384 Papers SYNTHESIS

Alkylation of Methyl Dihydrofurancarboxylates

Takamasa Kinoshita,* Madoka Hirano, Noritaka Yoshida

Department of Chemistry, Faculty of Science, Osaka City University, Sumiyoshiku, Osaka 558, Japan

Methyl 3-alkyl-2,3-dihydro-3-furancarboxylates were prepared by the alkylation of methyl 2,3-dihydro-3-furancarboxylate using lithium diisopropylamide as the base, and alkyl halides, acetone or benzaldehyde as the alkylating agent. Likewise alkylation of methyl 2,5-dihydro-2-furancarboxylate gave the corresponding 2-alkylated products.

In a previous paper, ¹ we reported the preparation of methyl 2,3-dihydro-3-furancarboxylate (1) and methyl 2,5-dihydro-2-furancarboxylate (2) via the Birch reduction of 3- and 2-furancarboxylic acids, respectively. The Birch reduction of furancarboxylic acids provides a useful entry towards the total synthesis of natural products, for example, furanomycin, ² apiose, ³ and dihydrostreptose. ⁴ Birch and Slobbe have reported that the reduction of 2-furancarboxylic acid with lithium in liquid ammonia by the addition of an alkyl halide, rather than being quenched by a proton source, yields the products of reductive alkylation. ⁵ However, the reduction of 3-furancarboxylic acid proceeded with β -elimination and ring opening to give a hydroxy lactone ⁶ in place of the alkylation product.

The introduction of an alkyl group into 3-position of 2,3-dihydro-3-furancarboxylic acid is very useful as they

3, 4	RX	R
a	MeI	Me
b	EtI	Et
c	BuI	Bu
d	allyl	allyl
e	i-PI	<i>i</i> -Pr
f	PhCH ₂ I	PhCH ₂
g	CH₃COCH₃	$(CH_3)_2C(OH)$
ĥ	PhCHO	PhCH(OH)

