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Abstract: Carbohydrate derivatives were employed as precursors in the synthesis of stereodeflned 

cyclopentanols. This rapid conversion was effeeted by a zinc-assisted Grob-fragmentation, followed by 

a stereocontroUed SmI2-mediated cyclisation. 

The use of carbohydrates as precursors for the synthesis of cyclopentane derivatives has been explored 

only relatively recently. 1 Since then, siL,-ificant attention has been paid to this strategy, resulting in many new 

syntheses of  substituted, stereodefined cyclopentanes. 2 A number of  these synthetic routes have been directed 

toward the synthesis of  natural products, many of which are bioactive (and economically important). 3 

Several Smlz-based protocols for such conversions (especially at the cye'hsafion step), which proceed 

through acyclic intermediates, have been forthcoming. 4 These reactions have, however, been limited to 

electron-deficient olefins (in ~5,e-unsaturated aldehydes), which minlmi~s the propensity to undergo pinacol 

coupling reactions. 5 Although such cyclisations have been carried out using unactivated alkenes on ~mple 

substrates, 6 the use of analogous carbohydrate derivatives remains unknown. 

In our approach to highly oxygenated stereodefined cyclopentanols, we sought a rapid means of 

preparing the derivatised 5-hexenals (3), which would be employed as substrates for the SmI2-mediated radical 

cyclisation thereof These hexenals 7 were obtained by treatment of the corresponding methyl 6-deoxy-6- 

iodoglycoside (2) with powdered zinc in a 96% aqueous alcohol (ethanol or n-propanol), s in greater than 90% 

yield in all cases (see Scheme 1 for general reaction). The methyl 6-deoxy-6-iodoglycosides (2) were prepared 

in four high-yielding steps from the corresponding methyl glycosides (1).9 
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Each 5-hexenal (3) was treated with SmI2 under dilute conditions in the presence of  a proton source, ]° to afford 

the desired cyclopentanols in good yield (typically above 65%). In this manner the cyclopentanols derived from 

glucose, mannose and galactose were prepared (Scheme 2). 
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Scheme 2 

Cyclic products 5 and 6 were isolated individually in a 2: I ratio. That two products are obtained is the 

result of the existing stereochemistry precluding a 1,2- and 4,5-trans configuration. In the other cases (i.e. 

products from 7 and 10) this type of configuration is possible, and the reaction furnishes these as exclusive 

products. 

Cyclopentanol 9 arises v ia  an initial SmI2-induced elimination of the benzyloxy group c~ to the carbonyl 

functionality. This is the only case in which such an elimination was observed, and presumably occurs due to a 

preferred open-chain conformation that is not conducive to cyclisation. Elimination reactions of this type are 

not unknown in samarium(H) chemistry, 11 and have been used to effect the selective deoxygenation of certain 

carbohydrate derivatives. ]2 A complete mechanism proposed for the establi~ment of cyclopentanol 9 is set out 

in Scheme 3. 

Methyl 2,6-dideoxy-6-iodo-c(,D-glucopyranosides were prepared in four high-yielding steps from I3- 

glucal (Scheme 4). 9'13 These compounds were consecutively treated with zinc and Sml2 as previously 

described, to afford the requisite deoxycyclopentanols in good yield, as single stereoisomers. 
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Scheme 4 

Subsequent man~ulation at the exocyclic carbon (e.g. chain extension or oxidation), via the intermediate 

carbanionic species corresponding to 12 in Scheme 3, would allow a greater number and variety of products to 

be formed in these cyclisations. Such electrophile-quench reactions have been adequately described by 

others. 6"14 

In conclusion, we have devised a rapid and generally applicable means of converting selectively 

substituted carbohydrates into the analogous stereodefined cyclopentanols. 
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