Polycyclic *N*-Heterocyclic Compounds. Part 80: Synthesis and Evaluation of Effects on *In Vitro* Pentosidine Formation of 5,6-Dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-*d*]pyrimidine and Related Compounds

Kensuke Okuda,^{a*} Yutaka Itsuji,^b Takashi Hirota,^b and Kenji Sasaki^b

^aLaboratory of Medicinal and Pharmaceutical Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan ^bLaboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama

700-8530, Japan

*E-mail: okuda@gifu-pu.ac.jp Received February 7, 2012 DOI 10.1002/jhet.1709

Published online 9 December 2013 in Wiley Online Library (wileyonlinelibrary.com).

Reaction of 3-(3-cyanopropylthio)[1]benzothiophene-2-carbonitrile with *tert*-BuONa gave 5-amino-1,2-dihydro[1]benzothieno[3,2-*d*]thieno[2,3-*b*]pyridine and 5-amino-2,3-dihydro[1]benzothieno[3,2-*b*]thiepin-4-carbonitrile. The latter compound served as a convenient scaffold for the synthesis of the new heterocycles, [1]benzothieno[3',2':2,3]thiepino[4,5-*d*]pyrimidines. All of our new tetracyclic products were evaluated for *in vitro* inhibitory activity on the formation of pentosidine, which is one of representative advanced glycation end products.

J. Heterocyclic Chem., 51, 891 (2014).

INTRODUCTION

Formation of carbon–carbon (C–C) bonds is a central issue in synthetic organic chemistry. In this regard, the Truce–Smiles rearrangement is among those useful rearrangement reactions that provide access to complex structures from simple precursors through formation of new C–C bonds [1–5].

We have been investigating the syntheses and biological evaluation of heterocycles containing new ring systems. During the course of this work, we have developed a new synthetic method for aromatic fused furo[2,3-*b*]pyridines (2) based on reactions of 2-(3-cyanopropoxy)aryl-1-carbonitriles (1) with bases (Scheme 1). This process involves a Truce–Smiles rearrangement followed by intramolecular cyclization [6–9].

Previously, we had disclosed that the reaction of 3-(3-cyanopropylthio)[1]benzothiophene-2-carbonitrile (6) with base gave 5-amino-1,2-dihydro[1]benzothieno[3,2-d]thieno[2,3b]pyridine (7) in modest yield [8]. Because the key step of Truce-Smiles rearrangement is a nucleophilic attack at an ipso position of an aromatic ring, the less reactive electron-rich benzothiophene is a poorer substrate for this rearrangement as already described for 3-(3-cyanopropoxy) [1]benzofuran-2-carbonitriles (3) [10]. In those cases, formation of 5-amino-2,3-dihydro[1]benzofuro[3,2-b]oxepin-4carbonitrile (5), which is the Thorpe-Ziegler reaction product, also was formed. Therefore, 5-amino-2,3-dihydro [1]benzothieno[3,2-b]thiepin-4-carbonitrile (8) should also be obtainable from 3-(3-cyanopropylthio)[1]benzothiophene-2-carbonitrile (6) by a similar Thorpe-Ziegler reaction. Here, we describe the synthesis of 8 that is formed along with **7**. We also describe the preparation of tetracyclic [1]benzothieno[3',2':2,3]thiepino[4,5-*d*]pyrimidines (**9–17**). An *in vitro* screening evaluation of these compounds to measures their effects on anti-pentosidine activity was performed as part of our continuing program to develop agents for hyperglycemia related diseases [11,12].

RESULTS AND DISCUSSION

Reaction of 6 and tert-BuONa in dry 1,4-dioxane gave 8 in 50%, as we had anticipated, as well as 7 that was formed in 8% (Scheme 2). The characteristic amino and cyano bands in the infrared spectrum of 8 clearly supported the isomer identification. Similar to the case of benzofuran (3) [10], in which case the Smiles rearrangement product 4 is the minor product and the Thorpe-Ziegler reaction product 5 is a major product, the Smiles rearrangement product 7 is the minor product and the Thorpe–Ziegler reaction product 8 is the major product in the transformation of benzothiophene (6). If the base was changed from tert-BuONa to hexamethyldisilazane sodium salt, the reaction gave 7 exclusively in 85% yield. It seems likely that the stronger basicity and/or greater bulkiness of hexamethyldisilazane sodium salt compared with tert-BuONa has changed reactivity to give 7.

In order to access additional potential pharmaceuticals, the functionality present in compound **8** was exploited for the construction of a pyrimidine ring leading to the new heterocyclic ring system [1]benzothieno[3',2':2,3]thiepino [4,5-*d*]pyrimidine. Thus, reaction of **8** with the Vilsmeier reagent gave **9a–e** in 72–82% yield (Scheme 3). Structures

Ŕ

Scheme 1. Substrates (1 and 3) and their products (2, 4, and 5) with base.

of 9a-e were determined based on the disappearance of the enamine and nitrile groups and appearance of chlorine atoms in their IR and MS spectra. In addition, the NMR spectra and elemental analyses supported these structures. Next, 9a-e were treated with several amine nucleophiles such as methylamine to give 10a-e in 66-84% yield, ethylamine to give 11a-e in 66-83% yield, dimethylamine to give **12a-e** in 74–96% yield, and 2-aminoethanol to give 13a-e in 66-83% yield, respectively (Scheme 4). We also used oxygen nucleophiles as reactants. Thus, sodium methoxide gave 14a-e in 67-84% yield, sodium ethoxide gave 15a-e in 83-91% yield, and ethylene glycol with potassium carbonate gave 16a-e in 50-77% yield, respectively (Scheme 5). Finally, the sulfur nucleophile 2-sulfanylethanol was used in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) to give 17a-e in 43-86% yield (Scheme 6). All derivatives 10–17 satisfy Lipinski's rule of five, and thus, they are expected to have drug-like properties [13].

With these derivatives (10–17) in hand, effects on the formation of pentosidine, which is one of representative

1,4-dioxane

advanced glycation end products AGEs, were examined using an *in vitro* screening test according to the literature procedure [11]. Aminoguanidine hydrochloride [14,15] was used as a positive control. None showed any significant inhibitory activity (less than 20% inhibition compared with 46.0% for the positive control).

Ň٥ Ň 17d R=Ph (86%)

17e: R=p-Tolyl (47%)

EXPERIMENTAL

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Elemental analyses were performed on a Yanagimoto MT-5 CHN Corder elemental analyzer. The fast atom bombardment (FAB)-mass (m-nitrobenzyl alcohol was used as the matrix) were obtained on a VG70-SE mass spectrometer. The IR spectra were recorded on a Japan Spectroscopic diffraction grating A-102 spectrophotometer, a FT/IR-200, or a FT/IR-230 spectrophotometer and frequencies are expressed in cm⁻¹. The ¹H NMR spectra were recorded on a Varian VXR-200 instrument with tetramethylsilane as an internal standard. Chemical shifts are given in ppm (δ) and J values in Hz, and the signals are designated as follows: s, singlet; d, doublet; dd, double doublet; t, triplet; q, quartet; br, broad; m, multiplet. TLC (Kieselgel 60F₂₅₄ (Merck) or silica gel 70FM (Wako)) was used to monitor the completion of reactions.