Table 1. Compounds 3a-h Prepared

Prod- uct	Yield ^a (%)	bp (°C)/ Torr	Molecular ^b Formula	1 H-NMR (CDCl $_{3}$ /TMS) δ , J (Hz)	¹³ C-NMR (CDCl ₃ /TMS) δ ^e
3a	86	65-67/20	C ₇ H ₁₀ O ₃ (142.2)	1.40 (s, 3 H, CH ₃), 3.72 (s, 3 H, CO ₂ CH ₃), 4.01 (d, 1 H, $J = 9.3$, H-2), 4.75 (d, 1 H, $J = 9.3$, H-2), 5.03 (d, 1 H, $J = 2.7$, H-4), 6.34 (d, 1 H, $J = 2.7$, H-5)	24.7 (CH ₃), 52.4 (CO ₂ CH ₃), 53.0 (C-3), 78.3 (C-2), 105.7 (C-4), 146.7 (C-5), 175.6 (CO ₂ CH ₃)
3b	54	85-87/30	C ₈ H ₁₂ O ₃ (156.2)	0.85 (t, 3 H, $J = 7.6$, CH_2CH_3), 1.75 (m, 2 H, CH_2CH_3), 3.72 (s, 3 H, $CO_2\overline{C}H_3$), 4.09 (d, 1 H, $J = 9.3$, H-2), 4.71 (d, 1 H, $J = 9.3$, H-2), 5.01 (d, 1 H, $J = 2.7$, H-4), 6.34 (d, 1 H, $J = 2.7$, H-5)	9.0 (CH ₂ CH ₃), 31.0 (CH ₂ CH ₃), 52.1 (CO ₂ CH ₃), 58.0 (C-3), 75.9 (C-2), 103.6 (C-4), 146.7 (C-5), 175.0 (CO ₂ CH ₃)
3c	72	103°/11	$C_{10}H_{16}O_3$ (184.2)	0.89 (t, 3H, CH ₃), 1.52 (m, 6H, CH ₂), 3.71 (s, 3H, CO ₂ CH ₃), 4.08 (d, 1H, $J = 9.3$, H-2), 4.71 (d, 1H, $J = 9.3$, H-2), 5.01 (d, 1H, $J = 2.7$, H-4), 6.32 (d, 1H, $J = 2.7$, H-5)	13.8 (CH ₃), 22.8 (t, CH ₂), 26.9 (t, CH ₂), 37.9 (t, CH ₂), 52.0 (CO ₂ CH ₃), 57.4 (C-3), 76.2 (C-2), 104.0 (C-4), 146.5 (C-5), 175.0 (CO ₂ CH ₃)
3d	85	97–98/25	C ₉ H ₁₂ O ₃ (168.2)	2.48 (dq, 2H, $J = 7.0$, 14.0, $CH_2 = CHC\underline{H}_2$), 3.72 (s, 3H, CO_2CH_3), 4.15 (d, 1H, $J = 9.5$, H-2), 4.69 (d, 1H, $J = 9.5$, H-2), 5.01 (d, 1H, $J = 2.7$, H-4), 5.14 (d, 2H, $C\underline{H}_2 = CH$), 5.48–5.85 (m, 1H, $J = 9.0$, 16.0, $C\underline{H}_2 = C\underline{H}$), 6.35 (d, 1H, $J = 2.7$, H-5)	(CO_2CH_3) , 52.3 (CO_2CH_3) , 57.2 (CO_3CH_3) , 57.2 (CO_3CH_3) , 57.5 (CO_3CH_3) , 57.2 (CO_3CH_3) , 118.7 (CO_3CH_3) , 128. (CO_3CH_3) , 147.1 (CO_3CH_3)
3e 3f	trace 68	148°/10	$C_{13}H_{14}O_3$ (218.3)	3.05 (q, 2H, CH_2Ph), 3.67 (s, 3H, CO_2CH_3), 4.25 (d, 1H, $J = 9.6$, H-2), 4.62 (d, 1H, $J = 9.6$, H-2), 5.03 (d, 1H, $J = 2.7$, H-4), 6.33	44.0 (CH ₂), 52.0 (CO ₂ CH ₃), 58.7 (C-3), 75.6 (C-2), 104.0 (C-4), 126.8, 128.2, 129.5, 136.5, 147.0 (C-5),
3g	78	130°/12	C ₉ H ₁₄ O ₄ (186.2)	(d, 1H, $J = 2.7$, H-5), 7.20 (m, 5H, Ph) 1.19 (s, 6H, C(CH ₃) ₂), 3.07 (s, 1H, OH), 3.76 (s, 3H, CO ₂ CH ₃), 4.54 (s, 2H, H-2), 5.05 (d, 1H, $J = 2.7$, H-4), 6.43 (d, 1H, $J = 2.7$, H-5)	174.2 (CO ₂ CH ₃) 25.5 (CH ₃), 25.6 (CH ₃), 52.3 (CO ₂ CH ₃), 66.0 (C-3), 73.1 (s, C-OH), 73.8 (C-2), 100.6 (C-4),
3h	88	solid ⁴	C ₁₃ H ₁₄ O ₄ (234.2°)	2.80 (s, 1H, OH), 3.69 (s, 3H, CO_2CH_3), 4.58 (s, 2H, H-2), 5.00 (d, 1H, $J = 2.7$, H-4), 5.03 (m, 1H, $CHOH$), 6.47 (d, 1H, $J = 2.7$, H-5); 2.68 (s, 1H, OH), 3.72 (s, 3H, CO_2CH_3), 4.58 (d, 1H, $J = 10.0$, H-2), 4.65 (d, 1H, $J = 10.0$, H-2), 5.03 (d, 1H, $J = 2.4$, H-4), 5.07 (m, 1H, $CHOH$), 6.29 (d, 1H, $J = 2.4$, H-5)	148.1 (C-5), 175.2 (CO ₂ CH ₃) 52.3 (CO ₂ CH ₃), 64.3 (C-3), 72.6 (C-2), 76.2 (d, CHOH), 100.8 (C-4), 126.6, 128.0, 128.2, 139.2, 149.1 (C-5), 173.4 (CO ₂ CH ₃); 52.5 (CO ₂ CH ₃), 64.0 (C-3), 72.9 (C-2), 75.8 (d, CHOH), 100.2 (C-4), 126.8, 127.9, 128.2, 139.5, 148.8 (C-5), 173.9 (CO ₂ CH ₃)

^a Yield of isolated pure product.

d Unseparable mixture of erythro/threo 1:2.

are intermediates in the synthesis of 3,3-dialkyl-4-butanolides. As 2,3-dihydro-3-furancarboxylic acid is unstable, we first esterified with diazomethane, and then attempted alkylation of the 3-position of methyl 2,3-dihydro-3-furancarboxylate (1) using lithium diisopropylamide (LDA) as a base (Table 1).

