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A series of aroxytetraphenylstiboranes, Ph4SbOAr, were obtained by the reaction of 
pentaphenylstiborane with phenols at ~20 ~ The thermolysis of these compounds gives O- 
or o-C-phenylation products. The thermolysis of stiboranes, which incorporate aryl groups 
containing electron-withdrawing substituents (Ar = 2,4-Br2, 2,4-C12, 2-NO2, 4-OPh) pro- 
duces predominantly simple diaryl ethers of asymmetric structure in 58 %, 90 %, 32 %, and 
60 % yields, respectively. 

Key words: aroxytetraphenylstiboranes, thermal decomposition; X-ray study. 

Phenoxytetraphenylstiborane obtained by treatment 
of pentaphenylstiborane with phenol undergoes decom- 
position when heated to 180 ~ to give triphenylstiborane 
and diphenyl ether in quantitative yields. 1 Obviously, 
this reductive elimination can serve as a base for creat- 
ing a method for the synthesis of asymmetric diaryl 
ethers from aroxytetraphenylstiboranes and similar com- 
pounds. In order to determine whether aryl derivatives 
of Sb v can be used in organic synthesis, we obtained a 
series of hitherto unknown aroxy-derivatives of tetra- 
phenylstibonium and analyzed the products of their 
thermal decomposition. 

Aroxytetraphenylstiboranes were synthesized by reac- 
tions of pentaphenylstiborane with phenols in toluene at 

room temperature. The reaction occurred much more 
readily when the number of electron-withdrawing sub- 
stituents in the starting phenol increased, which is prob- 
ably due to a simultaneous increase in its acid proper- 
ties. 

Ph5Sb + ArOH ~ Ph4SbOAr + Phil 

1- -19 

Stiboranes 1--19 synthesized are colorless crystalline 
compounds (excepting the nitro derivatives, which are 
yellow) soluble in aromatic hydrocarbons and in polar 
organic solvents. The highest melting point is observed 
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Table 1. Properties and elemental analysis data for aroxytetraphenylstiboranes of general formula 
Ph4SbOAr 

R1 R2 
\ / 

Ar = 0 - -  R 3 
/ \ 

R5 R 4 

Com- R 1 R 2 R 3 R 4 R 5 M.p. Yield Found (%) Molecular 
po- /~ (%) Calculated formula 

und C H 

1 Br H NO 2 H Br 288 94 49.55 3.00 C3oH22Br2NO3Sb 
49.59 3.03 

2 H H I H H 142 91 55.44 3.67 C30H24IOSb 
55.47 3.70 

3 H H OMe H H 142 90 67.11 4.78 C31H2702Sb 
67.27 4.88 

4 Br H Br H H 163 95 52.76 3.35 C3oH23Br2OSb 
52.86 3.38 

5 H H NO 2 H H 151 85 63.31 4.20 C30H24NO3Sb 
63.38 4.23 

li NO 2 H NO 2 H H 188 88 58.68 3.73 C30H2sN2OsSb 
58.73 3.75 

7 NO 2 H H H H 156 95 C30H24NO3Sb * 

8 H H C(O)H H H 173 89 C31H2502Sb* 

9 Br H C(O)H H H 153 86 58.95 3.78 C31H24BrO2Sb 
59.05 3.81 

10 Br H Bu t H Br 195 92 55.12 4.11 C34H3]Br2OSb 
55.36 4.21 

11 Br H Me H Br 195 90 53.47 3.51 C31H25Br2OSb 
53.53 3.60 

12 Cl H H H C1 223 93 60.59 3.77 C3oH23C12OSb 
60.81 3.89 

13 CI H CI H H 163 78 60.49 3.81 C30H23C12OSb 
60.81 3.89 

14 H H C1 H H 130 75 64.53 4.28 C30H24C1OSb 
64.57 4.30 

15 H H Bu t H H 105 72 70.26 5.65 C34H33OSb 
70.47 5.70 

16 Bu t H But H H 135 67 71,69 6.41 C38H41OSb 
71.81 6.46 

17 Br Me Bu t H Bu t 192 81 64.07 5.62 C39H42BrOSb 
64.29 5.77 

18 Br H Bu t H Bu t 205 80 63.55 5.54 C38H40BrOSb 
63.87 5.60 

19 Br H Br H Me 211 92 53.41 3.48 C31H25Br2OSb 
53.53 3.60 

Note. The structures of the compounds were also confirmed by their reactions with HC1 in 
ethanol at ~20 ~ resulting in quantitative formation of tetraphenylstibonium chloride and 
substituted phenols. * According to X-ray diffraction analysis. 

in the case of 2 ,6-dibromo-4-ni t rophenoxyte t raphenyl-  
stiborane (1, Table 1). 

