Cyclische Ester und Thioester von Phosphon-, Thiophosphonund Selenophosphonsäuren

Von

M. Wieber und H. U. Werther

Aus dem Institut für Anorganische Chemie der Universität Würzburg

(Eingegangen am 23. Dezember 1967)

Difunktionelle Phosphor(V)halogenide des Typs $\mathrm{CH_3P}(X)\mathrm{Cl_2}$ mit X=S, O, Se werden in benzol. Lösung bei Anwesenheit von Triäthylamin als Chlorwasserstoffacceptor mit aliphatischen 1,2- und 1,3- Diolen sowie mit 1,2- und 1,3- Dithiolen umgesetzt. Es entstehen cyclische Ester und Thioester der Methanphosphon-, Methanthiophosphon- und Methanselenophosphonsäure.

 ${
m CH_3P(X)Cl_2}$ (X = S, O, Se) reacts with aliphatic 1,2- and 1,3-diols yielding cyclic esters of methanephosphonic, methanethio-phosphonic and methaneselenophosphonic acid.

Da wir vor kurzem über die Synthese phosphorhaltiger Heterocyclen aus difunktionellen Phosphor(III)- und Phosphor(V)halogeniden mit aromatischen Diolen und Dithiolen berichten konnten¹, lag es nahe, diese Arbeiten auch auf aliphatische Alkohole auszudehnen.

Bei Umsetzungen von Methylphosphordichlorid mit aromatischen Diolen zeigte die entstehende C—O—P-Ringbildung eine sehr geringe Stabilität¹. Eine Fixierung des freien Elektronenpaares am Phosphor, d. h. ein Übergang zum vierbindigen Phosphorhalogenid als Ausgangsprodukt für die Reaktion mit Diolen führte jedoch zu definierten Produkten.

¹ M. Wieber und J. Otto, Chem. Ber. 100, 974 (1967).

1. Darstellung von CH₃P(O)Cl₂², CH₃P(S)Cl₂³, CH₃P(Se)Cl₂⁴

Methyldichlorphosphin⁵ wird in benzolischer Lösung durch Einleiten von Chlor zum CH₃PCl₄ oxydiert, welches durch nachfolgende Umsetzung mit SO₂ die destillativ leicht trennbaren Reaktionsprodukte CH₃P(O)Cl₂ und SOCl₂ ergibt (Ausbeute: 90% d. Th.).

Einfacher erhält man CH₃P(S)Cl₂ und CH₃P(Se)Cl₂ durch Anlagerung von Schwefel oder Selen an Methyldichlorphosphin. Die Reaktion erfolgt in benzolischer Lösung; geringes Erwärmen (auf 60° C) und Anwesenheit katalytischer Mengen AlCl₃ sind notwendig. Die Ausbeuten liegen hier bei ca. 65% bzw. 50% d. Th. Ein Versuch, Tellur an Methyldichlorphosphin anzulagern, schlug fehl.

2. Umsetzung mit aliphatischen Diolen und Dithiolen

Von einigen Ausnahmen abgesehen^{6, 7}, fehlten bisher systematische Untersuchungen dieser Verbindungsklasse. Die vorstehend genannten Ausgangsprodukte werden mit Glykol, 1,2-Äthandithiol, 1,3-Propandiol, 1,3-Propandithiol, 2,3-Butandiol und Pinakon zu den gewünschten fünf- und sechsgliedrigen Ringen umgesetzt. Die Reaktionen, die alle bei Anwesenheit einer zur Bindung der freiwerdenden Menge Chlorwasserstoff äquivalenten Menge Triäthylamin durchgeführt werden, verlaufen nach dem allgemeinen Schema. (Siehe Seite 1155.)

Lösungsmittel ist in allen Fällen Benzol, das eine Reaktionstemperatur von max. 80° C ermöglicht und oft das Endprodukt besser löst als das Diol.