Several of the alkylated compounds were later successfully converted into natural products; i.e., (\pm) -pantolactone and its homologue. These were synthesized from $\bf 3a$ and $\bf 3b$ via the following sequence of reactions: methoxy hydroxylation with 3-chloroperoxybenzoic acid (MCPBA) in methanol, lithium aluminum hydride reduction of the methoxycarbonyl group, tosylate formation of the hydroxymethyl group, lithium aluminum hydride reduction of tosylate and MCPBA/diethyl ether — boron trifluoride oxidation of the cyclic methyl acetal into the γ -lactone, respectively.

In addition to the alkylation of 1, the related isomer 2 was also alkylated under the same reaction conditions to give methyl 2-alkyl-2,5-dihydro-2-furancarboxylates 4 (Table 2).

All reagents were commercially available (reagent grade) and used without further purification. PhCH₂I was prepared according to the literature.⁸ All reactions were carried out in a N₂ atmosphere. THF was dried by distillation from sodium benzophenone ketyl prior to use.

Methyl 3-Alkyl-2,3-dihydro-3-furancarboxylates 3 and Methyl 2-Alkyl-2,5-dihydro-2-furancarboxylates 4; General Procedure:

A magnetically stirred and cooled $(-78\,^{\circ}\text{C})$ solution of LDA, which is prepared from diisopropylamine (4.75 g, 47 mmol) in dry THF (40 mL) and BuLi (1.6 M in hexane, 29 mL, 46 mmol) is used to enolize 1 or 2 (5.3 g, 41.4 mmol) in dry THF (5 mL). After stirring at $-78\,^{\circ}\text{C}$ for 0.5 h, the alkyl halide (55.2 mmol) dissolved in hexamethylphosphoric triamide (HMPT) (2.9 mL, 16.6 mmol) is added via syringe. The mixture is stirred at $-78\,^{\circ}\text{C}$ for 0.5 h, and

^b Satisfactory microanalyses obtained: C, ± 0.18 ; H, ± 0.12 .

^c Bath temperature.

e Recorded at 100 MHz on a JEOL FX-100 Spectrometer.