5-Amino-2,3-dihydro[1]benzothieno[3,2-b]thiepin-4-carbonitrile (8) and 5-amino-1,2-dihydro[1]benzothieno[3,2-d]thieno[2,3-b] pyridine (7). To a preheated solution of 6 (1.00 g, 3.87 mmol) in dry benzene (200 mL) was added tert-BuONa (1.86 g, 19.4 mmol), and the mixture was refluxed for 1 h. After evaporation of solvent, ice-water (30 mL) was poured into the residue, and the mixture was extracted with ethyl acetate $(3 \times 30 \text{mL})$. The organic layer was washed with sat. brine, dried over anhydrous magnesium sulfate, and evaporated. The resulting viscous oil was chromatographed on silica gel. The eluate of nhexane-ethyl acetate (19:1) was evaporated in vacuo, and the residue was recrystallized from ethanol to give 8 (500 mg, 50%) as pale yellow scales. mp 144–145°C; IR (nujol) cm⁻¹: 3450, ¹H-NMR (200 MHz, 3340, 3230 (NH), 2180 (CN); deuterochloroform): δ2.56 (t, 2H, J=6.0 Hz, H3), 3.60 (t, 2H, J = 6.0 Hz, H2), 4.70 (br s, 2H, deuterium oxide exchangeable, NH₂), 7.42–7.52 (m, 2H, H8 and 9), 7.85 (dd, 1H, J=6.3, 1.5 Hz, H10), 8.00 (dd, 1H, J=6.1, 1.7 Hz, H7); FAB-MS m/z: 259 (MH⁺). Anal. Calcd. for C₁₃H₁₀N₂S₂: C, 60.44; H, 3.90; N, 10.84. Found: C, 60.35; H, 3.95; N, 10.77.

A further eluate of *n*-hexane-ethyl acetate (9:1) was evaporated in vacuo and the residue was recrystallized from benzene to give 7 (80 mg, 8%) as pale yellow needles, mp 207-208°C [8].

5-Amino-1,2-dihydro[1]benzothieno[3,2-d]thieno[2,3-b]pyridine To a solution of 6 (1.00 g, 3.87 mmol) in dry 1,4-dioxane (7). (100 mL) was added hexamethyldisilazane sodium salt [40% in tetrahydrofuran-cumene (3:1)] (8.89 mL, 19.4 mmol) and the reaction was stirred at room temperature for 0.5 h. After evaporation of solvent in vacuo, ice-water (200 mL) was poured into the residue. The precipitated solid was collected on a filter and was recrystallized from benzene to give 7 (850 mg, 85%) as pale yellow needles, mp 207-208°C [8].

General procedure for the preparation of 9a-e from 8 with Vilsmeier reagent. To a Vilsmeier reagent prepared from the corresponding N,N-dimethylamide (3.0 eq. to 8) and phosphoryl chloride (10 mL) under ice-water cooling for 1 h was added 8 (2.00 g, 7.74 mmol) and the mixture was then stirred at 80°C for 1 h. After removal of phosphoryl chloride in vacuo, icewater (100 mL) was poured into the residue and the solution was neutralized with sodium bicarbonate. The mixture was extracted with ethyl acetate (5 \times 50 mL). The combined organic phase was washed with sat. brine, dried over anhydrous magnesium sulfate, and evaporated in vacuo. The residue was purified by recrystallization to give 9a-e.

4-Chloro-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino[4,5-d] Using N,N-dimethylformamide gave 9a pyrimidine (9a). (80%) as yellow needles from ethanol, mp 134-135°C; ¹H-NMR (200 MHz, deuterochloroform): 83.52 (s, 4H, H5 and 6), 7.41 (td, 1H, J=7.3, 1.8 Hz, H9), 7.48 (td, 1H, J=7.3, 1.7 Hz, H10), 7.83-7.90 (m, 2H, H8 and 11), 8.83 (s, 1H, H2); FAB-MS m/z: 305 (MH⁺), 307 (MH⁺+2). Anal. Calcd. for C₁₄H₉ClN₂S₂: C, 55.16; H, 2.98; N, 9.19. Found: C, 54.99; H, 3.12; N, 9.05.

4-Chloro-2-methyl-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (9b). Using N,N-dimethylacetamide gave 9b (72%) as yellow scales from ethanol, mp 120-121°C; ¹H-NMR (200 MHz, deuterochloroform): δ 2.72 (s, 3H, CH₃), 3.48 (s, 4H, H5 and 6), 7.36-7.51 (m, 2H, H9 and 10), 7.79-7.93 (m, 2H, H8 and 11); FAB-MS m/z: 319 (MH⁺), 321 (MH⁺+2). Anal. Calcd. for C₁₅H₁₁ClN₂S₂: C, 56.50; H, 3.48; N, 8.79. Found: C, 56.40; H, 3.63; N, 8.69.

4-Chloro-2-ethyl-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (9c). Using N,N-dimethylpropionamide gave **9c** (72%) as yellow needles from ethanol, mp 98–99°C; ¹H-NMR (200 MHz, deuterochloroform): δ 1.42 (t, 3H, J=7.6 Hz, CH₃), 2.97 (q, 2H, J = 7.6 Hz, CH_2CH_3), 3.49 (s, 4H, H5 and 6), 7.35-7.51 (m, 2H, H9 and 10), 7.79-7.91 (m, 2H, H8 and 11); FAB-MS m/z: 333 (MH⁺), 335 (MH⁺+2). Anal. Calcd. for C₁₆H₁₃ClN₂S₂: C, 57.73; H, 3.94; N, 8.42. Found: C, 57.71; H, 4.03; N, 8.40.

4-Chloro-2-phenyl-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (9d). Using *N*,*N*-dimethylbenzamide gave 9d (78%) as yellow needles from acetonitrile, mp 170– 172°C; ¹H-NMR (200 MHz, deuterochloroform): δ 3.44–3.62 (m, 4H, H5 and 6), 7.36–7.57 (m, 5H, H9, 10, and 3', 4', 5'), 7.82–7.91 (m, 2H, H9 and 10), 8.45–8.57 (m, 2H, H2' and 6'); FAB-MS *m*/*z*: 381 (MH⁺), 383 (MH⁺ + 2). *Anal.* Calcd. for C₂₀H₁₃ClN₂S₂: C, 63.06; H, 3.44; N, 7.35. Found: C, 63.21; H, 3.67; N, 7.38.

4-Chloro-2-p-tolyl-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (9e). Using *N*,*N*-dimethyl-4-methylbenzamide [16] gave 9e (82%) as yellow needles from ethyl acetate, mp 225–226°C; ¹H-NMR (200 MHz, deuterochloroform): δ 2.44 (s, 3H, CH₃), 3.44–3.61 (m, 4H, H5 and 6), 7.31 (d, 2H, *J*=8.3 Hz, H3' and 5'), 7.36–7.51 (m, 2H, H9 and 10), 7.83–7.91 (m, 2H, H8 and 11), 8.40 (br d, 2H, *J*=8.3 Hz, H2' and 6'); FAB-MS *m/z*: 395 (MH⁺), 397 (MH⁺+2). *Anal.* Calcd. for C₂₁H₁₅ClN₂S₂: C, 63.86; H, 3.83; N, 7.09. Found: C, 64.11; H, 4.00; N, 7.03.

General procedure for the reaction of 9a–e with methylamine to give 10a–e. To a solution of **9** (100 mg) in THF (10 mL) was added 40% methanolic methylamine (10 mL), and the reaction was stirred at room temperature for the time required for completion of the reaction. After evaporation of the reaction mixture *in vacuo*, ice-water (50 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by recrystallization to give **10**.

4-Methylamino-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (10a). The reaction time was 1 h. Recrystallization of the residue from ethanol gave **10a** (74%) as colorless scales, mp 177–178°C; IR (nujol) cm⁻¹: 3440 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 3.03 (t, 2H, J=5.7 Hz, H5), 3.11 (d, 3H, J=4.7 Hz, CH₃), 3.49 (t, 2H, J=5.7 Hz, H6), 5.38 (br s, 1H, deuterium oxide exchangeable, NH), 7.38–7.42 (m, 2H, H9 and 10), 7.82–7.87 (m, 2H, H8 and 11), 8.59 (s, 1H, H2); FAB-MS *m/z*: 300 (MH⁺). Anal. Calcd. for C₁₅H₁₃N₃S₂: C, 60.17; H, 4.38; N, 14.03. Found: C, 60.15; H, 4.54; N, 13.98.

