Journal of Organometallic Chemistry, 310 (1986) C57-C59
Essevier Sequoia S.A., Lausanne - Printed in The Velnerands

Preliminary communication

THE FIRST SUCCESSFUL RING OPENING POLYMERYZATION' AT THE SI–SI BOND: A NOVEL o-(DISILANYLENE)PHENYLENE POLYMER

KYO SHIINA

Research Institute for Atomic Energy, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558 (Japan) (Received June 9th, 1986)

Summary

A new type of polymer, poly[o-(disilanylene)phenylene] was prepared via ring opening polymerization, at the Si-Si bond, of 1,1,2,2-tetramethyl-1,2-disilabenzo-cyclobutene.

Considerable attention has recently been focused on the synthesis of polysilane polymers starting from organo-dichlorosilanes and organo-bis(chlorosilyl) compounds by condensation with sodium in toluene [1–4]. Futhermore, it is well known that the ring opening polymerization of [Me₂SiO]₄ and organosilicon heterocycles such as mono- and di-silacyclobutanes and silabenzocyclobutene affords silicones and polysilaalkylenes, respectively [5]. It therefore is intriguing to study a cyclic compound having a disilanylene unit in the ring system that is synthesized conveniently, stable enough to handle, and capable of ring opening polymerization. 1,1,2,2-Tetramethyl-1,2-disilabenzocyclobutene (DSBB) would be the compound of choice for this purpose.

The monomer, DSBB (3), has been prepared using 1,2-bis(dimethylsilyl)benzene (1) [6] as the starting material. Chlorination of 1 by chlorine (in CCl_4 , 0°C) to 1,2-bis(dimethylchlorosilyl)benzene (2) (92% yield), followed by treatment of 2 with molten Na in refluxing toluene gave 3 in 60–85% yield (exact mass, Found; 192.0786. $C_{10}H_{16}Si_2$ calcd.: 192.0789).

$$\begin{array}{c|c} SiMe_2H & Cl_2 & SiMe_2Cl \\ \hline SiMe_2H & CCl_4 & SiMe_2Cl & SiMe_2 \\ \hline \end{array}$$

$$(1) \qquad \qquad (2) \qquad \qquad (3)$$

DSBB was easily isolated, almost pure from the mixture by distillation in vacuo at a temperature as low as 40°C. However, the distillate was inevitably containinated

with small amounts of siloxane (4), and complete separation of 3 from 4 by fractional distillation was unsuccessful, due to the occurrence of polymerization in the column. In the neat state, spontaneous polymerization of DSBB began to take place within a few hours at room temperature. Also, because of its ring strain, the Si-Si bond in DSBB is extremely reactive to both nucleo- and electrophiles as well as oxygen.

These reactions proceeded quantitatively at or below room temperature, exothermically.

Besides the uncatalyzed polymerization, DSBB in toluene at low temperatures, was polymerized satisfactorily by a Lewis acid as catalyst, (Table 1) and gave a

TABLE 1
POLYMERIZATION OF DSBB ^a

DSBB (mol l ⁻¹)	Catalyst	(mol l ⁻¹)	Reaction conditions		Conver- sion	$\overline{M}_n^b \times 10^{-5}$
			T (°C)	t (h)	(%)	
$\frac{1.7 \times 10^{-2}}{}$	BPO	(1.7×10^{-4})	60	5	2	_
1.7×10^{-2}	BPO	(8.5×10^{-4})	60	5	5	-
1.7×10^{-2}	-	_	60	5	3	
1.5×10^{-1}	AlCl ₃	(2.5×10^{-3})	-15	120	55	1.10
1.5×10^{-1}	AlCl ₃	(2.5×10^{-3})	0	48	89	1.33
1.1×10^{-1}	AlCl ₃	(3.6×10^{-3})	30	14	100	0.56
1.5×10^{-1}		<u> </u>	40	24	47	0.51
1.5×10^{-1}	_	-	60	48	57	3.49 °

^a Polymerization was carried out in a sealed tube, which was charged with a toluene solution of DSBB under N_2 . ^b Determined by GPC. ^c \overline{M}_n 374,000 by membrane osmometry.

novel, high molecular weight, cotton wool-like material after precipitation from ethanol.

This transformation is a new type Si-Si redistribution [7] leading to the polymer.

Poly-DSBB is soluble in many solvents such as benzene, toluene, THF, cyclohexane, carbon tetrachloride and chloroform, and readily cast into a film, but it is insoluble in alcohols, n-hexane, and dimethylformamide. The polymer shows an intense absorption band at 257 nm (in cyclohexane).

References

- 1 R.E. Trujillo, J. Organomet. Chem., 198 (1980) C27.
- 2 J.P. Wesson and T.C. Williams, J. Poly. Sci. Poly. Chem. Edit., 17 (1979) 2833; 18 (1980) 959; 19 (1981) 65.
- 3 M. Ishikawa, Ni Hongzhi, K. Matsusaki, K. Nate, T. Inoue and H. Yokono, J. Poly. Sci. Poly. Lett. Edn., 22 (1984) 669.
- 4 R. West, J. Organomet. Chem., 300 (1986) 327 and references cited therein.
- 5 C. Eaborn and R.W. Bott, in A.G. MacDiamid (Ed.), Organometallic Compounds of Group IV Elements, Vol. 1 (part 1), Marcel Dekker Inc., New York, 1968.
- 6 W. Fink. Helv. Chim. Acta, 57 (1974) 1010.
- 7 K. Tamao, T. Hayashi and M. Kumada, J. Organomet. Chem. 114 (1976) C19.