 7.0 Hz, 3 H, 2'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 146.1, 110.4, 76.8, 66.6, 37.1, 19.2, 9.7 ppm. MS (EI): *m*/*z* = 131.1 [M + H]⁺. HRMS: calcd. for C₇H₁₄O₂Na [M + Na]⁺ 153.1894; found 153.1991.

(4R,5S)-2-(4-Methoxyphenyl)-5-methyl-4-(prop-1-en-2-yl)-1,3-dioxane (29): Anisaldehyde dimethyl acetal (2.15 mL, 12.6 mmol) and a catalytic amount of azeotropically dried CSA were added to a stirred solution of diol 28 (1.1 g, 8.4 mmol) in CH₂Cl₂ at 0 °C. The reaction mixture was stirred at room temperature for 5 h. It was then quenched with aqueous NaHCO₃, extracted with CH₂Cl₂ $(3 \times 20 \text{ mL})$, dried with anhydrous Na₂SO₄, evaporated, and purified on silica gel using 5% EtOAc/hexane as eluent to furnish the protected diol **29** (1.93 g, 93%) as an oily liquid. $[a]_D^{25} = +17.5$ (c = 3.1, CHCl₃). IR (KBr): $\tilde{v} = 2963$, 2924, 1650, 1616, 1516, 1247, 1117, 826 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.44 (d, J = 8.6 Hz, 2 H, Ph-H), 6.90 (d, J = 8.6 Hz, 2 H, Ph-H), 5.52 (s, 1 H, Ph-CH), 5.10 (d, J = 1.5 Hz, 1 H, 5-H), 4.92 (d, J = 1.5 Hz, 1 H, 5'-H), 4.32 (d, J = 1.7 Hz, 1 H, 3-H), 4.14–4.02 (m, 2 H, 1-H), 3.80 (s, 3 H, Ph-OMe), 1.78 (m, 1 H, 2-H), 1.70 (s, 3 H, 4-Me), 1.07 (d, J = 6.9 Hz, 3 H, 2'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta =$ 159.8, 142.2, 131.5, 127.4, 113.5, 110.4, 101.4, 81.3, 73.2, 55.2, 30.4, 19, 11.0 ppm. MS (EI): $m/z = 249.1 \text{ [M + H]}^+$. HRMS: calcd. for $C_{15}H_{20}O_3Na [M + Na]^+ 271.1312$; found 271.1316.

(S)-2-[(4S,5S)-2-(4-Methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]propan-1-ol (30): A solution of olefin 29 (1.73 g, 6.9 mmol) in THF (15 mL) at 0 °C was treated with 9-BBN (1.7 g, 13.9 mmol) in THF. The reaction mixture was stirred at room temperature for 12 h. It was then quenched with 3 N NaOH (1.4 g) and 30% aqueous H_2O_2 (2.2 mL) and stirred for 6 h at room temperature. The reaction mixture was extracted with diethyl ether $(3 \times 25 \text{ mL})$. The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, concentrated in vacuo, and purified by silica gel column chromatography (20% EtOAc/hexane) to afford alcohol 30 (1.66 g, 90%) as a colorless oil. $[a]_D^{25} = -8.8$ (c = 0.35, CHCl₃). IR (KBr): $\tilde{v} = 3445, 3018, 2961, 1615, 1518, 1250, 1215, 1033, 758 \text{ cm}^{-1}$. ¹H NMR (300 MHz, CDCl₃): δ = 7.39 (d, J = 8.6 Hz, 2 H, Ph-H), 6.87 (d, J = 8.6 Hz, 2 H, Ph-H), 5.48 (s, 1 H, Ph-CH), 4.05 (m, 2 H, 5-H), 3.79 (s, 4 H, Ph-OMe, 3-H), 3.7-3.58 (m, 2 H, 1-H), 1.99 (m, 1 H, 2-H), 1.67 (m, 1 H, 4-H), 1.21 (d, J = 6.9 Hz, 3 H, 4'-Me), 0.83 (d, J = 6.9 Hz, 3 H, 2'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 160.0, 131.0, 127.3, 113.7, 101.7, 85.2, 73.9, 67.9,$ 55.2, 36.6, 29.9, 11.9, 10.9 ppm. MS (EI): *m*/*z* = 289.2 [M + Na]⁺. HRMS: calcd. for $C_{15}H_{22}O_4Na \ [M + Na]^+ 289.1415$; found 289.1407.