2-Methyl-4-methylamino-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (10b). The reaction time was 10 h. Recrystallization of the residue from ethanol gave **10b** (70%) as yellow prisms, mp 234–235°C; IR (nujol) cm⁻¹: 3480 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 2.57 (s, 3H, 2-CH₃), 2.90 (t, 2H, *J* = 5.7 Hz, H5), 3.10 (d, 3H, *J* = 4.8 Hz, NCH₃), 3.46 (t, 2H, *J* = 5.7 Hz, H6), 5.27 (br, 1H, deuterium oxide exchangeable, NH), 7.34–7.41 (m, 2H, H9 and 10), 7.81–7.89 (m, 2H, H8 and 11); FAB-MS *m/z*: 314 (MH⁺). Anal. Calcd. for C₁₆H₁₅N₃S₂: C, 61.31; H, 4.82; N, 13.41. Found: C, 61.41; H, 4.95; N, 13.32.

2-Ethyl-4-methylamino-5,6-dihydro[1]benzothieno[3',2'2,3] thiepino[4,5-d]pyrimidine (10c). The reaction time was 16 h. Recrystallization of the residue from acetonitrile gave **10c** (66%) as colorless plates, mp 191–192°C; IR (nujol) cm⁻¹: 3470 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 1.38 (t, 3H, J = 7.6 Hz, 2-CH₂CH₃), 2.84 (q, 2H, J = 7.6 Hz, 2-CH₂CH₃), 3.00 (t, 2H, J = 5.5 Hz, H5), 3.10 (d, 3H, J = 4.8Hz NCH₃), 3.43 (t, 2H, J = 5.5 Hz, H6), 4.79 (br s, 1H, deuterium oxide exchangeable, NH), 7.36–7.41 (m, 2H, H9 and 10), 7.78–7.91 (m, 2H, H8 and 11); FAB-MS *m/z*: 328 (MH⁺). Anal. Calcd. for C₁₇H₁₇N₃S₂: C, 62.35; H, 5.23; N, 12.83. Found; C,62.35; H, 5.20; N,12.78.

4-Methylamino-2-phenyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (10d). The reaction time was 24 h. Recrystallization of the residue from acetonitrile gave 10d (84%) as yellow plates, mp 181–182°C; IR (nujol) cm⁻¹: 3460 (NH);

¹H-NMR (200 MHz, deuterochloroform): δ 3.10 (t, 2H, J = 5.5 Hz, H5), 3.20 (d, 3H, J = 4.0 Hz, CH₃), 3.46 (t, 2H, J = 5.5 Hz, H6), 5.34 (br s, 1H, deuterium oxide exchangeable, NH), 7.35–7.56 (m, 5H, H9, 10, and 3', 4', 5'), 7.81–7.89 (m, 2H, H8 and 11), 8.46–8.58 (m, 2H, H2' and 6'); FAB-MS *m/z*: 376 (MH⁺). *Anal.* Calcd. for C₂₁H₁₇N₃S₂: C, 67.17; H, 4.56; N, 11.19. Found: C, 67.23; H, 4.76; N, 11.19.

4-Methylamino-2-p-tolyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (10e). The reaction time was 24 h. Recrystallization of the residue from acetonitrile gave 10e (81%) as colorless needles, mp 208–209°C; IR (nujol) cm⁻¹: 3460 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 2.43 (s, 3H, 2'-CH₃), 3.10 (t, 2H, J=5.0 Hz, H5), 3.20 (d, 3H, J=4.2 Hz, NCH₃), 3.47 (t, 2H, J=5.0 Hz, H6), 5.44 (br, 1H, deuterium oxide exchangeable, NH), 7.28 (d, 2H, J=8.5 Hz, H3' and 5'), 7.35–7.47 (m, 2H, H9 and 10), 7.80–7.89 (m, 2H, H8 and 11), 8.39 (d, 2H, J=8.5 Hz, H2' and 6'); FAB-MS *m/z*: 390 (MH⁺). Anal. Calcd. for C₂₂H₁₉N₃S₂: C, 67.83; H, 4.92; N, 10.79. Found: C, 67.80; H, 5.05; N, 10.68.

General procedure for the reaction of 9a–e with ethylamine to give 11a–e. To a solution of **9** (100 mg) in THF (5.0 mL) was added 70% aqueous ethylamine (10 mL), and the mixture was stirred at room temperature for the time required for completion of the reaction. After evaporation of the reaction mixture *in vacuo*, ice-water (50 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by recrystallization to give **11**.

4-Ethylamino-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (11a). The reaction time was 5 h. Recrystallization of the residue from acetonitrile gave 11a (68%) as colorless needles, mp 173–174°C; IR (nujol) cm⁻¹: 3220 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 1.31 (t, 3H, J=7.2 Hz, -CH₂CH₃), 3.03 (t, 2H, J=5.7 Hz, H5), 3.51 (t, 2H, J=5.7 Hz, H6), 3.69 (dq, 2H, J=7.2, 5.5 Hz, -CH₂CH₃), 5.43 (br s, 1H, deuterium oxide exchangeable, NH), 7.36–7.49 (m, 2H, H9 and 10), 7.79–7.94 (m, 2H, H8 and 11), 8.57 (s, 1H, H2); FAB-MS *m*/ z: 314 (MH⁺). Anal. Calcd. for C₁₆H₁₅N₃S₂: C, 61.31; H, 4.82; N, 13.41. Found: C, 61.45; H, 4.93; N, 13.30.

4-Ethylamino-2-methyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (11b). The reaction time was 18 h. Recrystallization of the residue from ethanol gave **11b** (70%) as yellow prisms, mp 155–156°C; IR (nujol) cm⁻¹: 3440 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 1.29 (t, 3H, J=7.2 Hz, -CH₂CH₃), 2.57 (s, 3H, 2-CH₃), 2.96 (t, 2H, J=6.0 Hz, H5), 3.47 (t, 2H, J=6.0 Hz, H6), 3.60 (dq, 2H, J=7.2, 5.3 Hz, -CH₂CH₃), 5.15 (br, 1H, deuterium oxide exchangeable, NH), 7.37–7.43 (m, 2H, H9 and 10), 7.78–7.93 (m, 2H, H8 and 11); FAB-MS *m/z*: 328 (MH⁺). Anal. Calcd. for C₁₇H₁₇N₃S₂: C, 62.35; H, 5.23; N, 12.83. Found: C, 62.29; H, 5.32; N, 12.59.

2-Ethyl-4-ethylamino-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (11c). The reaction time was 20 h. Recrystallization of the residue from methanol gave **11c** (66%) as yellow prisms, mp 106–107°C; IR (nujol) cm⁻¹: 3440 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 1.25–1.42 (m, 6H, 2 × –CH₂CH₃), 2.80–2.96 (m, 4H, H5 and 2-CH₂CH₃), 3.45 (t, 2H, J=6.3 Hz, H6), 3.62 (dq, 2H, J=7.1, 5.5 Hz, NCH₂CH₃), 6.10 (br, 1H, deuterium oxide exchangeable, NH), 7.32–7.45 (m, 2H, H9 and 10), 7.79–7.88 (m, 2H, H8 and 11); FAB-MS *m/z*: 342 (MH⁺). Anal. Calcd. for C₁₈H₁₉N₃S₂: C, 63.31; H, 5.61; N, 12.30. Found; C,63.39; H, 5.73; N,12.10.