We also obtained Sb v compounds  of similar structure 
by treating te t raphenyls t ibonium bromide with sodium 
phenolates or with phenols  in the presence of an accep- 
tot  of  hydrogen bromide in benzene or dioxane. How- 

ever, in this case the yields of the target products were 
lower and did not  exceed 70 %. 

Ph4SbBr + ArONa 

Ph4SbBr + ArOH 
Py 

m, Ph4SbOAr + NaBr 

m, Ph4SbOAr + HBr �9 Py 
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Table 2. Properties and elemental analysis data for products of thermal decomposition of 
aroxytetraphenylstiboranes Ph4SbOAr (220 ~ 2 h) 

Starting Thermolysis Yield Found (%) Molecular 
compo- products (%) Calculated formula 
unds 

C H 

4 2,4-Dibromophenoxybenzene 58 43.53 2 . 1 6  C12HsBr20 
(colorless viscous liquid) 43.90 2.44 

7 2 -Nitrophenoxybenzene 32 66.40 3 . .89  CIaH9NO 3 
(viscous liquid) 66.98 4.19 
2-Nitrophenol 22 

4-Oxophenoxybenzene 60 78.47 4.88 
(colorless viscous liquid) 78.79 5.05 

2,4- Dichlorophenoxybenzene 90 59.93 3.28 
(colorless viscous liquid) 60.25 3.35 

8 C13HloO 2 

13 C12HsCI20 

A modification of the latter synthetic method involv- 
ing treatment of aqueous solutions of a phenol and a 
tetraphenylstibonium halide with an amine makes it 
possible to simplify the procedure for synthesizing ar- 
oxytetraphenylstiboranes and to obtain a chemically pure 
compound after filtration and drying. 

The thermal decomposition of aroxytetraphenylstibo- 
ranes was carried out in the absence of a solvent or in 
toluene at temperatures above the decomposition points. 
It was shown that the direction of the thermolysis of the 
above compounds is determined by the nature and posi- 
tions of substituents at ArO. For example, if the aroxy 
group contains electron-withdrawing substituents, asym- 
metric diaryl ethers are formed. In some cases, the 
reaction products contain not only a diether but also the 
corresponding phenol ,  as in the thermolysis  of  
2-nitrophenoxytetraphenylstiborane 7 (Table 2). 

Ph4SbOAr ~ PhOAr 

It should be noted that the O- and o-C-phenylation 
of phenols described previously for Bi v derivatives 2-4 
resulted in somewhat lower yields of products in the 
case of organoantimony compounds. 

The structures of 2-nitrophenoxytetraphenylstiborane 
(7) and p-formylphenoxytetraphenylstiborane (8) were 
confirmed by X-ray diffraction analysis. The Sb atoms in 
molecules 7 and 8 (Figs. 1 and 2, respectively ) have a 
trigonal-bipyramidal coordination typical of pentacoordi- 
nated Sb v (the sums of angles in the equatorial plane are 
357.6 ~ and 357.2 ~ , while the axial angles are 177.4(2) ~ 
and 171.8(1) ~ for 7 and 8, respectively). As calculations 
show,S, n this type of coordination is somewhat more 
beneficial energetically than the tetragonal-pyramidal 
coordination. The latter type has been observed 7,s only 
in the crystalline structure of nonsolvated pentaphenyl- 
stiborane. On the other hand, antimony has the usual 
trigonal-bipyramidal coordination in a crystal solvate of 
this compound with cyclohexane, PhsSb" 0.5C6H12. 9 

The peculiarities of the structure of trigonal-bipyra- 
midal complexes of group V elements are nicely de- 
scribed by the valent shell electron pair repulsion theory 
(VSEPR). 1~ In accordance with one of the bases of 
this theory, the most electronegative substituents occupy 
the axial positions in the pentagonal-bipyramidal environ- 
ment of the central atom. The equatorial positions in 
complexes 7 and 8 are occupied by phenyl substituents 
(the C(Ph)--Sb--C(Ph)  angles between them are within 
114.3(1)--124.0(1) ~ and 116.6(2)--122.5(2) ~ for 7 and 
8, respectively), while the axial positions contain the 

C(4) 

C(lO 

c(11 

c(22) 

Fig. 1. Structure of molecule 7. 
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C(4) 

c(21) c(15) 

Fig. 2. Structure of molecule 8. 