(R)-2-[(4R,5S)-2-(4-Methoxyphenyl)-5-methyl-1,3-dioxan-4-yl]propanal (31): A solution of alcohol 30 (510 mg, 1.9 mmol) in CH₂Cl₂ (10 mL) was added to a suspension of Dess-Martin periodinane (1.05 g, 2.5 mmol) and NaHCO₃ (322 mg, 3.84 mmol) in CH₂Cl₂ (15 mL) at 0 °C and the reaction mixture was stirred at 0 °C for 1 h. The suspension was diluted with hexane and the solvents were evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (10% EtOAc/hexane) to yield aldehyde **31** (408 mg, 95%) as a slightly yellow oil. $[a]_{D}^{25} = -30.2$ (c = 1.2, CHCl₃). IR (KBr): \tilde{v} = 2918, 2849, 1725, 1615, 1516, 1248, 1165, 1030, 756 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 9.84 (d, J = 2.2 Hz, 1 H, CHO), 7.39 (d, J = 8.8 Hz, 2 H, Ph-H), 6.88 (d, J= 8.8 Hz, 2 H, Ph-H), 5.48 (s, 1 H, Ph-CH), 4.11 (m, 3 H, 3-H, 5-H), 3.79 (s, 3 H, Ph-OMe), 2.63 (m, 1 H, 2-H), 1.66 (m, 1 H, 4-H), 1.22 (d, J = 6.9 Hz, 3 H, 4'-Me), 1.01 (d, J = 7.1 Hz, 3 H, 2'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 204.1, 159.8, 130.6, 127.2, 113.4, 100.8, 81.5, 72.7, 55.2, 47.3, 30.2, 11.9, 7.0 ppm. MS (EI): $m/z = 265.1 \text{ [M + H]}^+$. HRMS: calcd. for $C_{15}H_{21}O_4$ [M + H]⁺ 265.1434; found 265.1436.

(4S,5S)-4-[(S,Z)-4-Iodobut-3-en-2-yl]-2-(4-methoxyphenyl)-5methyl-1,3-dioxane (32): A suspension of (iodomethyl)triphenylphosphonium iodide (1.03 g, 1.98 mmol) in THF (10 mL) was treated with NaHMDS (1 m in THF, 1.98 mL, 1.98 mmol) and the resulting solution was stirred for 20 min at room temperature. The resulting dark-red solution was cooled to -78 °C and to it was added HMPA (0.276 mL, 1.59 mmol) followed by aldehyde 31 (350 mg, 1.32 mmol) in THF (10 mL). After stirring for 30 min at -78 °C the reaction mixture was warmed to room temperature and stirred for an additional 1 h. The reaction mixture was diluted with hexane (10 mL), filtered through Celite, concentrated in vacuo, and purified by silica gel column chromatography (5% EtOAc/hexane) to afford vinyl iodide **32** (405 mg, 79%). $[a]_{D}^{25} = +84.6$ (c = 0.9, CHCl₃). IR (KBr): $\tilde{v} = 2960, 2362, 1646, 1615, 1395, 1248, 1078,$ 1024 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.42 (d, J = 8.7 Hz, 2 H, Ph-H), 6.88 (d, J = 8.8 Hz, 2 H, Ph-H), 6.22 (d, J = 7.4 Hz, 1 H, 6-H), 6.15 (dd, J = 7.9, 7.4 Hz, 1 H, 5-H), 5.42 (s, 1 H, Ph-CH), 4.09–4.04 (dd, J = 11.2, 2.4 Hz, 1 H, 1-H), 4.03–3.99 (dd, J = 11.2, 1.5 Hz, 1 H, 1'-H), 3.80-3.75 (m, 4 H, Ph-OMe, 3-H), 2.83-2.70 (m, 1 H, 4-H), 1.73–1.65 (m, 1 H, 2-H), 1.22 (d, J = 6.9 Hz, 3 H, 2'-Me), 0.99 (d, J = 6.9 Hz, 3 H, 4'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): *δ* = 159.7, 144.0, 131.3, 127.2, 113.4, 101.4, 82.6, 82.1, 73.8, 55.2, 41.4, 30.1, 14.5, 11.2 ppm. MS (EI): m/z = 389.0 $[M + H]^+$. HRMS: calcd. for C₁₆H₂₁IO₃ $[M + Na]^+$ 411.1535; found 411.1546.

