A Novel Approach Towards 2,3-Dideoxyriboside Synthesis

Edward Lee-Ruff*, Ji-Long Jiang and Wei-Qin Wan
Department of Chemistry
York University
Toronto, Ontario
Canada M3J 1P3

Summary: A short synthesis of 2,3-dideoxy-3(S)-C-hydroxymethyl ribosides is described. The key step involves a photochemical ring-expansion of a chiral cyclobutanone which occurs stereospecifically.

There has been a recent flurry of activity on the preparation of nucleoside analogues related to exetanocin which exhibit potent antiviral activity. 1-4 These compounds possess a four membered carbocyclic or heterocyclic exetane ring with vicinal trans-disubstituted hydroxymethyl groups. In a recent report, 5 a Swedish group showed that certain 2',3'-dideoxy-3'-C-hydroxymethyl nucleosides are very potent inhibitors of HIV. Our recent findings 6 that the photochemical ring-expansion of cyclobutanones gives N-H insertion products (2-aminotetrahydrofurans) and that these ring expansion reactions occur with retention of configuration of the ring substituents 7 prompted us to explore this route as a possible method for nucleoside synthesis. We report the successful application of this idea in the preparation of chiral 2,3-dideoxy-3(S)-C-hydroxymethyl ribosides starting with the optically pure protected 2,3-bishydroxymethylcyclobutanone 1. This ketone was obtained by a modified procedure involving the stereospecific metal-catalyzed [2+2] cycloaddition of 1,1-dimethoxyethylene to (-)dimenthyl fumarate as the key step. 2,13

UV irradiation of ketone 1 in THF/water⁸ gave an epimeric mixture of hemiacetals $2(a)^9$ (58%) ($[\alpha]_D = +13.2$, c = 1M, CHCl₃). The relative stereochemistry at the chiral centers C-3 and C-4 (sugar numbering) of 2(a) was confirmed by its oxidation to lactone $3.^9$ A single stereoisomer was produced as was evident from the ¹H-nmr spectrum. Homonuclear decoupling of the C-5 methylene protons showed a doublet for H-4 (J = 3.4Hz) typical for trans vicinal coupled protons.

BzOCH₂

$$\begin{array}{c}
hv \\
NuH
\end{array}$$
BzOCH₂

$$\begin{array}{c}
Nu \\
BzOCH2
\end{array}$$
O
$$\begin{array}{c}
Nu \\
BzOCH2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
BzOCH₂

$$\begin{array}{c}
BzOCH_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2
\end{array}$$
O
$$\begin{array}{c}
CH_2Cl_2$$

Furthermore, NOED experiments carried out for 3 indicated the trans relationship between the two benzoyloxymethyl groups. This is based on selective irradiation of the H-5 (δ 4.59) methylene protons and observation of signal enhancements for the H-4 (δ 4.80), H-3 (δ 2.95) and H-2 β (δ 2.90) protons. Since epimerization could only occur at C-4 upon photolysis of ketone 1 and a single stereoisomer 3 is produced in this sequence, the initial photochemical ring expansion reaction of the optically pure ketone 1 must have proceeded stereospecifically. Furthermore since the absolute configuration for ketone 1 has been assigned by X-ray crystallography of one of its analogs, 3 the assignment of the 3(S), 4(R) configuration for hemiacetal 2(a) is secure. Confirmation of the absolute configuration was obtained from the photoadduct 2(c) obtained from the photolysis of 1 in methanol. The β -anomer which was separated by preparative chromatography has identical physical and spectral properties with those of a previously reported sample prepared by a different route. ¹⁰

Similar irradiation of ketone 1 in THF containing t-butanol, methanol and succinimide gave adducts 2(b)-(d) in varying yields (Table 1) depending on the extent to which water is rigorously excluded from the reaction. In addition to the photoadducts 2, small amounts of the cycloelimination product, E-1,4-bis(benzoyloxy)-2-butene were produced. The extent of photocycloelimination in cyclobutanones is often solvent dependent. In all cases, an anomeric mixture (about 1:1 mixture of α and β) was obtained as evident from the observation of two anomeric proton signals in the region δ 5.0-5.5 ppm in the 1 H-nmr spectra. Some stereoselectivity was observed in the case of the t-butanol photoadduct 2(b) (4:1 in favour of the α epimer). The low yield in the case of t-butanol insertion may be attributable to steric factors in the bimolecular process favouring competing

unimolecular pathways such as photocycloelimination. Similar observations for other cyclobutanones have been reported. 12

Table 1	YIELDS OF PHOTOADDUCTS 2(a) - (d) ^a		
Solvent	Photoadducts (% Yield)		% Yield of Trans-Benzovloxy-2-Butene
THF/H ₂ O	2 (a)	(58)	15
THF/t-C ₄ H ₉ OH	2 (b)	(9)	20
THF/CH ₃ OH	2 (c)	(62)	33
THF/Succinimide	2 (d)	(17) ^b	30

a. Isolated yields.

