

Available online at www.sciencedirect.com

Inorganica Chimica Acta 348 (2003) 217-220

Note

www.elsevier.com/locate/ica

Synthesis and characterization of mononuclear and tetranuclear palladium(II) complexes with 2-(phenylmethyleneamino)benzenethiolate

Tatsuya Kawamoto*, Isoroku Nagasawa¹, Yoshihiko Kushi², Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Received 1 July 2002; accepted 4 November 2002

Abstract

Two palladium(II) complexes, $[Pd(Hphbt-N,S)_2]$ (1; Hphbt = 2-(phenylmethyleneamino)benzenethiolate) and $[Pd_4(phbt-C,N,S)_4]$ (2), were newly prepared. X-ray and ¹H NMR studies indicated the presence of Pd···H-C interaction in the mononuclear 1, which is assumed to play an important role in the cyclometalation reaction leading to the tetranuclear structure in 2. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Palladium(II) complexes; C,N,S-ligand complexes; Crystal structures; Metal-ligand interaction

1. Introduction

The chemistry of the activation of C-H bonds is undoubtedly one of the most advanced areas. In the field of C-H activation, the importance of the threecenter two-electron agostic interaction has been well recognized through many examples [1]. On the other hand, recently, there is an increasing body of evidence which shows interactions between electron-rich metal centers and hydrogen atoms, being hydrogen bonding of the three-center four-electron in character [2]. Previously, we reported that the hydrogen bonding-like $Pd \cdots H-C$ interaction in the mononuclear palladium(II) complex, $[Pd(H1-nabz-N,S)_2]$, which is the precursor of the thiolato-bridged tetranuclear palladium(II) complex, $[Pd_4(1-nabz-C,N,S)_4]$, plays an important role in the cyclometalation reaction [3]. However, the recognition for the hydrogen bonding-like M···H-C interaction in cyclometalation reaction is still not enough.

¹ Present address: Department of Chemistry, Fukuoka University of Education, Akama 729-1, Munakata, Fukuoka 811-4192, Japan.

² Emeritus Professor of Osaka University.

In this context, it is worthwhile to investigate whether a similar cyclometalation reaction could take place for palladium(II) complexes with a flexible pendant arm, instead of the rigid 1-naphthyl group in [Pd(H1-nabz- $N,S)_2$]. In this paper, we report on the synthesis and structural characterization of the mononuclear palladium(II) complex having phenyl groups as a pendant arm, [Pd(Hphbt- $N,S)_2$] (1), together with that of its cyclometalation product [Pd₄(phbt- $C,N,S)_4$] (2).

2. Experimental

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques. Reagents were commercial samples and were not purified further. The compound 2-phenylbenzothiazoline was prepared by literature methods [4].

The UV–Vis spectra were measured on a JASCO V-570 spectrophotometer. The ¹H NMR spectra were measured on a JEOL EX 270 instrument using tetramethylsilane as the internal standard ($\delta = 0$). IR spectra were measured on a JASCO FT/IR-5000 instrument (4000–400 cm⁻¹) using the Nujol mulls. Elemental analyses were performed at Osaka University.

^{*} Corresponding author. Tel.: +81-6-6850 5766; fax: +81-6-6850 5785.

E-mail address: kaw@ch.wani.osaka-u.ac.jp (T. Kawamoto).

2.1. Synthesis

2.1.1. Synthesis of bis[2-

(phenylmethyleneamino)benzenethiolato]palladium(II) [Pd(Hphbt-N,S)₂] (1)

To an ethanol solution (20 cm³) of 2-phenylbenzothiazoline (0.43 g, 2.0 mmol) was added palladium(II) acetate (0.22 g, 1.0 mmol). The reaction mixture was refluxed for 20 min and cooled in a refrigerator overnight. The red-brown precipitate, which was spectroscopically pure (¹H NMR), was collected by filtration and dried in vacuo. Yield, 0.34 g (64%). This crude precipitate (0.10 g) was recrystallized from chloroformdiethyl ether (yield, 0.04 g). Crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a 1,2-dichloroethane solution of 1. Found: C, 55.06; H, 3.68; N, 4.97%. Calc. for C₂₆H₂₀N₂PdS₂·1/3CHCl₃: C, 55.41; H, 3.59; N, 4.91%. IR: v_{max} cm⁻¹ (Nujol): 1599 (C=N). ¹H NMR (CDCl₃, 270 MHz): δ = 7.95 (4H, d, J = 7.3, C_{aryl}-H), 7.80 (2H, s, CH=N), 7.50 (2H, t, J =7.4, C_{aryl} -H), 7.43 (2H, dd, J = 7.9 and 1.3, C_{aryl} -H), 7.27 (4H, t, J = 7.7, C_{aryl} -H), 7.05 (2H, dt, J = 7.5 and 1.2, C_{aryl} -H), 6.83 (2H, dt, J = 7.7 and 1.3, C_{aryl} -H) and 6.57 (2H, d, J = 8.2 Hz, C_{aryl} -H). UV-Vis: v_{max} (CHCl₃) 10³ cm⁻¹ [log(ε dm³ mol⁻¹ cm⁻¹)]: 22.6 (3.61).