4-Ethylamino-2-phenyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (11d). The reaction time was 12 h. July 2014

Recrystallization of the residue from acetonitrile gave **11d** (83%) as yellow scales, mp 158–159°C; IR (nujol) cm⁻¹: 3440 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 1.34 (t, 3H, J=7.2 Hz, – CH₂CH₃), 3.09 (t, 2H, J=5.6 Hz, H5), 3.49 (t, 2H, J=5.6 Hz, H6), 3.64–3.82 (m, 2H, –CH₂CH₃), 5.90 (br, 1H, deuterium oxide exchangeable, NH), 7.37–7.43 (m, 2H, H9 and 10), 7.44–7.55 (m, 3H, H3', 4', and 5'), 7.81–7.94 (m, 2H, H8 and 11), 8.42–8.55 (m, 2H, H2' and 6'); FAB-MS m/z: 390 (MH⁺). *Anal.* Calcd. for C₂₂H₁₉N₃S₂: C, 67.83; H, 4.92; N, 10.79. Found: C, 68.13; H, 5.27; N, 10.78.

4-Ethylamino-2-p-tolyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (11e). The reaction time was 30 h. Recrystallization of the residue from acetonitrile gave 11e (79%) as yellow plates, mp 161–162°C; IR (nujol) cm⁻¹: 3440 (NH); ¹H-NMR (200 MHz, deuterochloroform): δ 1.34 (t, 3H, J=7.2 Hz, -CH₂CH₃), 2.43 (s, 3H, 2'-CH₃), 3.09 (t, 2H, J=5.6 Hz, H5), 3.49 (t, 2H, J=5.6 Hz, H6), 3.62–3.80 (m, 2H, -CH₂CH₃), 5.91 (br, 1H, deuterium oxide exchangeable, NH), 7.28 (d, 2H, J=8.0 Hz, H3' and 5'), 7.37–7.45 (m, 2H, H9 and 10), 7.81–7.92 (m, 2H, H8 and 11), 8.35 (d, 2H, J=8.0 Hz, H2' and 6'); FAB-MS *m*/z: 404 (MH⁺). Anal. Calcd. for C₂₃H₂₁N₃S₂: C, 68.45; H, 5.24; N, 10.41. Found: C, 68.53; H, 5.46; N, 10.34.

General procedure for the reaction of 9a–e with dimethylamine to give 12a–e. To a solution of **9** (100 mg) in THF (5.0 mL) was added 50% aqueous dimethylamine (10 mL), and the mixture was then stirred at room temperature for the time required for completion of the reaction. After evaporation of the reaction mixture *in vacuo*, ice-water (50 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by recrystallization to give **12**.

4-Dimethylamino-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (12a). The reaction time was 1 h. Recrystallization of the residue from cyclohexane gave **12a** (80%) as colorless plates, mp 155–156°C; ¹H-NMR (200 MHz, deuterochloroform): δ 3.11 (t, 2H, J = 5.6 Hz, H5), 3.13 (s, 6H, N(CH₃)₂), 3.66 (t, 2H, J = 5.6 Hz, H6), 7.38–7.47 (m, 2H, H9 and 10), 7.82–7.98 (m, 2H, H8 and 11), 8.62 (s, 1H, H2); FAB-MS *m/z*: 314 (MH⁺). *Anal.* Calcd. for C₁₆H₁₅N₃S₂: C, 61.31; H, 4.82; N, 13.41. Found: C, 61.14; H, 4.90; N, 13.22.

2-Methyl-4-dimethylamino-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (12b). The reaction time was 1 h. Recrystallization of the residue from acetonitrile gave 12b (79%) as colorless plates, mp 120–121°C; ¹H-NMR (200 MHz, deuterochloroform): δ 2.59 (s, 3H, 2-CH₃), 3.07 (t, 2H, *J* = 5.7 Hz, H5), 3.10 (s, 6H, N(CH₃)₂), 3.63 (t, 2H, *J* = 5.7 Hz, H6), 7.37– 7.46 (m, 2H, H9 and 10), 7.81–7.97 (m, 2H, H8 and 11); FAB-MS *m/z*: 328 (MH⁺). Anal. Calcd. for C₁₇H₁₇N₃S₂: C, 62.35; H, 5.23; N, 12.83. Found: C, 62.18; H, 5.22; N, 12.74.

2-Ethyl-4-dimethylamino-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (12c). The reaction time was 1 h. Recrystallization of the residue from acetonitrile gave **12c** (74%) as colorless prisms, mp 125–126°C; ¹H-NMR (200 MHz, deuterochloroform): δ 1.37 (t, 3H, J=7.5 Hz, CH₂CH₃), 2.85 (q, 2H, J=7.5 Hz, CH₂CH₃), 3.08 (t, 2H, J=5.8 Hz, H5), 3.10 (s, 6H, N(CH₃)₂), 3.62 (t, 2H, J=5.8 Hz, H6), 7.36–7.45 (m, 2H, H9 and 10), 7.81–7.95 (m, 2H, H8 and 11); FAB-MS *m*/*z*: 342 (MH⁺). Anal. Calcd. for C₁₈H₁₉N₃S₂: C, 63.31; H, 5.61; N, 12.30. Found: C, 63.41; H, 5.56; N, 12.32.

4-Dimethylamino-2-phenyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (12d). The reaction time was 24 h. Recrystallization of the residue from acetonitrile gave **12d** (96%) as colorless prisms, mp 183–184°C; ¹H-NMR (200 MHz, deuterochloroform): $\delta 3.17$ (s, 6H, N(CH₃)₂), 3.21 (t, 2H, J = 5.7 Hz, H5), 3.62 (t, 2H, J = 5.7 Hz, H6), 7.36–7.54 (m, 5H, H9, 10, and 3', 4', 5'), 7.82–7.96 (m, 2H, H8 and 11), 8.49–8.58 (m, 2H, H2' and 6'); FAB-MS *m*/*z*: 390 (MH⁺). *Anal.* Calcd. for C₂₂H₁₉N₃S₂: C, 67.83; H, 4.92; N, 10.79. Found: C, 68.04; H, 5.00; N, 10.78.

4-Dimethylamino-2-p-tolyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (12e). The reaction time was 24 h. Recrystallization of the residue from acetonitrile gave 12e (92%) as colorless prisms, mp 200–201°C; ¹H-NMR (200 MHz, deuterochloroform): δ 2.43 (s, 3H, 2'-CH₃), 3.16 (s, 6H, N(CH₃) 2), 3.20 (t, 2H, J=6.0 Hz, H5), 3.61 (t, 2H, J=6.0 Hz, H6), 7.28 (d, 2H, J=8.0 Hz, H3' and 5'), 7.37–7.47 (m, 2H, H9 and 10), 7.83–7.95 (m, 2H, H8 and 11), 8.42 (d, 2H, J=8.0 Hz, H2' and 6'); FAB-MS *m*/z: 404 (MH⁺). Anal. Calcd. for C₂₃H₂₁N₃S₂: C, 68.45; H, 5.24; N, 10.41. Found: C, 68.39; H, 5.33; N, 10.29.

General procedure for the reaction of 9a–e with 2-aminoethanol to give 13a–e. To a solution of 9 (100 mg) in dry 1,4-dioxane (5.0 mL) was added 2-aminoethanol (10 eq. to 9), and the mixture was then refluxed for the time required for completion of the reaction. After evaporation of the reaction mixture *in vacuo*, icewater (50 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by recrystallization to give 13.

4-(2-Hydroxyethylamino)-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (13a). The reaction time was 10 h. Recrystallization of the residue from acetonitrile gave 13a (68%) as colorless scales, mp 172–173°C; IR (nujol) cm⁻¹: 3400, 3170 (NH, OH); ¹H-NMR (200 MHz, DMSO-d₆): δ 3.06 (t, 2H, J=5.3 Hz, H5), 3.45–3.63 (m, 6H, NCH₂CH₂O and H6), 4.76, 7.32 (each t, each 1H, J=5.3, 5.0 Hz, deuterium oxide exchangeable, NH and OH), 7.40–7.53 (m, 2H, H9 and 10), 7.76–7.87, 7.97–8.05 (each m, each 1H, H8 and 11), 8.39 (s, 1H, H2); FAB-MS *m*/*z*: 330 (MH⁺). Anal. Calcd. for C₁₆H₁₅N₃OS₂: C, 58.33; H, 4.59; N, 12.76. Found: C, 58.33; H, 4.76; N, 12.57.