(4S,5S)-4-[(S,Z)-Hexa-3,5-dien-2-yl]-2-(4-methoxyphenyl)-5-methyl-1,3-dioxane (33): Bis(acetonitrile)palladium(II) chloride (33 mg, 0.12 mmol) followed by vinyltributyltin (0.282 mL, 0.96 mmol) were added to a degassed and stirred solution of vinyl iodide 32 (250 mg, 0.64 mmol) in dry DMF (4 mL) and the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was quenched with water (15 mL) and extracted with diethyl ether $(3 \times 15 \text{ mL})$. The combined organic layers were dried with Na₂SO₄, evaporated under reduced pressure, and purified by silica gel column chromatography (15% EtOAc/hexane) to afford the diene (175 mg, 95%) as an oily colorless liquid. $[a]_{D}^{25} = -26.8$ (c = 0.55, CHCl₃). IR (KBr): \tilde{v} = 2963, 2933, 2876, 1690, 1614, 1517, 1250, 1031 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ = 7.38 (d, J = 8.8 Hz, 2 H, Ph-H), 6.85 (d, J = 8.8 Hz, 2 H, Ph-H), 6.70 (dt, J = 16.9, 10.7 Hz, 1 H, 7-H), 6.07 (t, J = 10.7 Hz, 1 H, 6-H), 5.42 (s, 1 H, Ph-CH), 5.39 (t, J = 10.1 Hz, 1 H, 5-H), 5.20 (d, J = 16.9 Hz, 1 H, 8-H), 5.10 (d, J = 10.2 Hz, 1 H, 8'-H), 4.08 (m, 2 H, 1-H), 3.78 (s, 3 H, Ph-OMe), 3.60 (dd, J = 9.4, 1.8 Hz, 1 H, 3-H), 2.90 (m, 1 H, 4-H), 1.71 (m, 1 H, 2-H), 1.20 (d, J = 6.7 Hz, 3 H, 2'-Me), 0.97 (d, J = 6.9 Hz, 3 H, 4'-Me) ppm. $^{13}\mathrm{C}$ NMR (CDCl₃, 75 MHz): $\delta = 159.5, 135.7, 132.9, 131.4, 129.5, 127.1, 117.0, 113.3, 101.2, 83.2, 73.8, 55.2, 34.0, 29.9, 15.9, 11.0 ppm. MS (EI): <math display="inline">m/z = 289.0$ [M + H]⁺. HRMS: calcd. for C₁₈H₂₄O₃Na [M + Na]⁺ 311.1617; found 311.1624.

(2S,3S,4S,Z)-3-(4-Methoxybenzyloxy)-2,4-dimethylocta-5,7-dien-1ol (34): DIBAL-H (1.1 mL, 1.56 mmol, 20% of DIBAL-H in toluene) was added slowly to a solution of diene 33 (150 mg, 0.52 mmol) in CH₂Cl₂ at -15 °C and the reaction mixture was stirred at the same temperature while monitoring the progress of reaction by TLC. After consumption of all the starting material, the reaction mixture was quenched with a saturated aqueous potassium sodium tartrate solution and stirred vigorously at room temperature for 1 h. The reaction mixture was extracted with CH₂Cl₂ $(3 \times 15 \text{ mL})$, concentrated under reduced pressure, and purified by silica gel column chromatography to afford alcohol 34 (137 mg, 91%) as a colorless liquid. $[a]_D^{25} = +42.7$ (c = 0.55, CHCl₃). IR (KBr): $\tilde{v} = 3421$, 2926, 1612, 1513, 1247, 1033 cm⁻¹. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 7.26 \text{ (d, } J = 8.6 \text{ Hz}, 2 \text{ H}, \text{ Ph-H}), 6.87 \text{ (d,}$ J = 8.6 Hz, 2 H, Ph-H), 6.69 (dt, J = 16.9, 10.7 Hz, 1 H, 7-H), 6.03 (t, J = 10.7 Hz, 1 H, 6-H), 5.54 (t, J = 10.3 Hz, 1 H, 5-H), 5.22 (d, J = 16.9 Hz, 1 H, 8-H), 5.12 (d, J = 10.2 Hz, 1 H, 8'-H), 4.55 (d, J = 10.7 Hz, 1 H, Ph-CH), 4.47 (d, J = 10.7 Hz, 1 H, Ph-CH), 3.79 (s, 3 H, Ph-OMe), 3.63-3.50 (m, 2 H, 1-H), 3.40 (dd, J = 5.8, 4.3 Hz, 1 H, 3-H), 2.93–3.05 (ddq, J = 9.8, 6.7, 6.6 Hz, 1 H, 4-H), 1.90–2.02 (m, 1 H, 2-H), 1.63 (br. s, 1 H, OH), 1.03 (d, J = 6.7 Hz, 3 H, 4-Me), 0.96 (d, J = 6.9 Hz, 3 H, 2-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 159.1, 135.3, 132.4, 130.9, 129.5, 129.0, 117.4, 113.6, 84.2, 73.8, 66.1, 55.2, 37.6, 35.0, 18.5, 11.5 ppm. MS (EI): m/z =313.1 [M + Na]⁺. HRMS: calcd. for $C_{18}H_{26}O_3Na$ [M + Na]⁺ 313.1779; found 313.1770.