Beim Aufarbeiten fallen die Reaktionsprodukte als Öle oder Kristalle an. Erstere lassen sich gut im Ölpumpenvakuum destillieren, die Kristalle in manchen Fällen sublimieren. Die Sublimation ist jedoch nicht zu empfehlen, da die thermische Belastbarkeit der Heterocyclen Unterschiede aufweist. So führen Versuche, 2-Oxo-2-methyl-1,3,2-dithiaphospholan (4) durch Sublimation zu reinigen, zur Zersetzung. In allen Fällen wird deshalb die Umkristallisation aus einer geringen Menge Benzol vorgezogen. Dabei kristallisieren die Verbindungen farblos aus. Die durch Destillation gereinigten Flüssigkeiten sind farblos, bis auf die schwach gelb gefärbten cyclischen Ester bzw. Thioester der Selenophosphonsäure. Die analyti-

² A. Michaelis, Ann. Chem. **181**, 265 (1876).

³ A. I. Razumov, O. A. Mukhacheva und Sim Do-Khen, Izv. Akad. Nauk SSSR 1952, 894.

⁴ E. und O. Gryskiewicz-Trochimowski und J. Quinchon, Bull. Soc. Chim. France 1960, 1794.

⁵ B. J. Perry, J. B. Reesor und J. L. Ferron, Canad. J. Chem. **41**, 2299 (1964).

⁶ R. S. Edmundson, Tetrahedron 20, 2781 (1964).

⁷ A. D. F. Toy, U.S. Pat. 2 382 622 (1945); Chem. Abstr. 40, 604 (1946).

schen und physikalischen Daten der dargestellten Verbindungen sind in Tab. 1 zusammengefaßt.

Die Reaktionen verlaufen alle in guten Ausbeuten, die für die Reinprodukte durchschnittlich 75—80% d. Th. betragen. In einigen Fällen treten höhermolekulare Produkte auf, die auf Nebenreaktionen zurückzuführen sind und weniger auf ein von Korshak⁸ an cyclischen Estern der Phosphonsäure gefundenes Polymerisationsgleichgewicht. Die Molekulargewichte zeigen das Vorliegen der monomeren Ringe. Sie verändern sich auch nicht über einen Zeitraum von zwei Monaten. Am Beispiel des 2-Oxo-2-methyl-1,3,2-dioxaphospholans wird jedoch durch Erhitzen auf 140° C/10 Stdn. mit Spuren von Natrium, HCl oder Wasser eine Polymerisation erreicht. Genauere Hinweise auf ein Polymerisationsgleichgewicht werden aber nicht festgestellt.

Tab. 2 enthält die ¹H-NMR-Daten der Heterocyclen. Die Spektren zeigen für die Ringprotonen entsprechende Multipletts und für die ³¹P—CH₃-Protonen Dubletts. Die bei den Verbindungen 7, 8 und 9 auftretenden drei P—CH₃-Dubletts pro Verbindung im Integralverhältnis von ca. 6:2:1 sind wahrscheinlich auf cis- und trans-Stellung von Methylgruppe und Wasserstoffatom am Ring zurückzuführen. Welche Konfiguration den einzelnem Peaks zuzuordnen ist, ist bislang noch nicht genau untersucht. Die aus Pinakon und den entsprechenden Phosphonsäurechloriden dargestellten Ringe (10, 11 und 12) zeigen für die C—CH₃-Protonen zwei einzelne Peaks anstatt eines Singuletts. Der

⁸ V. V. Korshak, I. A. Gribova und M. A. Andreeva, Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk 1957, 631.