4-(2-Hydroxyethylamino)-2-methyl-5,6-dihydro[1]benzothieno [3',2';2,3]thiepino[4,5-d]pyrimidine (13b). The reaction time was 22 h. Recrystallization of the residue from acetonitrile gave **13b** (69%) as colorless needles, mp 179–180°C; IR (nujol) cm⁻¹: 3450, 3400, 3150 (NH, OH); ¹H-NMR (200 MHz, DMSO- d_6): δ 2.38 (s, 3H, 2-CH₃), 3.02 (t, 2H, J=5.3 Hz, H5), 3.43–3.62 (m, 6H, NCH₂CH₂O and H6), 4.76, 7.15 (each t, each 1H, J=5.3, 5.1 Hz, each deuterium oxide exchangeable, NH and OH), 7.40–7.52 (m, 2H, H9 and 10), 7.78–7.83, 7.95–8.00 (each m, each 1H, H8 and 11); FAB-MS *m/z*: 344 (MH⁺). *Anal.* Calcd. for C₁₇H₁₇N₃OS₂·1/4 H₂O: C, 58.68; H, 5.07; N, 12.08. Found: C, 59.03; H, 5.02; N, 12.04.

2-Ethyl-4-(2-hydroxyethylamino)-5,6-dihydro[1]benzothieno [3',2'2,3]thiepino[4,5-d]pyrimidine (13c). The reaction time was 26 h. Recrystallization of the residue from acetonitrile gave **13c** (66%) as colorless scales, mp 163–164°C; IR (nujol) cm⁻¹: 3450, 3400, 3160 (NH, OH); ¹H-NMR (200 MHz, DMSO-*d*₆): δ 1.26 (t, 3H, *J*=7.5 Hz, 2-CH₂CH₃), 2.65 (q, 2H, *J*=7.5 Hz, 2-CH₂CH₃), 3.04 (t, 2H, *J*=5.5 Hz, H5), 3.43–3.63 (m, 6H, NCH₂CH₂O and H6), 4.76, 7.16 (each t, each 1H, *J*=5.4, 5.2 Hz, deuterium oxide exchangeable, NH and OH), 7.40–7.50 (m, 2H, H9 and 10), 7.76–7.84, 7.94–8.03 (each m, each 1H, H8 and 11); FAB-MS *m/z*: 358 (MH⁺). *Anal.* Calcd. for C₁₈H₁₉N₃OS₂: C, 60.47; H, 5.36; N, 11.75. Found: 60.12; H, 5.34; N, 11.64.

4-(2-Hydroxyethylamino)-2-phenyl-5,6-dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-d]pyrimidine (13d). The reaction time was 33 h. Recrystallization of the residue from acetonitrile gave **13d** (83%) as colorless prisms, mp 153–154°C; IR (nujol) cm⁻¹: 3370, 3180 (NH, OH); ¹H-NMR (200 MHz, DMSO-*d*₆): δ 3.17 (br t, 2H, *J* = 5.0 Hz, H5), 3.52 (br t, 2H, *J* = 5.0 Hz, H6), 3.63–3.70 (m, 4H, NCH₂CH₂O), 4.81 (t, 1H, *J* = 5.5 Hz, deuterium oxide exchangeable, NH or OH), 7.34 (br s, 1H, deuterium oxide exchangeable, NH or OH), 7.43–7.56 (m, 5H, H9, 10, and 3', 4', 5'), 7.79–7.84, 8.01–8.06 (each m, each 1H, H8 and 11), 8.35–8.46 (m, 2H, H2' and 6'); FAB-MS *m*/*z*: 406 (MH⁺). *Anal.* Calcd. for C₂₂H₁₉N₃OS₂: C, 65.16; H, 4.72; N, 10.36. Found: C, 64.89; H, 4.86; N, 10.30.

4-(2-Hydroxyethylamino)-2-p-tolyl-5,6-dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-d]pyrimidine (13e). The reaction time was 20 h. Recrystallization of the residue from acetonitrile gave **13e** (78%) as yellow needles, mp 216–217°C; IR (nujol) cm⁻¹: 3370, 3180 (NH, OH); ¹H-NMR (200 MHz, DMSO-d₆): δ 2.39 (s, 3H, 2'-CH₃), 3.15 (t, 2H, J=5.3 Hz, H5), 3.50 (t, 2H, J=5.3 Hz, H6), 3.58–3.73 (m, 4H, NCH₂CH₂O), 4.80 (t, 1H, J=5.5 Hz, deuterium oxide exchangeable, NH or OH), 7.32 (d, 2H, J=8.0 Hz, H3' and 5'), 7.41–7.53 (m, 2H, H9 and 10), 7.79–7.83, 8.01–8.05 (each m, each 1H, H8 and 11), 8.30 (d, 2H, J=8.0 Hz, H2' and 6'); FAB-MS m/z: 420 (MH⁺). Anal. Calcd. for C₂₃H₂₁N₃OS₂·1/3 H₂O: C, 64.91; H, 5.13; N, 9.87. Found: C, 65.15; H, 5.06; N, 9.76.

General procedure for the reaction of 9a–e with sodium methoxide to give 14a–e. To a methanolic solution (5.0 mL) of sodium methoxide (2 eq. to 9) was added 9 (100 mg) and the solution was then refluxed for the time required for completion of the reaction. After removal of solvent *in vacuo*, ice-water (50 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by recrystallization to give 14.

4-Methoxy-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (14a). The reaction time was 3 h. Recrystallization of the residue from acetonitrile gave 14a (84%) as yellow needles, mp 171–172°C; ¹H-NMR (200 MHz, deuterochloroform): δ 3.30–3.52 (m, 4H, H5 and 6), 4.09 (s, 3H, OCH₃), 7.36–7.54 (m, 2H, H9 and 10), 7.82–7.94 (m, 2H, H8 and 11), 8.75 (s, 1H, H2); FAB-MS *m/z*: 301 (MH⁺). Anal. Calcd. for C₁₅H₁₂N₂OS₂: C, 59.97; H, 4.03; N, 9.33. Found: C, 59.68; H, 4.31; N, 9.37.

4-Methoxy-2-methyl-5,6-dihydro[*1*]*benzothieno*[*3*',*2*':2,3]*thiepino* [*4,5-d*]*pyrimidine* (*14b*). The reaction time was 1.5 h. Recrystallization of the residue from acetonitrile gave **14b** (67%) as colorless scales, mp 192–193°C; ¹H-NMR (200 MHz, deuterochloroform): δ 2.69 (s, 3H, 2-CH₃), 3.27 (br t, 2H, J = 5.0 Hz, H5), 3.44 (br t, 2H, J = 5.0 Hz, H6), 4.04 (s, 3H, OCH₃), 7.35–7.48 (m, 2H, H9 and 10), 7.80–7.91 (m, 2H, H8 and 11); FAB-MS *m/z*: 315 (MH⁺). *Anal.* Calcd. for C₁₆H₁₄N₂OS₂·1/4 H₂O: C, 60.26; H, 4.58; N, 8.78. Found: C, 60.52; H, 4.79; N, 9.01.