most electronegative substituents. In fact, the relatively 
more electronegative (with respect to the unsubstituted 
phenyl ring) o-nitrophenoxy group (in molecule 7) and 
p-formylphenoxy group (in molecule 8) are in the axial 
positions. As expected, all angles between the most 
electronegative axial ligand and the equatorial phenyl 
rings are markedly less than 90 ~ (the Oax--Sb--Ceq 
angles are 83.6(1)--86.3(1) ~ and 80.8(1)--87.1(2) ~ in 
structures 7 and 8, respectively). Within the VSEPR 
theory, this is explained by repulsion of the more bulky 
electron pairs of the valent shells of the C atoms of the 
axial and equatorial phenyl rings. Naturally, if the axial 

Table 3. Atomic coordinates (xl0 4) and their 
structure 7 

Atom x y z Uiso/A 2 

Sb(1) 1813(1) 8918(1) 7784(1) 39(1) 
N(1) 3490(5) 12787(4) 7038(4) 73(2) 
O(1) 1552(3)  9891(3) 6500(2) 51(1) 
0(2) 3995(5) 12111(5) 6558(5) 126(3) 
0(3) 4279(5) 13986(4) 7619(4) 103(2) 
C(1) -360(4) 7349(4) 6868(3) 46(1) 
C(2) -748(7) 6806(6) 5774(4) 87(2) 
C(3) -2129(8) 5620(8) 5203(5) 115(3) 
C(4) -3074(6) 5093(5) 5739(5) 85(3) 
C(5) -2691(5) 5672(6) 6834(5)  72(2) 
C(6) -1339(5) 6820(5) 7408(4)  58(2) 
C(7) 2031(4) 8019(4) 9085(4)  46(2) 
C(8) 1577(5)  6608(4) 8837(4) 55(2) 
C(9) 1657(6)  5993(5) 9640(5) 70(2) 
COO) 2209(6) 6810(6) 10717(5) 70(3) 
C(ll) 2667(5) 8221(5) 10989(4) 61(2) 
C(12) 2575(4) 8820(4) 10175(3) 51(2) 
C(13) 3522(4) 8652(4) 7223(3) 46(2) 

positions contain groups with equal electronegativities 
(e.g., in Ph3(SbOMe)2), 12 all angles between the axial 
and equatorial substituents are close to 90 ~ (the 
Oax--Sb--Ceq angle is within 85.5(4)--93.4(4)~ How- 
ever, if the substituents at the axial positions differ (as in 
molecules 7 and 8), the equatorial substituents deviate 
towards the most electronegative axial substituent (all 
bond angles Oax--Sb--Ceq in the structure of Ph4SbOMe 
are also within 81.5(5)--89.5(4)~ 12 

Th e  Sb--Ceq distances in both structures are shorter 
than Sb--Cax (2.115(4)--2.123(3) and 2.181(5) Ain mol- 
ecule 7; 2.1t8(4)--2.139(5) and 2.188(5) A in molecule 
8, respectively). The O--C(Ph) bond lengths are the 
same within the experimental error (1.317(6) and 
1.321(5) A for 7 and 8, respectively). Thus, neither the 
position nor the nature of the substituent in the phenoxy 
group substantially affects the O--C(Ph) bond. The 
Sb--O distance in molecule 7 is somewhat greater (by 
0.019 A) than that in 8, which agrees with the smaller 
Sb--O--C(Ph) angle in 7 (the Sb--O bond lengths in 
structures 7 and 8 are 2.221(4) and 2.202(3) A, while 
the Sb--O--C(Ph) angles are 123.8(3) ~ and 129.6(3) ~ 
respectively). 

Experimental 

1H NMR spectra were recorded on a Tesla BS-567A NMR 
spectrometer (100 MHz). Acetone-d 6 or CDC13 were used as 
solvents, and HMDS served as the internal standard. IR 
spectra were recorded on a UR-20 spectrophotometer (suspen- 
sions in Vaseline oil, liquid films, or solutions in CHC13 
between KBr plates). 

Aroxytetraphenylstiboranes were synthesized in evacuated 
glass tubes according to the following procedures. 