Since the methanol adduct 2(c) has been coupled with cytosine⁵ and a purine¹⁰ our method constitutes a formal synthesis of nucleosides. The direct insertion of the oxacarbene derived from 1 into N-H functions of purine and pyrimidine bases is under current investigation.⁶

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for support of this work.

References and Notes

- 1. Slusarchyk, W.A.; Young, M.G.; Bisacchi, G.S.; Hockstein, D.R.; and Zahler, R. *Tetrahedron Lett.* 1989, 30, 6453
- 2. Ahmad, S.; Tetrahedron Lett. 1991, 32, 6997
- 3. Bisacchi, G.S.; Braitman, A.; Cianci, C.W.; Clark, J.M.; Field, A.K.; Hagen, M.E.; Hockstein, D.R.; Malley, M.F.; Mitt, T.; Slusarchyk, W.A.; Sundeen, J.E.; Terry, B.J.; Tuomari, A.V.; Weaver, E.R.; Young, M.G.; Zahler, R. J. Med. Chem. 1991, 34, 1415
- 4. Ichikawa, Y.; Narita, A.; Shiozawa, A.; Hayashi, Y.; Narasaka, K. J. Chem. Soc. Chem. Commum. 1989, 1919

b. Actual yield is 20%, based on unreacted starting material.

- 5. Svansson, L.; Kvarnström, I.; Chasson, B.; Samuelsson, B. J. Org. Chem. 1991, 56, 2993
- 6. Hayes, I.E.E.; Jandrisits, L.; Lee-Ruff, E. Can. J. Chem. 1989, 67, 2057
- Lee-Ruff, E. in "Advances in Strain in Organic Chemistry" B. Halton (Ed.) JAI Press (1991)
 vol. 1 p.167
- 8. The irradiation was carried out using a Hanovia 450W lamp in a quartz immersion well.
 Pyrex tubes containing 0.02M solutions of ketone 1 in THF and nucleophile scavenger in pyrex tubes were strapped around the well and irradiated for two hours.
- 9. Spectral data: 2a ¹H-nmr δ(ppm) 7.94-8.16, 7.35-7.65 (10H, aromatic benzoyl-H), 5.66, 5.60 (1H two dxd, anomeric H-1), 4.28-4.66 (5H, m, Bz-OCH₂ plus H-4), 3.06 (1H, br.s., OH), 2.90, 2.55 (1H, m, H-3), 2.31-2.47, 2.16-2.26 (2H, m, H-2); IR (cm⁻¹): 3430 (OH), 1710 (C=O); MS. 339 (M⁺-OH); analysis Calc. for C₂₀H₂₀O₆: C, 67.40; H, 5.66, Found C, 67.37; H, 5.90. Lactone 3: ¹H-nmr δ(ppm): 8.01 (d, 4H, ortho benzoyl-H), 7.58 (t, 2H, para benzoyl-H), 7.44 (t, 4H, meta benzoyl-H), 4.80 (m, 1H, H-4), 4.59 (m, 2H, Bz-O-CH₂ at C-4), 4.44 (m, 2H, Bz-O-CH₂ at C-3), 2.95 (m, 1H, H-3), 2.90 (dd, 1H, H-2β), 2.57 (m, 1H, H-2α), IR(cm⁻¹): 1780 (C=O of lactone), 1715 (C=O of benzoyl group); MS.CI 355 (M⁺+H), 372 (M⁺ + NH₄).
- Acton, E.M.; Goerner, R.N.; Uh, H.S.; Ryan, K.J.; and Henry, D.W. J. Med. Chem. 1979, 22,
 518
- 11. Lee-Ruff, E.; Hayes, I.E.E.; Kazarians-Moghaddam, H.; Struct. Chem, 1991, 2, 175
- 12. Newton, R.F. in "Photochemistry in Organic Synthesis" J.D. Coyle (Ed) Royal Society of Chemistry Burlington House 1988, p. 39
- 13. Saleem, E. Eur. Patent Appl. 0458643A2 (1991). No acidic work-up was used to prepare the intermediate, (1S-trans)-3,3-dimethoxy-1,2-cyclobutanedimethanol, dibenzoate ester. Nevertheless, it was partially hydrolyzed and used directly in the subsequent acid hydrolysis step.

(Received in USA 5 August 1992; accepted 14 October 1992)