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ABSTRACT : The new l-+3 /I-linked cycloglucohexaose derivatives (1) and (2) have been prepared from I f-0 benzyli- 

&ne-46-O-elhyli&nc4_D3lucopyranosc and its derivadves as the monomeric building blocks, using as a key reacdon their 

phorobrominadve conversion into 2-O-benzoyl-glucosyl bromides. 

l.2-0-Benxylidene-4.6-0~ylidene&copymnose(3) and galactopymnose derivatives are excellent building blocks for the 

synthesis of some oligosaccharides because of the ease with which they can be photobrominatively convutcd into glycosyl 

bromides’ . In this leuer we deploy this reaction on the g&o-derivative to prepare 1.3~plinked homoglucans. Moreover be- 

(1) R=H (2) R = Bz 

cause tic bromination may be carried out on 1.2~benxylidene oligosaccaccharides possessing a fr# hydroxyl gmup the forma- 

tion of cycloglycans is possible. 

Intcrcst in these molecules2 stems from the ability of the naturally occurring cyclodextrins (1.4-a-Iii glucopymno~) CDs 

U, form within their highly structured cavities inclusion complexe.?. investigations of which have been aided by chcmically 
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moditicd CDs4. Recently CDs have been chemically synthe&cds including those with an unnatural mMno-configuration6 

Tkrc is however interest in cycloglycans formed by altemativcly linked pyranose rings, with enclosed spaces of a similar size 

and flexibility that are topologically different. The cycloglycan derivative (1) represents the fust such example and the 

synthesis’ of it is different in that we ptcqosc to generate a glycosylating agent at the ‘head’ of an oligosaccharide in the pres- 

cncc of ooc free hydroxyl in its ‘tail’. Others 5*6** have used the reverse process. 

(3) R= H H 
Br 

(5) R=CA 

(4) R = CA 

CA = CHZCICO 

n=o n=l n=2 n=4 

(6) R1,R2=PhCH02. R3=CA 

(7) R1,R2=PhCH02, R3=H 

(8) R’=Br. R’=OBz, R3=CA 

(9) R1,R2=WH02 R3=CA (12) R1,R2-PhCHO2, R3&A (14)R1,R2GhCH02, R3-CA 

(l(0R1R2=PhCH02, R3=H (13) R’=Br. R2=OBz. R3sCA (Is) R1,R2+hCHOT R3-Ii 

(1 l)Rl=Br, R2=OBz. R’=CA (16) &Br, R2=OBz,R3=H 

(17) R’s 8-0Me.R2=OBx. R3=H 

Glycosylation of (3) in the pm of silver trifh~te with tbs a-bromo sugar (5). which is zadily prepared from the 12-ben- 

zylidcne monochloroacetate (4) by sqoential photobtcmination sod anometisationl gave the fl-linked disaccharide. (6) in 84% 

.7 
+ There are cxxmpkx where the cavities will be less rt~~tured. For cxmpl+ the 1.2~linked gl- ~OIII~~ 

and chc synthetic 1.6~Lied glucohumru*. These are more flexible SUUCMU because of the site (hqdc~w) of the forma and 

lhe caocyclic linkages involved on lhe Ialla. 
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yield. phombmmbu&~ and s&scqurznt mmm&&on of this ma&al gave in 76% yield the U-bromo-disaccharid~ (8). 

which was ‘he&’ extended by fur& nealmen with (3) under the same g1ycosybUing condilions lo give in 92% yield a lrkac- 

char& (9) in ,which OK new intcrsaccharidc linkage was again t?xpcckd to be g 8s shown in (9). However Ihe meaDlped 

J 1’2, value of X&x was surprisingly small and consequently lbe configumtion anlkipated was not confiied. The presence 
. 

of he neighbouring l&xoyioxy group at C-2 makes an a-glycosldic link at C-l improbable but a lii through an crtho - 

ester at C-l’.-2 appcamd a posslbllity. However this was cxcludtd since the 13C-nmr spccmun exhiimd two benz~yl c&o- 

nyl carbons and no signal for an or&ester quaternary carbon which occurs at 612Oppm in authentic o&oesmr conlaining oli- 

psacchnridcs. TIES were prepared by glycosyhuing in dre presence of sym-collidii, but otknvise m&r Ihe comhdons prc- 

viously described. 