A. A mixture of pentaphenylstiborane (5 retool) and 
2-nitrophenol (5 retool) in toluene (10 mL) was kept for 24 h at 
-20 ~ The crystals that formed were washed with hexane and 
dried. 

equivalent isotropic temperature factors (xlO 3) in 

Atom x y z Uiso/A 2 

C(14) 4363(5) 8115(5) 7762(4) 59(2) 
C(15) 5448(5) 7875(6) 7397(4) 71(2) 
C(16) 5670(5) 8134(5) 6480(5) 68(2) 
C(17) 4838(6) 8662(6) 5913(4) 73(3) 
C(18) 3756(5) 8925(5) 6283(4) 59(2) 
C(19) 2261(4) 10875(4) 8839(3) 39(1) 
C(20) 3727(4) 11868(4) 9299(3) 48(2) 
C(21) 4045(4) 13147(4) 10014(4) 55(2) 
C(22) 2918(5) 13433(4) 10244(4) 58(2) 
C(23) 1454(5) 12453(5) 9777(3) 57(2) 
C(24) 1123(4) 11170(4) 9083(3) 48(2) 
C(25) 1007(4) 10814(4) 6537(3) 46(2) 
C(26) 1900(4) 12254(4) 6842(3) 49(2) 
C(27) 1293(6) 13210(5) 6990(4) 67(2) 
C(28) -187(7) 12783(6) 6787(5) 76(3) 
C(29)-I104(5) 11387(6) 6442(4) 71(2) 
C(30) -533(5) 10430(5) 6320(4) 59(2) 
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Table 4. Atomic coordinates (xl04) and their equivalent isotropic temperature factors (x 103) 
structure 8 

Atom x y Z Uiiso/,~, 2 Atom x y Z Uiso/,~, 2 

Sb(1) 3002(1) 2426(1) 8389(1) 38(1) C(15) 7118(6) 3966(4) 8767(4) 60(2) 
O(1) 4297(4) 1294(2) 8809(2) 50(1) C(16) 7617(6) 3916(4) 9514(4) 62(2) 
0(2) 1842(6) -2466(2) 8087(4) 84(2) C(17) 6835(7) 3426(4) 9964(3) 66(2) 
C(1) 1280(5) 1988(3) 9017(3) 42(1) C(18) 5581(6) 2960(4) 9650(3) 55(2) 
C(2) 1662(6) 1549(4) 9675(3) 58(2) C(19) 3009(6) 1933(3) 7297(3) 45(2) 
C(3) 526(8) 1220(4) 10047(4) 69(2) C(20) 4213(6) 1417(3) 7133(3) 57(2) 
C(4) -1019(7) 1332(4) 9752(4) 69(2) C(2t) 4168(8) 1084(4) 6436(4) 70(2) 
C(5) -1384(6) 1746(4) 9080(4) 61(2) C(22) 2960(10) 1247(5) 5882(4) 81(3) 
C(6) -235(6) 2095(3) 8712(3) 50(2) C(23) 1797(9) 1736(4) 6040(4) 76(3) 
C(7) 1977(5) 3653(3) 8066(3) 43(1) C(24) 1785(7) 2094(4) 6746(3) 58(2) 
C(8) 2307(6) 4072(3) 7437(3) 55(2) C(25) 3934(5) 489(3) 8713(3) 40(1) 
C(9) 1951(7) 4928(4) 7343(4) 65(2) C(26) 5019(5) -125(3) 8993(3) 47(2) 
C(10) 1277(7) 5355(3) 7868(4) 65(2) C(27) 4709(5) -970(3) 8881(3) 48(2) 
C(ll)  928(7) 4939(3) 8491(4) 63(2) C(28) 3306(5) -1249(3) 8504(3) 41(1) 
C(12) 1288(6) 4103(3) 8594(3) 52(2) C(29) 2216(5) -636(3) 8233(3) 46(2) 
C(13) 5047(5) 3011(3) 8899(3) 41(1) C(30) 2510(6) 199(3 )  8329(3) 50(2) 
C(14) 5838(5) 3523(4) 8455(3) 52(2) C(31) 3006(7) -2143(4) 8390(3) 60(2) 

in 

Table 5. Main bond lengths (d) in molecules 7 and 8 

Molecule 7 Molecule 8 
Bond d/~ Bond d/A 

Sb(1)--O(1) 2.221(4) Sb(1)--O(1) 2.202(3) 
Sb(1)--C(1) 2.123(3) Sb(1)--C(1) 2.139(5) 
Sb(1)--C(7) 2.181(5) Sb(1)--C(7) 2.188(5) 
Sb(1)--C(13) 2.121(5) Sb(1)--C(13) 2.117(4) 
Sb(1)--C(19) 2.115(4) Sb(1)--C(19) 2.121(5) 
O(1)--C(25) 1.317(6) O(1)--C(25) 1.321(5) 
N(1)--O(2) 1.197(8) O(2)--C(31) 1.206(8) 
N(1)--O(3) t.220(5) 
N(1)--C(26) 1.449(6) 

B. A solution of tetraphenylstibonium bromide (5 retool) 
and sodium 2-nitrophenolate (5 mmol) in dioxane (10 mL) 
was kept at -20 ~ The solvent was removed in vacuo. The 
residue was repeatedly extracted with hot benzene, whereupon 
crystals of 7 precipitated, yield 62 %. 