Tabelle 1. Analytische und physikalische Daten der dargestellten Heterocyclen

	$rac{ ext{Verb.}}{ ext{Nr.}}$	C Ber. Gef.	H Ber. Gef.	S Ber. Gef.	Se Ber. Gef.	P Ber. Gef.	Mol. Gew. kry., C ₆ H ₆	Sdp., °C/mm	Schmp.,	Ausb.,
$\begin{array}{c} \operatorname{CH}_2 - \operatorname{O} \\ \operatorname{CH}_2 - \operatorname{O} \\ \operatorname{CH}_3 \end{array}$	$\mathbf{C_{3}H_{7}O_{3}P}$	29,5 29,8	5,73 6,42			25,4 25,6	122 124	8083/10-2		86
CH ₂ -0 S	$^{2}_{3\mathrm{H}_{7}\mathrm{O}_{2}\mathrm{PS}}$	26,1 26,0	5,07 4,90	23,2 23,4		22,4 23,8	138 134	$66/10^{-2}$	80—81	70
$ \begin{array}{c} \operatorname{CH}_{2}-0 \\ \operatorname{CH}_{2}-0 \end{array} $ $ \operatorname{CH}_{3} $	$^3_{ m C_3H_7O_2PS_{ m e}}$	19,5 19,9	3,78 3,95		42,7 41,9	16,8 17,0	185 190	$98-100/10^{-2}$	92	63
CH ₂ —S CH ₃	$_{\rm C_3H_7OPS_2}^{4}$	23,4 23,5	4,54 4,82	41,6 $42,1$		20,1 19,8	154 149 (Umkr. C ₆ H ₆	8929	70
CH ₂ —S CH ₃	$c_{\rm 3H_7PS_3}$	$21,2 \\ 21,9$	4,12 4,10	56,5 56,1		18,2 $18,2$	170 163	Umkr. Benzol	74—75	39
$^{\mathrm{CH}_{2}-\mathrm{S}}_{\mathrm{CH}_{3}-\mathrm{S}}$ $^{\mathrm{Se}}_{\mathrm{CH}_{3}-\mathrm{S}}$	$^{\bf 6}_{\rm 3H_7PS_2Se}$	16,6 17,1	3,22 $3,49$	29,5 30,0	36,4 38,0	1 4,3 14,80	$\begin{array}{c} 217 \\ 221 \end{array}$	Umkr. Benzol	8929	79
CH ₃ —CH—0 P CH ₃	$\mathrm{C_5H_{11}O_3P}$	40,0	7,33			$\frac{20,70}{21,00}$	150 163	$70/10^{-2}$	İ	72
CH ₃ —CH—0 S CH ₃ —CH ₂	$^{8}_{\mathrm{5H}_{11}\mathrm{O}_{2}\mathrm{PS}}$	36,2 35,3	6,62 6,50	19,3 19,2		$\frac{18,70}{18,90}$	166	$55/10^{-2}$	1	80
CH ₃ —CH—O P Se CH ₃ —CH—O CH ₃	$^{9}_{\mathrm{5H_{11}O_{2}PSe}}$	28,2 28,7	5,16 5,61		37,1 36,4	14,60 14,20	213 216	$6162/10^{-2}$	1	61

	$rac{ ext{Verb.}}{ ext{Nr.}}$	C Ber. Gef.	H Ber. Gef.	S Ber. Gef.	Se Ber. Gef.	P Ber. Gef.	Mol. Gew. kry., C ₆ H ₆	Sdp., °C/mm	Schmp.,	Ausb.,
(CH ₃) ₂ C—0 P O CH ₃	$10 \ { m C_7H_{15}O_3P}$	47,2 47,6	8,42 8,86		Topical Commence of the Commen	17,4 17,0	178 167	68/10-2		82
$(CH_3)_2C-O$ S $(CH_3)_2C-O$ CH ₃	$^{11}_{\mathrm{C}_7\mathrm{H}_{15}\mathrm{O}_2\mathrm{PS}}$	43,3 43,6	7,73 7,51	16,5 $16,2$		16,0 15,6	194 198	$5456/10^{-2}$	46	76
(CH ₃) ₂ C—O Se (CH ₃) ₂ C—O CH ₃	$12 \\ \mathrm{C_7H_{15}O_2PSe}$	34,9 36,9	6,22 6,54		$\begin{array}{c} 32,7 \\ 30,1 \end{array}$	12,90 $13,20$	241 216	78/10-2	09	74
$\begin{array}{ccc} \operatorname{CH}_2 & \operatorname{D} & \operatorname{O} \\ \operatorname{CH}_2 & \operatorname{CH}_3 & \operatorname{CH}_3 \end{array}$	13 C₄H₃O₃P	35,3 35,2	6,61			22,8 23,0	136 128	$91/10^{-2}$	2696	68
cH_2 cH_2 cH_2 cH_3	$14 \\ \mathrm{C_4H_9O_2PS}$	31,6 31,7	5,92 6,22	21,0 20,6		20,4 20,0	152	Umkr. Benzol	81	08
	$15 \\ \mathrm{C_4H_9O_2PS_{\Theta}}$	24,1 24,0	4,52		39,6 40,8	15,6 16,0	199	Umkr. Benzol	68—88	70
1	$16 \\ \mathrm{C_4H_9OPS_2}$	28,6 29,7	5,36 5,84	38,1 37,8		18,5 18,9	168	Umkr. Benzol	114	78
	$\frac{17}{\mathrm{C_4H_9PS_3}}$	26,1 27,1	4,89 5,40	52,2 $51,1$		16,8 17,10	184	Umkr. Benzol	123	11
CH ₂ —S P CH ₃	$^{18}_{\rm ^4H_0PS_2Se}$	20,8 21,5	3,89 4,18	27,7 28,0	34,2 33,1	13,4 13,7	231 223	Umkr. Benzol	127—128	02