2-Ethyl-4-methoxy-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (14c). The reaction time was 1 h. Recrystallization of the residue from acetonitrile gave 14c (76%) as yellow needles, mp 139–140°C; ¹H-NMR (200 MHz, deuterochloroform): δ 1.41 (t, 3H, J = 7.5 Hz, CH₂CH₃), 3.03 (q, 2H, J = 7.5 Hz, CH₂CH₃), 3.23–3.32 (m, 2H, H5), 3.40–3.49 (m, 2H, H6), 4.07 (s, 3H, OCH₃), 7.39–7.43 (m, 2H, H9 and 10), 7.82–7.91 (m, 2H, H8 and 11); FAB-MS *m/z*: 329 (MH⁺). Anal. Calcd. for C₁₇H₁₆N₂OS₂: C, 62.16; H, 4.91; N, 8.53. Found: C, 62.15; H, 5.26; N, 8.48.

4-Methoxy-2-phenyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (14d). The reaction time was 7 h. Recrystallization of the residue from acetonitrile gave **14d** (77%) as yellow needles, mp 200–201°C; ¹H-NMR (200 MHz, deuterochloroform): δ 3.43 (br s, 4H, H5 and 6), 4.15 (s, 3H, OCH₃), 7.38–7.59 (m, 5H, H9, 10, and 3', 4', 5'), 7.81–7.90 (m, 2H, H8 and 11), 8.44–8.61 (m, 2H, H2' and 6'); FAB-MS m/z 377 (MH⁺). *Anal*. Calcd. for C₂₁H₁₆N₂OS₂·1/4 H₂O: C, 66.20; H, 4.37; N, 7.35. Found: C, 66.58; H, 4.38; N, 7.34.

4-Methoxy-2-p-tolyl-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (14e). The reaction time was 93 h. Recrystallization of the residue from acetonitrile gave 14e (71%) as colorless prisms, mp 198–199°C; ¹H-NMR (200 MHz, deuterochloroform): δ 2.44 (s, 3H, 2'-CH₃), 3.42 (s, 4H, H5 and 6), 4.14 (s, 3H, OCH₃), 7.30 (d, 2H, J=8.2 Hz, H3' and 5'), 7.38–7.45 (m, 2H, H9 and 10), 7.82–7.90 (m, 2H, H8 and 11), 8.43 (d, 2H, J=8.2 Hz, H2' and 6'); FAB-MS *m/z*: 391 (MH⁺). Anal. Calcd. for C₂₂H₁₈N₂OS₂: C, 67.66; H, 4.65; N, 7.17. Found: C, 67.47; H, 4.93; N, 7.15.

General procedure for the reaction of 9a–e with sodium ethoxide to give 15a–e. To an ethanolic solution (5.0 mL) of sodium ethoxide (2 eq. to 9) was added 9 (100 mg), and the solution was then refluxed for the time required of completion of the reaction. After evaporation of solvent *in vacuo*, ice-water (50 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by recrystallization to give 15.

4-Ethoxy-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino[4,5-d] pyrimidine (15a). The reaction time was 2 h. Recrystallization of the residue from ethanol gave **15a** (87%) as colorless prisms, mp 167–168°C; ¹H-NMR (200 MHz, deuterochloroform): δ 1.46 (t, 3H, J = 7.0 Hz, CH₂CH₃), 3.33–3.49 (m, 4H, H5 and 6), 4.52 (q, 2H, J = 7.0 Hz, OCH₂), 7.40–7.48 (m, 2H, H9 and 10), 7.82– 7.92 (m, 2H, H8 and 11), 8.71 (s, 1H, H2); FAB-MS *m/z*: 315 (MH⁺). *Anal.* Calcd. for C₁₆H₁₄N₂OS₂: C, 61.12; H, 4.49; N, 8.91. Found: C, 60.95; H, 4.49; N, 8.93.

4-Ethoxy-2-methyl-5,6-dihydro[*1*]*benzothieno*[*3*',2':2,3]*thiepino* [*4,5-d*]*pyrimidine* (*15b*). The reaction time was 2 h. Recrystallization of the residue from ethanol gave **15b** (85%) as colorless needles, mp 160–162°C; ¹H-NMR (200 MHz, deuterochloform): δ 1.43 (t, 3H, *J* = 7.0 Hz, CH₂CH₃), 2.66 (s, 3H, 2-CH₃), 3.27–3.32 (m, 2H, H5), 3.41–3.46 (m, 2H, H6), 4.48 (q, 2H, *J* = 7.0 Hz, OCH₂), 7.38–7.43 (m, 2H, H9 and 10), 7.82–7.89 (m, 2H, H8 and 11); FAB-MS *m*/*z*: 329 (MH⁺). *Anal.* Calcd. for C₁₇H₁₆N₂OS₂·1/3 H₂O: C, 61.05; H, 5.02; N, 8.38. Found: C, 61.39; H, 4.89: N, 8.39.

4-Ethoxy-2-ethyl-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (15c). The reaction time was 1 h. Recrystallization of the residue from ethanol gave 15c (83%) as colorless needles, mp 113–114°C; ¹H-NMR (200 MHz, deuterochloform): δ 1.39 (t, 3H, J=7.5 Hz, 2-CH₂CH₃), 1.44 (t, 3H, J=7.1 Hz, OCH₂CH₃), 2.96 (q, 2H, J=7.5 Hz, 2-CH₂CH₃), 1.44 (t, 3H, J=7.1 Hz, OCH₂CH₃), 2.96 (q, 2H, J=7.5 Hz, 2-CH₂CH₃), 3.25– 3.35 (m, 2H, H5), 3.39–3.48 (m, 2H, H6), 4.51 (q, 2H, J=7.1 Hz, OCH₂CH₃), 7.34–7.47 (m, 2H, H9 and 10), 7.81–7.91 (m, 2H, H8 and 11); FAB-MS *m/z*: 343 (MH⁺). *Anal.* Calcd. for C₁₈H₁₈N₂OS₂: C, 63.13; H, 5.30; N, 8.18. Found: C, 62.88; H, 5.38; N, 8.00.

4-Ethoxy-2-phenyl-5,6-dihydro[1]benzothieno[3',2':2,3]thiepino [4,5-d]pyrimidine (15d). The reaction time was 1 h. Recrystallization of the residue from acetonitrile gave 15d (88%) as colorless needles, mp 145–146°C; ¹H-NMR (200 MHz, deuterochloroform): δ 1.50 (t, 3H, J = 7.0 Hz, CH₂CH₃), 3.43 (br s, 4H, H5 and 6), 4.63 (q, 2H, J = 7.0 Hz, OCH₂), 7.31–7.64 (m, 5H, H9, 10, and 3', 4', 5'), 7.82–7.92 (m, 2H, H8 and 11), 8.49–8.58 (m, 2H, H2' and 6'); FAB-MS *m*/*z*: 391. *Anal*. Calcd. for C₂₂H₁₈N₂OS₂: C, 67.66; H, 4.65; N, 7.17. Found: C, 67.33; H, 4.81; N, 7.09. *4-Ethoxy-2-p-tolyl-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (15e).* The reaction time was 4.5 h. Recrystallization of the residue from acetonitrile gave **15e** (91%) as colorless needles, mp 167–168°C; ¹H-NMR (200 MHz, deuterochloroform): δ 1.49 (t, 3H, J=7.0 Hz, CH₂CH₃), 2.44 (s, 3H, 4'-CH₃), 3.42 (s, 4H, H5 and 6), 4.62 (q, 2H, J=7.0 Hz, OCH₂), 7.30 (br d, 2H, J=8.0 Hz, H3' and 5'), 7.37–7.45 (m, 2H, H9 and 10), 7.82–7.91 (m, 2H, H8 and 11), 8.42 (br d, 2H, J=8.0 Hz, H2' and 6'); FAB-MS *m*/*z*: 405 (MH⁺). *Anal.* Calcd. for C₂₃H₂₀N₂OS₂: C, 68.29; H, 4.98; N, 6.92. Found: C, 67.91; H, 4.93; N, 6.84.