C. A solution of 2-nitrophenol (5 mmol) and pyridine 
(6 mmol) in water (20 mL) was added with stirring to a hot 
solution of tetraphenylstibonium bromide (5 mmol) in water 
(100 mL). The mixture was kept for 1 h at 90 ~ and cooled. 
The resulting crystals were filtered off, washed with water, and 
dried, yield 70 %. 

Thermal decomposition of aroxytetraphenylstiboranes was 
carried out in a H-shaped evacuated glass setup. Compound 8 
(5 mmol) was heated for 2 h at 220 ~ The liquid that 
condensed in the cooled part of the setup was chromatographed 
on m1203 (hexane as the eluent) to give 3 mmol (60 %) of 
4-oxophenoxybenzene as a syrupy liquid [IR, v/cm-l: 1780, 
1665, 1260, 1025; 1H NMR (acetone-d6) , 8 :9 .94  (s, 
1 H, C(O)H); 7.9--6.9 (m, 9 H, Ar)] and 1.8 mmol (36 %) 
of 4-oxyphenol [m.p. 117 ~ IR (Vaseline oil), v/cm-l: 3550, 
t630, t560; lH NMR (acetone-d6), 8:9.82 (s, 1 H, C(O)H); 
7.77 (s, 2 H, Ar); 6.96 (s, 2 H, Ar)l. 

X-Ray diffraction experiments were carried out on a Sie- 
mens P3/PC automatic four-circle diffractometer (~(Mo-Kc0, 
graphite monochromator, 0/20-scanning). The crystals of com- 
pound 7 are triclinic, and those of compound 8 are monoclinic; 
at 20 ~ a = 10.194(4) and 8.827(2) ~., b = 10.963(4) and 

Table 6. Main bond angles (o) in molecules 7 and 8 

Molecule 7 Molecule 8 
Angle t0/deg Angle o/deg 

O(1)--Sb(1)--C(I) 86.3(1) O(1)--Sb(1)--C(1) 85.8(1) 
O(1)--Sb(1)--C(7) 177.4(2)  O(1)--Sb(1)--C(7) 171.8(1) 
C(1)--Sb(1)--C(7) 93.8(1) C(1)--Sb(1)--C(7) 97.6(2) 
O(1)--Sb(1)--C(13) 84 .6 (2)  O(1)--Sb(1)--C(13) 80.8(1) 
C(1)--Sb(1)--C(13) 114.3(1) C(1)--Sb(1)--C(13) 122.6(2) 
C(7)--Sb(1)--C(13) 97.6(2) C(7)--Sb(1)--C(13) 91.2(2) 
O(1)--Sb(1)--C(19) 83 .6 (1)  O(1)--Sb(1)--C(19) 87.1(2) 
C(1)--Sb(1)--C(19) 124.0(2) C(1)--Sb(1)--C(19) 118.1(2) 
C(7)--Sb(1)--C(19) 94.2(2) C(7)--Sb(1)--C(19) 97.8(2) 
C(13)--Sb(1)--C(19) 119.3(1) C(13)--Sb(1)--C(19) 116.6(2) 
Sb(1)--O(1)--C(25) 123.8(3) Sb(1)--O(1)--C(25) 129.6(3) 
O(2)--N(1)--O(3) 120.8(5)  O(2)--C(31)--C(28) 127.2(5) 
O(2)--N(1)--C(26) 120.4(4) 
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15.844(5) ~,, c = 13.291(5) and 18.041(5) ~i,, ct = 102.69(2) o, 
13 = 102.t8(2) ~ and 98.32(2) ~ ~, = 111.43(1) o, V =  1278(2) 
and 2497(1) A 3, space groups P I  (Z = 2) and F21/c (Z = 4), 
deale = 1.477 and 1.467 g cm -3 for 7 and 8, respectively. Both 
structures were solved by the direct method and refined by the 
full-matrix least-squares method in the anisotropic approxima- 
tion to R = 0.052, Rw = 0.067 for 4360 reflections with I > 
3c(/) for 7 and to R = 0.043, R w = 0.059 for 4516 reflections 
with I > 3rr(/) for 8. The H atoms in both structures were 
localized on a difference synthesis and refined isotropically. 
The calculations were carried out on an IBM PC computer 
using SHELXTL PLUS programs. 13 Atomic coordinates and 
their equivalent temperatnre factors in structures 7 and 8 are 
given in  Tables 3 and 4, respectively. Main bond lengths and 
bond angles are presented in Tables 5 and 6. 
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