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ABSTRACT? The sidechains of clerocidin 1 and terpentecin 2 contain a unique chiral assembly [C5H504]. 
MoaWs for the stereospecific synthesis of this srrucnval feature are reported. 

The fungal metabolites clerocidin l1 and terpentecin 22 are both associated with a highly oxygenated 
sidechain which incorporates a unique assembly of five carbon atoms connected to four oxygen atoms. The 
natural carbobicyclic clemdane diterpenoids 1 and 2 exhibit antibiotic and antitumour activities which may well 

be associated with their sidechain? In connection with our stmcture-activity studies, we required a flexible 
route directed towards clerocidin 1 and its structural analogues. The synthesis of suitable precursors of the 

carbobicyclic decalin portion has been completed4 

We now report on [i] an examina tion of diastereoselection in the epoxidation of chiral hydroxyenones 5 

yielding the syniepoxides 6 and the an&-epoxides 7 and [ii] approaches towards the diastereospecific 
synthesis of the model compound 3. 
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Hydroxyenones 5 am readily available from aldehydes and methylvinyl ketone by the Bayhs-Hillman 

reaction6 [Scheme 11. As reported by Dmwes, Freese, Emslie, and Roos,7 we have also found that 
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3-hydroxyquinuclidine is a mom efficient catalyst than quinuclidine or DAMJ18 The key transformation 

[S + syn-epoxides 6 + anti-epoxides 71 pable 11 may be regarded as a hybrid of Sharpless 

epoxidationg of allylic alcohols and WeiaScheffer epoxidatio~n~~ of @-unsaturated ketones. At first sight 
these two reactions am incompatible: the Sharpless epoxidation of allylic alcohols is not normally achievable 
when the a&ene bears electron-withdrawing substituents, whereas the Weitx-Scheffer reaction involves 

nucleophilic attack by pemxy-anions F-I -O-O- or R&O-j upon the alkene which is polarised by one or 
more electron-withdrawing substituents. We have now established that chiral hydroxyenones 5 are, in fact, 
smoothly epoxidised under Sharpless reaction conditions and that the transformation is remarkably diastereo- 
selective. This extension of Shatpless methodology has interesting synthetic and mechanistic implications. 
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Epoxidation of these hydroxyenones 5a - Sd has been examined under a variety of conditions. No 
oxidation was observed with m-chlomperbenxoic acid [entry 41. However, epoxidation of the racemic 
hydroxyenones [Sa - Sd] w normally under the base-catalysed conditions associated with the 

Weitx-Scheffer reaction [entries 1 - 31. The products were mixtures of the racemic syn5-epoxides 6 and 

anti5-epoxides 7. Under these conditions [entries 1 - 21 or by chiral phase-transfer catalysis1 1 [entry 31, the 
formation of the anti-epoxides 7 was slightly favoured. The relative configurations of the syrr-epoxide 6d 
and the anti-epoxide 7d were established by their conversion into the crystalline derivatives whose X-ray 
crystal structures are shown below. The syn-epoxide 6d and the anti-epoxide 7d were used as reference 
compounds for the assignment of relative configuration to the epoxides 6a - 6c and 7a - 7c by comparison 

of their lH-NMR spectra. 

6d-p-bromobenxoate 7d-henxoate 
[m.p. 71-73 ‘Cl [mp. 79-80 ‘Cl 
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Conditions 

HzOs / NaOH / MeOH / 0°C 

TBHP/NaOH/MeOH/-4O”C 

BQBra/ CHPa/ To1 / NaOH / -20’d 

mCPBA / CH$la / 2O’C / 3 days 

Ti(Oi-pr)4 / TBHP / CHaClz / -15X 

Ti(Oi-Pr)d / TRHP / CH&!la / -1X 

Ti(Oi-Rr)4 / TBHP / CHaC12 / -1X! 

Ti(OLPr)4 / TBHP / CH&lz / -1X 

OH 0 

Yields 

76% 

70% 

78% 

78% 

63% 

72% 

70% 

Syn-6 / Anti-7 

40:60 

33 : 67 

40:60 

- 

1OOb 

1OOb 

1OOb 

1OOb 

a : BQBr = N-benxyl quininium bromide and CHP = cumyl hydropemxide 
b : the anfidiastereoisomer 7 was not detected (‘H NMR) in the crude reaction product 

In remarkable contrast with the low diastereoselectivity exhibited in the favoured formation of the 
anti-epoxides 7 [Table 1, entries l-31, the diastereospecific formation of syn-epoxides 6 was 
observed under Sharpless conditions [Table 1, entries 5 - 83. The presence of the allylic hydroxyl 
group is essential for the success of this syn-epoxidation. No reaction was observed in the attempted 
Sharpless epoxidation of the 0-trimethylsilyl derivative of hydroxyenone Sd. We propose that coordination of 
the titanium atom to the allylic hydmxyl and to the carbonyl oxygen atom generates a six-mernbemd chelate in 
which the titanium atom is also coordinated to the hydmperoxide. Internal oxygen atom transfer in this organo- 
titanium intermediate then leads stereospecifically to the syn-epoxides 6. The possibility of kinetic 
resolution of racer& 5 leading to the enantiospecific formation of synepoxides 6 using enantiomerically 
pure chiral Sharpless reagents is under experimental scrutiny. 

Oxidation [Se02. dioxan. b.p., 24 h] of the O-acetate of the syn-epoxide 6d gave the corresponding 

O-acetate of the model compound 3, which was chsracterised as the quinoxahne derivative 4 
[m.p. 107-109 ‘Cl. 
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