2.1.2. Synthesis of tetrakis[2-(phenylmethyleneamino)benzenethiolato-C,N,S]tetrapalladium(II) [Pd₄(phbt-C,N,S)₄] (2)

To a suspension of crude complex 1 (0.22 g, 0.41 mmol) in ethanol (20 cm³) was added an equimolar amount of palladium(II) acetate (0.092 g, 0.41 mmol). The mixture was refluxed for 1 h and cooled to room temperature (r.t.). The fine brown precipitate (0.16 g)was collected by filtration and dissolved in CH₂Cl₂ (20 cm³). The solution was purified by chromatography on a silica gel (230-400 mesh) column, eluting with CH_2Cl_2 . The first band, which corresponds to 2, was collected, and removal of CH₂Cl₂ under reduced pressure yielded a red powdery solid. This product was then washed with diethyl ether. Yield, 0.03 g (22% based on Pd). Crystals suitable for X-ray diffraction were grown by slow diffusion of diethyl ether into a chloroform solution of 2. Found: C, 49.64; H, 3.41; N, 4.44%. Calc. for C₅₂H₃₆N₄Pd₄S₄·C₄H₁₀O: C, 50.01; H, 3.45; N, 4.17%. IR: $v_{\text{max}} \text{ cm}^{-1}$ (Nujol): 1586 (C=N). ¹H NMR (CDCl₃, 270 MHz): $\delta = 7.65 - 7.60$ (4H, m, C_{arvl}-H), 7.34 (4H, s, CH=N), 7.11 (4H, d, J=6.9 Hz, C_{aryl}-H), 7.03-6.97 (16H, m, Carvl-H), and 6.90-6.82 (8H, m, C_{aryl}-H). UV-Vis: v_{max} (CHCl₃) 10³ cm⁻¹ [log(ε dm³ $mol^{-1} cm^{-1}$]: 19.8(sh) (3.84), 21.8 (3.97) and 29.4 (4.85).

2.2. X-ray structure determination

Intensity data were collected on a Mac Science MXC3 diffractometer with Mo K α radiation at r.t. θ –2 θ scans were employed; no significant decomposition of the crystal occurred during the data collection. The structures of complexes 1 and 2 were solved by direct methods using SIR 92 [5] and refined anisotropically for all non-hydrogen atoms with full-matrix leastsquares calculations. The solution and refinement procedures were made by the use of the CRYSTAN-GM software package [6]. Crystallographic data: for 1.2/ $3C_5H_{12}$; $C_{29,3}H_{28}N_2PdS_2$, fw = 578.71, monoclinic, space group C2/c, a = 27.82(2), b = 18.269(6), c =16.699(6) Å, $\beta = 118.70(4)^{\circ}$, V = 7446(6) Å³, Z = 12, $D_{\text{calc}} = 1.55 \text{ g cm}^{-3}, \ \mu(\text{Mo K}\alpha) = 1.22 \text{ mm}^{-1}, \ \text{crystal}$ size $0.45 \times 0.40 \times 0.40$ mm, 4380 observed reflections $[I > 2.0\sigma(I)]$ used in the refinement, R = 0.045, $R_w =$ goodness-of-fit = 2.76. For 0.051 and $2 \cdot Et_2O;$ $C_{56}H_{46}N_4OPd_4S_4$, fw = 1344.95, monoclinic, space group $P2_1/n$, a = 19.928(3), b = 17.526(2), c = 14.583(2)Å, $\beta = 94.68(1)^{\circ}$, V = 5076(1) Å³, Z = 4, $D_{calc} = 1.76$ g cm⁻³, μ (Mo K α) = 1.57 mm⁻¹, crystal size 0.45 × 0.35×0.20 mm, 7433 observed reflections $[I > 2.0\sigma(I)]$ used in the refinement, R = 0.050, $R_w = 0.053$ and goodness-of-fit = 2.46.