General procedure for the reaction of 9a–e with ethylene glycol to give 16a–e. To a solution of 9 (100 mg) in dry 1,4-dioxane (5.0 mL) were added ethylene glycol (2.0 mL), and potassium carbonate (2 eq. to 9) and the mixture was then stirred at 80°C for the time required for completion of the reaction. After evaporation of the reaction mixture *in vacuo*, ice-water (20 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by column chromatography and/or recrystallization to give 16.

4-(2-Hydroxyethoxy)-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (16a). The reaction time was 2 h. The precipitated solid was chromatographed on silica gel. The eluate of *n*-hexane/ethyl acetate (4:1) was evaporated and the residue was recrystallized from benzene to give **16a** (74%) as colorless needles, mp 123–124°C. IR (nujol) cm⁻¹: 3401, 3315 (OH); ¹H-NMR (200 MHz, DMSO-d₆): δ 3.42 (br s, 4H, H5 and 6), 3.99– 4.04 (m, 2H, OCH₂CH₂OH), 4.59–4.63 (m, 2H, OCH₂CH₂OH), 7.37–7.48 (m, 2H, H9 and 10), 7.80–7.91 (m, 2H, H8 and 11), 8.65 (s, 1H, H2); FAB-MS *m*/z: 331 (MH⁺). Anal. Calcd. for C₁₆H₁₄N₂O₂S₂: C, 58.16; H, 4.27; N, 8.48. Found: C, 57.92; H, 4.51; N, 8.52.

4-(2-Hydroxyethoxy)-2-methyl-5,6-dihydro[1]benzothieno [*3',2':2,3]thiepino[4,5-d]pyrimidine (16b).* The reaction time was 5 h. The precipitated solid was chromatographed on silica gel. The eluate of *n*-hexane/ethyl acetate (4:1) was evaporated, and the residue was recrystallized from cyclohexane to give **16b** (72%) as colorless needles, mp 135–136°C; IR (nujol) cm⁻¹: 3384 (OH); ¹H-NMR (200 MHz, DMSO-*d*₆): δ 2.67 (s, 3H, 2-CH₃), 3.30–3.35 (m, 2H, H5), 3.41–3.46 (m, 2H, H6), 3.98–4.02 (m, 2H, OCH₂CH₂OH), 4.59–4.64 (m, 2H, OCH₂CH₂OH), 7.39–7.44 (m, 2H, H9 and 10), 7.82–7.89 (m, 2H, H8 and 11); FAB-MS *m/z*: 345 (MH⁺). *Anal.* Calcd. for C₁₇H₁₆N₂O₂S₂·1/4 H₂O: C, 58.51; H, 4.77; N, 8.03. Found: C, 58.81; H, 4.90; N, 7.99.

2-Ethyl-4-(2-hydroxyethoxy)-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (16c). The reaction time was 3 h. Recrystallization of the precipitated solid from cyclohexane gave 16c (77%) as colorless needles, mp 120–121°C; IR (nujol) cm⁻¹: 3172 (OH); ¹H-NMR (200 MHz, DMSO-d₆): δ 1.39 (t, 3H, J=7.5 Hz, 2-CH₂CH₃), 2.95 (q, 2H, J=7.5 Hz, 2-CH₂CH₃), 3.32–3.45 (m, 4H, H5 and 6), 3.98–4.02 (m, 2H, OCH₂CH₂OH), 4.61–4.65 (m, 2H, OCH₂CH₂OH), 7.36–7.48 (m, 2H, H9 and 10), 7.79–7.90 (m, 2H, H8 and 11); FAB-MS m/z: 359 (MH⁺). Anal. Calcd. for C₁₈H₁₈N₂O₂S₂·1/3 H₂O: C, 59.31; H, 5.16; N, 7.69. Found: 59.64; H, 5.20; N, 7.74.

4-(2-Hydroxyethoxy)-2-phenyl-5,6-dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-d]pyrimidine (16d). The reaction time was 18 h. The precipitated solid was chromatographed on silica gel. The eluate of *n*-hexane/ethyl acetate (9:1) was evaporated, and the solid was recrystallized from acetonitrile to give 16d (50%) as yellow needles, mp 93–95°C; IR (nujol) cm⁻¹: 3291 (OH); ¹H-NMR (200 MHz, DMSO-d₆): δ 3.38–3.52 (m, 4H, H5 and 6), 4.04–4.12 (m, 2H, OCH₂CH₂OH), 4.70–4.78 (m, 2H, OCH₂CH₂OH), 7.39–7.45 (m, 2H, H9 and 10), 7.48–7.52 (m, 3H, H3', 4', and 5'), 7.82–7.88 (m, 2H, H8 and 11), 8.46–8.51 (m, 2H, H2' and 6'); FAB-MS *m/z*: 407 (MH⁺). *Anal.* Calcd. for $C_{22}H_{18}N_2O_2S_2$: C, 65.00; H, 4.46; N, 6.89. Found: C, 64.65; H, 4.67; N, 6.64.

4-(2-Hydroxyethoxy)-2-p-tolyl-5,6-dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-d]pyrimidine (16e). The reaction time was 36 h. Recrystallization of the precipitated solid from acetonitrile gave **16e** (76%) as yellow needles, mp 188–189°C; IR (nujol) cm⁻¹: 3366 (OH); ¹H-NMR (200 MHz, DMSO-*d*₆): δ 2.44 (s, 3H, 2'-CH₃), 3.38–3.52 (m, 4H, H5 and 6), 4.03–4.11 (m, 2H, OCH₂CH₂OH), 4.70–4.78 (m, 2H, OCH₂CH₂OH), 7.30 (br d, 2H, *J* = 8.0 Hz, H3' and 5'), 7.38–7.46 (m, 2H, H9 and 10), 7.81– 7.89 (m, 2H, H8 and 11), 8.37 (d, 2H, *J* = 8.0 Hz, H2' and 6'); FAB-MS *m*/*z*: 421 (MH⁺). *Anal.* Calcd. for C₂₃H₂₀N₂O₂S₂: C, 65.69; H, 4.79; N, 6.66. Found: C, 65.29; H, 4.73; N, 6.58.

General procedure for the reaction of 9a–e with 2sulfanylethanol to give 17a–e. To a solution of 9 (100 mg) in dry 1,4-dioxane (5.0 mL) were added 2-sulfanylethanol (2 eq. to 9) and 1,8-diazabicyclo potassium carbonate (2 eq. to 9), and the mixture was then refluxed for the time required for completion of the reaction. After evaporation of the reaction mixture *in vacuo*, ice-water (20 mL) was poured into the residue. The resulting precipitate was collected on a filter and purified by column chromatography and/or recrystallization to give 17.

4-(2-Hydroxyethylsulfanyl)-5,6-dihydro[1]benzothieno[3',2':2,3] thiepino[4,5-d]pyrimidine (17a). The reaction time was 33 h. The precipitated solid was collected on a filter and was chromatographed on silica gel. The eluate of *n*-hexane/ethyl acetate (4:1) was evaporated *in vacuo* and was recrystallized from acetonitrile to give **17a** (43%) as yellow needles, mp 105–106°C; IR (nujol) cm⁻¹: 3176 (OH); ¹H-NMR (200 MHz, DMSO-*d*₆): δ 3.31–3.45 (m, 4H, H5 and SCH₂CH₂OH), 3.51–3.58 (m, 2H, H6), 3.66 (t, 2H, *J*=6.7 Hz, SCH₂CH₂OH), 5.10 (br, 1H, deuterium oxide exchangeable, OH), 7.42–7.58 (m, 2H, H9 and 10), 7.78–7.85 (m, 1H, H11), 7.98–8.50 (m, 1H, H8), 8.85 (s, 1H, H2); FAB-MS *m/z*: 347 (MH⁺). *Anal*. Calcd. for C₁₆H₁₄N₂OS₃·1/ 3 H₂O: C, 54.52; H, 4.19; N, 7.95. Found: C, 54.52; H, 4.22; N, 7.76.