(2R,3S,4S,Z)-3-(4-Methoxybenzyloxy)-2,4-dimethylocta-5,7-dienal (4): A solution of alcohol 34 (100 mg, 0.34 mmol) in CH₂Cl₂ (5 mL) was added to a suspension of Dess-Martin periodinane (219 mg, 0.51 mmol) and NaHCO₃ (86 mg, 1.03 mmol) in CH₂Cl₂ (10 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. It was then diluted with CH₂Cl₂ (10 mL) and washed with saturated aqueous NaHCO₃ (3×10 mL). The combined organic layers were dried with Na₂SO₄, evaporated in vacuo, and purified by silica gel column chromatography (10% EtOAc/hexane) to afford aldehyde 4 as a slightly yellow oil (90 mg, 91%). $[a]_{D}^{25} = +31.5$ (c = 0.65, CHCl₃). IR (KBr): v = 2925, 2854, 1709, 1610, 1512, 1252, 1032, 758 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ = 9.69 (d, J = 1.13 Hz, 1 H, CHO), 7.23 (d, J = 8.7 Hz, 2 H, Ph-H), 6.87 (d, J = 8.7 Hz, 2 H, Ph-H), 6.55 (ddd, J = 16.8, 10.9, 0.9 Hz, 1 H, 7-H), 6.04 (t, J = 10.9 Hz, 1 H, 6-H), 5.44 (t, J = 10.5 Hz, 1 H, 5-H), 5.23 (dd, J = 16.8, 1.8 Hz, 1 H, 8-H), 5.12 (d, J = 10.2 Hz, 1 H, 8'-H), 4.50 (d, J = 10.7 Hz, 1 H, Ph-CH), 4.44 (d, J = 10.7 Hz, 1 H, Ph-CH), 3.79 (s, 3 H, Ph-OMe), 3.70 (t, J = 5.0 Hz, 1 H, 3-H), 3.02–2.90 (m, 1 H, 4-H), 2.63–2.54 (ddq, J = 6.9, 5.0, 1.1 Hz, 1 H, 2-H), 1.17 (d, J = 6.9 Hz, 3 H, 4'-Me), 1.07 (d, J = 6.9 Hz, 3 H, 2'-Me) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 204.1, 159.2, 133.7, 132.1, 130.3, 130.1, 129.4, 118.0, 113.7, 81.9, 73.5, 55.2, 49.4, 35.5, 18.2, 9.1 ppm. MS (EI): $m/z = 311.0 [M + Na]^+$. HRMS: calcd. for $C_{18}H_{24}O_3Na [M + Na]^+$ 311.1623; found 311.1631.

Acknowledgments

We thank the University Grants Commission (UGC), New Delhi, India, for the award of a fellowship to V. R.