3. Results and discussion

The reaction of 2-phenylbenzothiazoline with palladium(II) acetate in a molar ratio of 2:1 in ethanol gave a red-brown complex, $[Pd(Hphbt-N,S)_2]$ (1) (Scheme 1). When 1 was treated with an equimolar amount of palladium(II) acetate in ethanol, a brown powder was precipitated. This powder was purified by a silica gel

Scheme 1. Synthetic scheme of complexes.

column chromatography to isolate a red complex, $[Pd_4(phbt-C,N,S)_4]$ (2). Complexes 1 and 2 were characterized by ¹H NMR, IR and UV–Vis spectroscopies, besides elemental analyses, and their molecular structures were determined by single-crystal X-ray analyses.

Crystal 1 contains two crystallographically independent, yet nearly identical, complex molecules. One has a palladium atom (Pd(1)) in a general position, while the palladium atom (Pd(2)) of the other molecule locates on a twofold axis; the former molecule is selected in Fig. 1. The coordination geometry at the palladium atom in 1 is a slightly distorted square planar with a *cis* arrangement of the sulfur and nitrogen atoms. The dihedral angles between the two PdNS planes are $7(6)^{\circ}$ for Pd(1) and 7(5)° for Pd(2). The Pd-S and Pd-N distances, which range from 2.256(4) to 2.267(4) Å and from 2.089(9) to 2.096(8) Å, respectively, compare well with those observed in the related square planar palladium(II) complexes [3,7]. A closer examination of the structure of 1 reveals the interesting intramolecular Pd···H-C interaction between the metal center and the ortho aromatic C-H with the average Pd···H distance of 2.65(6) Å, though it is slightly longer than the corresponding distance (2.57(7) Å) in the closely related $[Pd(H1-nabz-N,S)_2]$ having 1-naphthyl groups as a pendant arm [3].

The ¹H NMR spectrum of **1** in CDCl₃ shows a halfset of protons corresponding to its C_2 symmetrical structure. The resonances for the *ortho* protons of phenyl groups of **1** are observed at relatively lower-field (δ 7.95) in the aromatic region [8]. This means the presence of a weak Pd···H–C interaction (three-center four-electron), rather than an agostic interaction (threecenter two-electron), which may influence the reactivity of mononuclear complexes leading to tetranuclear com-

Fig. 1. Molecular structure of one of the independent molecules of $[Pd(Hphbt-N,S)_2]$ (1) (30% probability ellipsoids). Selected bond distances (Å) and angles (°): Pd(1)-S(1) 2.267(4), Pd(1)-S(2) 2.256(4), Pd(1)-N(1) 2.089(9), Pd(1)-N(2) 2.095(8); S(1)-Pd(1)-S(2) 90.3(2), S(1)-Pd(1)-N(1) 84.0(3), S(1)-Pd(1)-N(2) 172.4(3), S(2)-Pd(1)-N(2) 172.4(3), S(2)-Pd(1)-N(2) 83.8(3), N(1)-Pd(1)-N(2) 102.3(4).

plexes. However, the lower-field shift for 1 is not so large as the shift (δ 9.28) observed for [Pd(H1-nabz- $N,S)_2$] [3]. Thus, it is considered that 1 has a weaker Pd···H-C interaction compared with [Pd(H1-nabz- $N,S)_2$], owing to the increase of freedom of the pendant arm, which is compatible with the X-ray analytical result.

The asymmetric unit of 2 consists of one formula unit, and all palladium atoms are crystallographically inequivalent. As shown in Fig. 2, the core of 2 consists of an eight-membered ring of alternating Pd and S atoms. This structure is the same as that of [Pd₄(1-nabz- $(C,N,S)_4$, but both complexes are not isomorphous [3]. The coordination environment about each palladium atom can be described as a square planar having two sulfur, one imine nitrogen, and one aryl carbon donor atoms. Consequently, the Schiff base ligand acts as a rare C, N, S-chelate. The Pd–C distances being from 2.003(12) to 2.027(13) Å and the Pd–N distances being from 2.032(10) to 2.036(10) Å are quite normal [3,9]. The Pd-S_{chelating} distances trans to carbon are longer than the Pd-S_{bridging} distances trans to nitrogen (av. $Pd-S_{chelating} = 2.371(4)$ Å and av. $Pd-S_{bridging} =$ 2.303(4) Å), which is attributed to trans influence of the coordinated carbon of the cyclometalated ligand. The Pd(1)-Pd(2) and Pd(3)-Pd(4) distances are 3.299(2) and 3.334(2) Å, respectively, showing the absence of any Pd-Pd bonding. These distances are longer than the corresponding distances (3.180(1) Å) found in $[Pd_4(1$ nabz-C,N,S₄] [3]. In the ¹H NMR spectrum of **2** in CDCl₃, only one set of well-resolved resonances is observed for the four phbt ligands in the complex. This result suggests that the D_2 symmetrical tetranuclear found in crystal is retained in solution.