4-(2-Hydroxyethylsulfanyl)-2-methyl-5,6-dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-d]pyrimidine (17b). The reaction time was 25 h. Recrystallization of the precipitated solid from acetonitrile gave 17b (79%) as yellow needles, mp 125–126°C; IR (nujol) cm⁻¹: 3188 (OH); ¹H-NMR (200 MHz, DMSO-d₆): δ 2.59 (s, 3H, 2-CH₃), 3.26–3.37 (m, 4H, H5 and SCH₂CH₂OH), 3.48– 3.53 (m, 2H, H6), 3.67 (t, 2H, *J* = 6.5 Hz, SCH₂CH₂OH), 5.10 (br, 1H, deuterium oxide exchangeable, OH), 7.41–7.57 (m, 2H, H9 and 10), 7.79 (br dd, 1H, *J* = 6.7, 2.0 Hz, H11), 8.00 (br dd, 1H, *J* = 6.4, 1.8 Hz, H8); FAB-MS *m/z*: 361 (MH⁺). *Anal.* Calcd. for C₁₇H₁₆N₂OS₃·1/3 H₂O: C, 55.71; H, 4.58; N, 7.64. Found: C, 55.97; H, 4.59; N, 7.67.

2-Ethyl-4-(2-hydroxyethylsulfanyl)-5,6-dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-d]pyrimidine (17c). The reaction time was 26 h. Recrystallization of the precipitated solid from acetonitrile gave **17c** (43%) as colorless needles, mp 114–115°C; IR (nujol) cm⁻¹: 3364, 3290 (OH); ¹H-NMR (200 MHz, DMSO d_6): δ 1.33 (t, 3H, J=7.6 Hz, 2-CH₂CH₃), 2.86 (q, 2H, J=7.6 Hz, 2-CH₂CH₃), 3.27–3.38 (m, 4H, H5 and SCH₂CH₂OH), 3.48–3.53 (m, 2H, H6), 3.68 (t, 2H, J=6.4 Hz, SCH₂CH₂OH), 5.00 (br, 1H, deuterium oxide exchangeable, OH), 7.46 (td, 1H, J=7.1, 1.5 Hz, H9), 7.52 (td, 1H, J=7.1, 1.6 Hz, H10), 7.79 (br dd, 1H, J=7.1, 2.1 Hz, H11), 8.01 (br dd, 1H, J=7.1, 1.8 Hz, H8); FAB-MS *m/z*: 375 (MH⁺). Anal. Calcd. for $C_{18}H_{18}N_2OS_3$: C, 57.72; H, 4.84; N, 7.48. Found: 57.93; H, 4.94; N, 7.50.

4-(2-Hydroxyethylsulfanyl)-2-phenyl-5,6-dihydro[1]benzothieno [*3',2':2,3]thiepino[4,5-d]pyrimidine (17d).* The reaction time was 24 h. Recrystallization of the precipitated solid from acetonitrile gave **17d** (86%) as yellow needles, mp 175– 176°C; IR (nujol) cm⁻¹: 3367, 3173 (OH); ¹H-NMR (200 MHz, DMSO-*d*₆): δ 3.37–3.61 (m, 6H, H5, 6, and SC*H*₂CH₂OH), 3.76 (br t, 2H, *J*=6.0 Hz, SCH₂C*H*₂OH), 5.10 (br s, 1H, deuterium oxide exchangeable, OH), 7.45–7.68 (m, 5H, H9, 10, and 3', 4', 5'), 7.81 (br dd, 1H, *J*=6.5, 1.7 Hz, H11), 8.06 (br dd, 1H, *J*=7.5, 1.7 Hz, H8), 8.45–8.50 (m, 2H, H2' and 6'); FAB-MS *m/z*: 423 (MH⁺). *Anal.* Calcd. for C₂₂H₁₈N₂OS₃: C, 62.53; H, 4.29; N, 6.63. Found: C, 62.15; H, 4.58; N, 6.61.

4-(2-Hydroxyethylsulfanyl)-2-p-tolyl-5,6-dihydro[1]benzothieno [3',2':2,3]thiepino[4,5-d]pyrimidine (17e). The reaction time was 24 h. The precipitated solid was chromatographed on silica gel. The eluate of *n*-hexane/ethyl acetate (4:1) was evaporated, and the residue was recrystallized from acetonitrile to give **17e** (47%) as yellow needles, mp 188–189°C; IR (nujol) cm⁻¹: 3368, 3185 (OH); ¹H-NMR (200 MHz, DMSO-d₆): δ 2.42 (s, 3H, 2'-CH₃), 3.32–3.56 (m, 6H, H5, 6, and SCH₂CH₂OH), 3.75 (t, 2H, J=6.0 Hz, SCH₂CH₂OH), 7.39 (d, 2H, J=8.2 Hz, H3' and 5'), 7.42–7.58 (m, 2H, H9 and 10), 7.80 (br dd, 1H, J=6.6, 1.7 Hz, H11), 8.06 (br dd, 1H, J=6.8, 1.7 Hz, H8), 8.36 (d, 2H, J=8.2 Hz, H2' and 6'); FAB-MS *m*/z: 437 (MH⁺). Anal. Calcd. for C₂₃H₂₀N₂OS₃: C, 63.27; H, 4.62; N, 6.42. Found: C, 63.02; H, 4.91; N, 6.35.

Determination of pentosidine formation *in vitro*. The effects were assayed according to the literature procedure [11]. Aminoguanidine hydrochloride was used as a reference compound.

Acknowledgments. The authors are grateful to the SC-NMR Laboratory of Okayama University for 200 MHz ¹H-NMR experiments. They also thank Dr. K.L. Kirk (NIDDK, NIH) for helpful comments on the manuscript.

REFERENCES AND NOTES

[1] Snape, T. J. Chem Soc Rev 2008, 37, 2452.

[2] Erickson, W. R.; McKennon, M. J. Tetrahedron Lett 2000, 41, 4541.

[3] Kimbaris, A.; Cobb, J.; Tsakonas, G.; Varvounis, G. Tetrahedron 2004, 60, 8807.

[4] Mitchell, L. H.; Barvian, N. C. Tetrahedron Lett 2004, 45, 5669.

[5] Snape, T. J. Synlett 2008, 2689.

[6] Hirota, T.; Matsushita, T.; Sasaki, K.; Kashino, S. Heterocycles 1995, 41, 2565.

[7] Sasaki, K.; Rouf, A. S. S.; Hirota, T. J Heterocycl Chem 1996, 33, 49.

[8] Hirota, T.; Tomita, K.; Sasaki, K.; Okuda, K.; Yoshida, M.; Kashino, S. Heterocycles 2001, 55, 741.

[9] Okuda, K.; Yoshida, M.; Hirota, T.; Sasaki, K. Chem Pharm Bull 2010, 58, 363.

[10] Okuda, K.; Takano, J.; Hirota, T.; Sasaki, K. J Heterocycl Chem 2012, 49, 281.

[11] Okuda, K.; Muroyama, H.; Hirota, T. J Heterocycl Chem 2011, 48, 1407.

[12] Hirota, T.; Sasaki, K.; Okuda, K.; Matsukawa, A.; Segawa, T.; Yamamoto, T. In Jpn Kokai Tokkyo Koho A JP 2002-255813, Japan, 2002.

[13] Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv Drug Deliver Rev 1997, 23, 3.

[14] Reddy, V. P.; Beyaz, A. Drug Discov Today 2006, 11, 646.

[15] Thomas, M. C.; Baynes, J. W.; Thorpe, S. R.; Cooper, M. E. Curr Drug Targets 2005, 6, 453.

[16] Slebocka-Tilk, H.; Brown, R. S. J Org Chem 1988, 53, 1153.