- C. Gennari, D. Castoldi, O. Sharon, Pure Appl. Chem. 2007, 79, 173–180.
- [2] G. R. Pettit, Z. A. Cichacz, F. Gao, M. R. Boyd, J. M. Schmidt, J. Chem. Soc., Chem. Commun. 1994, 1111–1112.
- [3] R. A. Isbruker, J. Cummins, S. A. Pomponi, R. E. Longley, A. E. Wright, *Biochem. Pharm.* 2003, 66, 75–82.
- [4] I. Paterson, R. Britton, O. Delgado, A. E. Wright, Chem. Commun. 2004, 632–633.
- [5] a) I. Paterson, R. Britton, O. Delgado, A. Meyer, K. G. Poullennec, *Angew. Chem. Int. Ed.* 2004, *43*, 4629–4633; b) Y. Shin, J. H. Fournier, Y. Fukui, A. M. Bruckner, D. P. Curran, *Angew. Chem. Int. Ed.* 2004, *43*, 4634–4637.
- [6] a) G. W. O'Neil, A. J. Phillips, J. Am. Chem. Soc. 2006, 128, 5340–5341; b) P. V. Ramachandran, A. Srivastava, D. Hazra, Org. Lett. 2007, 9, 157–160; c) H. L. Shimp, G. C. Micalizio, Tetrahedron 2009, 65, 5908–5915.
- [7] a) Y. Shin, N. Choy, R. Balachandran, C. Madiraju, B. W. Day, D. P. Curran, Org. Lett. 2002, 4, 4443–4446; b) Y. Shin, J. H. Fournier, R. Balachandran, C. Madiraju, B. S. Raccor, G. Zhu, M. C. Elder, E. Hamel, B. W. Day, D. P. Curran, Org. Lett. 2005, 7, 2873–2876; c) Y. Fukui, A. M. Bruckner, Y. Shin, R. Balachandran, B. W. Day, D. P. Curran, Org. Lett. 2006, 8, 301–304; d) C. O. Kangani, A. M. Bruckner, D. P. Curran, Org. Lett. 2005, 7, 379–382; e) Y. Shin, J. H. Fournier, A. Brückner, C. Madiraju, R. Balachandran, B. S. Raccor, M. C. Edler, E. Hamel, R. P. Sikorski, A. Vogt, B. W. Day, D. P. Curran, Tetrahedron 2007, 63, 8537–8562; f) I. Paterson, G. J. Naylor, A. E. Wright, Chem. Commun. 2008, 4628–4630; g) I. Paterson, N. M. Gardner, E. Guzmán, A. E. Wright, Bioorg. Med. Chem. 2009, 17, 2282–2289.
- [8] a) G. W. O'Neil, A. J. Phillips, *Tetrahedron Lett.* 2004, 45, 4253–4256; b) E. Prusov, H. Rohm, E. M. Maier, Org. Lett. 2006, 8, 1025–1028; c) O. Sharon, C. Monti, C. Gennari, *Tetrahedron* 2007, 63, 5873–5878; d) V. S. Baba, P. Das, K. Mukkanti, J. Iqbal, *Tetrahedron Lett.* 2006, 47, 7927–7930; e)

J. Jagel, M. E. Maier, *Synlett* **2006**, 693–696; f) C. Monti, O. Sharon, C. Gennari, *Chem. Commun.* **2007**, 4271–4273; g) A. K. Dilger, Gopalsamuthiram, S. D. Burke, *J. Am. Chem. Soc.* **2007**, *129*, 16273–16277; h) P. V. Ramachandran, D. Pratihar, *Org. Lett.* **2009**, *11*, 1467–1470.

- [9] J. S. Yadav, C. Srinivas Rao, S. Chandrasekhar, A. V. Rama Rao, *Tetrahedron Lett.* 1995, 36, 7717–7720.
- [10] D. H. R. Barton, S. W. McCombie, J. Chem. Soc. Perkin Trans. 1 1975, 1574–1585.
- [11] a) H. C. Brown, J. V. N. Varaprasad, J. Am. Chem. Soc. 1986, 108, 2049–2054; b) H. C. Brown, M. C. Desai, P. K. Jadav, J. Org. Chem. 1982, 47, 5065–5069.
- [12] E. J. Corey, J. W. Suggs, Tetrahedron Lett. 1975, 16, 2647-2650.
- [13] E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am. Chem. Soc. 1969, 91, 5675–5677.
- [14] S. L. Schreiber, Z. Wang, G. Schulte, *Tetrahedron Lett.* 1988, 29, 4085–4088.
- [15] D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155-4156.
- [16] G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 2173-2174.
- [17] a) W. Oppolzer, C. Starkemann, I. Rodriguez, G. Bernardinelli, *Tetrahedron Lett.* 1991, *32*, 61–64; b) W. Oppolzer, P. Lienard, *Tetrahedron Lett.* 1993, *34*, 4321–4324; c) G. Kumaraswamy, M. Padmaja, B. Markondaiah, J. Nivedita, B. Sridhar, M. Udaya Kiran, *J. Org. Chem.* 2006, *71*, 337–340.
- [18] E. J. Corey, H. Cho, C. Rucker, D. H. Hua, *Tetrahedron Lett.* 1985, 26, 5239–5242.
- [19] K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408–7410.
- [20] K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* 1975, 16, 4467–4470.
- [21] W. C. Still, J. C. Barrish, J. Am. Chem. Soc. 1983, 105, 2487– 2489.
- [22] J. K. Stille, B. L. Groh, J. Am. Chem. Soc. 1987, 109, 813-817.
- [23] I. Paterson, G. J. Florence, K. Gerlach, J. P. Scott, N. Sereinig, J. Am. Chem. Soc. 2001, 123, 9535–9544.

Received: December 12, 2009 Published Online: February 22, 2010