Table 2. Compounds 4a-g Prepared

Prod- uct	Yield (%) found ^a reported ^b	bp (°C)/ Torr	Molecular ^c Formula	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)	¹³ C-NMR (CDCl ₃ /TMS) δ
4a	84 (75)	82-83/30	C ₇ H ₁₀ O ₃ (142.2)	1.54 (s, 3 H, CH ₃), 3.73 (s, 3 H, CO ₂ CH ₃), 4.76 (m, 2 H, H-5), 5.84 (dt, 1 H, <i>J</i> = 2.3, 6.0, H-4), 6.01 (dt, 1 H, <i>J</i> = 1.5, 6.0, H-3)	24.2 (CH ₃), 52.1 (CO ₂ CH ₃), 75.7 (C-5), 90.1 (C-2), 128.2 (C-4), 130.0 (C-3), 173.6 (CO ₂ CH ₃)
4b	83 (75)	93–94/25	$C_8H_{12}O_3$ (156.2)	0.90 (t, 3H, $J = 7.5$, CH ₃), 1.75–2.02 (m, 2H, CH ₂ CH ₃), 3.74 (s, 3H, CO ₂ CH ₃), 4.75 (dt, 2H, $J = 1.7$, 2.2, H-5), 5.79 (dt, 1H, $J = 2.2$, 6.0, H-4), 6.00 (dt, 1H, $J = 1.7$, 6.0, H-3)	7.8 (CH ₃), 30.4 (CH ₂ CH ₃), 52.1 (CO ₂ CH ₃), 76.2 (C-5), 93.8 (C-2), 128.6 (C-3), 128.4 (C-4), 173.6 (CO ₂ CH ₃)
4c	37 (-)	118-120/30	$C_{10}H_{16}O_3$ (184.2)	0.89 (t, 3H, CH ₃), 1.30–1.40 (m, 4H), 1.70–2.02 (m, 2H), 3.73 (s, 3H, CO ₂ CH ₃), 4.72–4.76 (m, 2H, H-5), 5.80 (dt, 1H, $J = 2.3$, 6.0, H-4), 6.01 (dt, 1H, $J = 1.5$, 6.0, H-3)	13.9^{2} (CH ₃), 22.7 (CH ₂), 25.7 (CH ₂), 37.1 (CH ₂), 52.0 (CO ₂ =CH ₃), 76.0 (C-5), 93.4 (C-2), 128.5 (C-4), 129.0 (C-3), 173.6 (CO ₂ CH ₃)
4d	72 (68)	110-115/35	C ₉ H ₁₂ O ₃ (168.2)	2.62 (dq, 2H, J = 7.0, 14.0, CH_2 = $CHC\underline{H}_2$), 3.71 (s, 3H, CO_2CH_3), 4.73 (br s, 2H, H-5), 5.07 (d, 2H, J = 16.0, $C\underline{H}_2$ = CH), 5.50–5.92 (m, 2H, H-4, CH_2 = $C\underline{H}$), 5.98 (dt, 1H, J = 2.7, 9.0, H-3)	41.9 (CH ₂ =CHCH ₂), 52.1 (CO ₂ =CH ₃), 76.2 (C-5), 92.9 (C-2), 118.6 (CH ₂ =CH), 128.4 (C-4), 128.9 (C-3), 132.0 (CH ₂ =CH), 172.8 (CO ₂ CH ₃)
4e	20 (95)	102-104/25	C ₉ H ₁₄ O ₃ (170.2)	0.89 [t, 6H, $J = 6.5$, (CH ₃) ₂ CH], 2.30 [quint, 1H, (CH ₃) ₂ CH], 3.74 (s, 3H, CO ₂ CH ₃), 4.70 (brs, 2H, H-5), 5.70-5.81 (m, 1H, H-4), 5.98 (dd, 1H, $J = 1.3$, 6.0, H-3)	16.2 (CH ₃), 17.2 (CH ₃), 34.3 (CH), 52.0 (CO ₂ CH ₃), 76.5 (C-5), 96.7 (C-2), 128.1 (C-3), 128.7 (C-4), 173.6 (CO ₂ CH ₃)
4f	67 (75)	140 ^d /3	C ₁₃ H ₁₄ O ₃ (218.3)	3.15 (q, 2H, PhC \underline{H}_2), 3.69 (s, 3 H), 4.42 (d, 1 H, $J = 13.2$, H-5), 4.69 (d, 1 H, $J = 13.2$, H-5), 5.84 (s, 2H, H-3, H-4), 7.21 (s, 5H, Ph)	43.4 (PhCH ₂), 52.2 (CO ₂ CH ₃), 76.2 (C-5), 93.7 (C-2), 126.6 (Ph), 127.8 (Ph), 128.2 (C-3), 129.1 (C-4), 130.3 (Ph), 172.9 (CO ₂ CH ₃)
4 g	92 (-)	98-100 ^d /3	C ₉ H ₁₄ O ₄ (186.2)	1.19 (s, 3 H, CH ₃), 1.28 (s, 3 H, CH ₃), 3.28 (s, 1 H, OH), 3.77 (s, 3 H, CO ₂ CH ₃), 4.78 (q, 2 H, J = 14.0, H-5), 5.95 (dt, 1 H, J = 2.0, 7.0, H-4), 6.10 (dt, 1 H, J = 1.5, 7.0, H-3)	23.8 (CH ₃), 25.1 (CH ₃), 52.1 (CO ₂ CH ₃), 74.3 [(CH ₃) ₂ C(OH)], 76.8 (C-5), 97.8 (C-2), 126.7 (C-3), 129.7 (C-4), 173.2 (CO ₂ CH ₃)

^a Yield of isolated pure product.

then at 0 °C for 10 min, and finally quenched by addition of sat. aq NH₄Cl (80 mL). The product ix extracted with Et₂O (3 × 60 mL), then washed with brine (100 mL), dried (Na₂SO₄), and concentrated *in vacuo* to give a brown oil which is purified by distillation to afford the product 3 or 4 (Tables 1, 2).

The authors are greatly indebted to Mr. Junichi Goda for the microanalyses.

Received: 6 October 1990; revised: 3 January 1991

- (1) Kinoshita, T.; Miyano, K.; Miwa, T. Bull. Chem. Soc. Jpn. 1975, 48, 1865.
- (2) Semple, J. E.; Wang, P.P.; Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980, 102, 7505.
- (3) Kinoshita, T.; Miwa, T. Carbohydr. Res. 1973, 28, 175.
- (4) Kinoshita, T.; Miwa, T. Bull. Chem. Soc. Jpn. 1978, 51, 225.
- (5) Birch, A.J.; Slobbe, J. Tetrahedron Lett. 1975, 627.
- (6) Slobbe, J. Aust. J. Chem. 1976, 29, 2553.
- (7) Kinoshita, T.; Hirano, M.; Miyake, H. J. Heterocycl. Chem., in press.
- (8) Tipson, R.S.; Clapp, M.A.; Cretcher, L.H. J. Org. Chem. 1947, 12, 133.

b Isolated as cyclohexylamine salt.⁵

^c Satisfactory microanalyses obtained: $C \pm 0.45$, $H \pm 0.17$.

^d Bath temperature.