Thcmfom the~configuration of intcrsaccharide linkages bad to be established by an altcrnativc synthetic route which involved 

‘tail cxmnsion’ of a disaccharide. llms the hydroxy p-lii disacchsride (7) obkncd by dcchl~tylatlcm of disaccharide 

(6) in 80% yield was glycosylatcd with the a-bromo monosacchsridc (5). A trisaccharide was obtabud in 95% yield identical 

with lc matcriul under investigation. Conscqucndy it must have Qc p$-inmrsaccharide lii as shown in (9). This ma@- 

rial was then used lo produce he tctmsaccharlde (12) by extending the chain at its head. Thus (9) was a-bromhuued and the 

bromide (11) formed in 74% yield was used to glycosylam the 3-hydroxy monomer (3) in 86% yield. By coupling the bro- 

modisaccharide (8) with tbs 3’-hydroxydiiharidc (7) an identical monsaccharide was pmduccd in 85% yield, dms confll- 

ing that tie telramer (13) was &~.lMiicd. 

Hexasnccharidc (14) was reached in two ways. The If-benxylidcne mnasaccharidc (12) was converted ln the usual fashii 

into the a-bromomtrssaccharide (13) in 73% ylchi. Thii was then used 10 glycosylam the 3’~hydroxy-diibaride (7) giving 

after chromatography material in 88% yield lhat was identical with the product obmincd by Um coupling of two hipaccllarider 

: the 3” -hydroxy trimer (lo), obtained by selective dcacylation of (9). and the bromotrisaccharidc (11). Thus Iht hcxasac- 

char& (14) is all g-linked. 

Up to this stage all Ihe photobmminations / mns have been carried out on fully protected 1.2~benxylii 

sugus. It was now necessary to asccrmin if a 1.2~2-0~benxylidenc oligosaccharkle with one free hydmxyl in the tail. but other- 

wise fully prom&d. could be a-brominated at its ‘head’. To this end the ch1oroacetylhcxasaccharide (14) was sclcctlvely 

Qpromcmd and me 3-hydroxyhexamcr (15) was photobrominatod and subsequently anom&ed in ti usual way. ‘Ibe prod- 

uct obtained was chromatographed and shown to be a-bromo-hydroxy-hcxharide (la). This was vcrifrcd by convuting 

it IO iu &methyl glycoside (17) wilh methanol in ibe proscnce of silver trillam in 78% yield from (14). The. same material 

was rlso produced in similar yield from the crude bromination product, Im s~~cture was derived from its ms.. and ‘H-and 

13C-nmr spccna 

The crucial intramolecular glycosylation of the hydroxybromide (16) was then carried out on a dilute solution (1.0%) in 

dichlormethane in Ihe presence of silver trillate which gave after chmmatogmphy the fully piocecmd cyclohewws (2) mp 

221-3’ in 30% yield. ‘Ibe strucnue of (2) rests on its elemcntaJ composhlon. FAB ms and iLp very simple. ‘Ii- and 13C- MU 
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spectra. reminiscent of that of ii monomer thus indicating lhe anticipated six fokl symmetry in molecule (2). Debenxoylation 

of compound (2) under Zemplen conditions gave the 2-hydroxy_4&ethylidene cyclohwraose (1) mp 2068’. Ihe sodium 

iodide doped FAB-ms suggests thm this material is able fo associate with three sodium atoms. This and olher host/guest 

propcnics possesserl by compound(l) are currently being investigated before hs Enal deprotection to the trihydroxyhexaose. 
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