Grund liegt nach $Goldwhite^9$ in der unterschiedlichen chemischen Verschiebung der cis- und trans-ständigen Methylgruppen am Ring gegenüber den Substituenten am Phosphor.

Dem Institutsvorstand, Herrn Prof. Dr. M. Schmidt, und dem Fonds der Chemischen Industrie sowie der Deutschen Forschungsgemeinschaft danken wir für die finanzielle Unterstützung bei der Durchführung dieser Arbeit.

3. Allgemeines Arbeitsprinzip

Die Apparatur besteht aus einem 500 ml Dreihalskolben mit KPG-Rührer, Tropftrichter und Rückflußkühler. In den Kolben bringt man unter Ausschluß von Feuchtigkeit eine Lösung von 0,1 Mol des Diols und 0,2 Mol Triäthylamin in etwa 250 ml Benzol, während die Reaktionstemp. auf etwa 70° C eingestellt wird. Das entsprechende Phosphonsäurechlorid (0,1 Mol) wird mit etwa 100 ml Benzol verdünnt und langsam zugetropft.

Nach etwa 3 Stdn. wird der Niederschlag (Triäthylaminhydrochlorid) abgesaugt, das Lösungsmittel am Rotavapor entfernt und das Reaktionsprodukt je nach Aggregatzustand im Ölpumpenvakuum destilliert oder aus wenig Benzol umkristallisiert.

Tabelle 2. ¹H-NMR-Daten der dargestellten Heterocyclen (5proz. Lösung in Benzol oder CDCl₃; J-Werte in Hz; \(\delta\)-Werte in ppm bezüglich TMS ext. Standard bei niedrigeren Feldern; Varian A 60)

Verb. Nr.	Р—СН ₃ Г	$J_{^{\mathrm{si}}\mathrm{P-C-H}}$	CH ₂ —Cl (M)	Н ₂ С—СН ₃	CH ₃ CH (M)	C—C H ₂ —C (M)	CH ₂ —C—CH ₂ (M)
1	0,89	17,5	3,42				
2	0,99	14,5	2,98				
3	1,10	13,5	2,94				
4	1,28	13,5	2,18				
5	1,63	13,0	2,39				
6	1,87	12,5	2,38				
7	1,01/0,99/0,98	3 17,5		0,68 (M)	3,77		
8	1,93/2,00/1,88	3 15,0		1,38 (M)	4,47		
9	1,68/1,72/1,65	5 13,5		$0,73 \ (M)$	3,88		
10	0,78	17,5		0,70/0,45 (S)		
11	1,17	15,0		0,70/0,38 (i	S)		
12	1,25	13,5		0,65/0,30 (S)		
13	0,58	17,5		-		0,73	3,30
14	1,00	15,5				0,73	3,35
15	1,27	14,5				0,73	3,50
16*	2,34	14,0				$2,\!25$	3,40
17 *	2,57	13,0				2,28	3,44
18*	2,64	13,0				$2,\!25$	3,25

Die mit * bezeichneten Verbindungen wurden in CDCl₃ (5proz. Lösung) int. Standard aufgenommen. (M) = Multiplett; (S) = Singulett.

⁹ B. Fontal und H. Goldwhite, Tetrahedron 22, 3275 (1966).