Fig. 2. Molecular structure of $[Pd_4(phbt-C,N,S)_4]$ (2) (30% probability ellipsoids). Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (°) (average): Pd-S_{chelating} 2.371(4), Pd-S_{bridging} 2.303(4), Pd-N 2.034(11), Pd-C 2.011(13); S_{chelating}-Pd-S_{bridging} 99.8(2), S_{chelating}-Pd-N 84.6(4), S_{chelating}-Pd-C 165.4(4), S_{bridging}-Pd-N 175.6(4), S_{bridging}-Pd-C 93.7(4), N-Pd-C 82.0(5).

In summary, it was found based on X-ray and ¹H NMR studies that there exists the hydrogen bondinglike interaction between palladium atom and *ortho* aromatic C-H in the mononuclear **1**. Since **1** was converted to the tetranuclear structure in **2** having Pd-C bonds, it is reasonable to assume that the Pd···H-C interaction plays an important role in the cyclometalation reaction even in the present flexible system. The results presented here may be deeply correlated to the studies on understanding the C-H activation during the cyclometalation reaction in palla-dium(II) complexes [10].

4. Supplementary material

Tables of all final coordinates and thermal parameters, bond lengths, bond angles, hydrogen atom coordinates and tables of observed and calculated structure factors are available from the authors.

References

- M. Brookhart, M.L.H. Green, L.-L. Wong, Prog. Inorg. Chem. 36 (1988) 1.
- [2] (a) L. Brammer, J.M. Charnock, P.L. Goggin, R.J. Goodfellow, A.G. Orpen, T.F. Koetzle, J. Chem. Soc., Dalton Trans. (1991)

1789;

- (b) I.C.M. Wehman-Ooyevaar, D.M. Grove, H. Kooijman, P. van der Sluis, A.L. Spek, G. van Koten, J. Am. Chem. Soc. 114 (1992) 9916;
- (c) A. Albinati, F. Lianza, P.S. Pregosin, B. Müller, Inorg. Chem. 33 (1994) 2522;

(d) L. Brammer, D. Zhao, F.T. Ladipo, J. Braddock-Wilking, Acta Crystallogr., B 51 (1995) 632;

(e) E. Bouwman, R.K. Henderson, A.K. Powell, J. Reedijk, W.J.J. Smeets, A.L. Spek, N. Veldman, S. Wocadlo, J. Chem. Soc., Dalton Trans. (1998) 3495.

- [3] T. Kawamoto, I. Nagasawa, H. Kuma, Y. Kushi, Inorg. Chem. 35 (1996) 2427.
- [4] T. Kawamoto, H. Kuma, Y. Kushi, Bull. Chem. Soc. Jpn. 70 (1997) 1599.
- [5] SIR 92, A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr. 26 (1993) 343.
- [6] CRYSTAN-GM, A Computer Program for the Solution and Refinement of Crystal Structures for X-ray Diffraction Data, MAC Science Corporation, Yokohama, 1994.
- [7] T. Kawamoto, Y. Kushi, J. Chem. Soc., Dalton Trans. (1992) 3137.
- [8] The value of $\delta = 7.95$ (4H) is considered the average of chemical shifts of two *ortho*-hydrogens of the pendant phenyl groups.
- [9] B. Schreiner, R. Urban, A. Zografidis, K. Sünkel, K. Polborn, W. Beck, Z. Naturforsch, T. B 54 (1999) 970.
- [10] (a) T. Yagyu, S. Iwatsuki, S. Aizawa, S. Funahashi, Bull. Chem. Soc. Jpn. 71 (1998) 619;
 (b) T. Yagyu, S. Aizawa, S. Funahashi, Bull. Chem. Soc. Jpn. 71 (1998) 1857.