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Determination of the C-7,9,12,13,17 and 18 Stereochemistries of Tautomycetin. 
Synthesis of the Tautomycetin Degradation Product 

Jian-Ping Dai, Mikiko Sodeoka, and Masakatsu Shibasaki* 

Faculty of Pharmaceutical Sciences. University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan 

Abstract : Syntheses of the degradation product 3 of tautomycetin (1) and its diastereoisomers have 
been achieved. Comparison of the spectral data of these diastereoisomers with those of the degradation 
product of natural 1 indicates that tautomycetin has the 7R ,9S, 12S, 13S, ! 7S, ! 8R stereochemistry. 

Tautomycetin (1) was isolated from a culture of Streptomyces griseochromogenes and was reported 

to exhibit  antifungal activity and to induce a morphological change in human leukemia cells K562. t 1 has 

also been found to affect the production of secondary metabolites in Penicillium urticae. 2 Tautomycin (2), 

a strong specific s e n n e / t h r ~ n i n e  phosphatase inhibitor, 3 has been found to exhibit  similar effects at a 

three-fold higher concentration than 1. This  data suggests a role for 1 as a powerful regulator of 

intracellular signal transduction. Tautomycetin has eight chiral carbon centers, but the stereochemistry of 

these centers has only been determined at one lx~sition (C3'). Because of its instability and limited supply 

determination of the stereochemistry of these chiral centers from the natural product alone will be difficult. 

As a step toward the total synthesis of 1, we have determined the stereochemistry of these centers through 

the synthesis of the relx~rted degradation product 3. lb 
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Our basic strategy for the stereocontrolled synthesis of 3 and its various diastereoisomers is shown 

in Scheme 1. The six chiral centers in 3 have been grouped into three pairs, C7,9, C12,13, and C17,18. We 

planned to introduce the first and third pairs of chiral centers using the stereochemicaily known fragments 

8a-d and (m-d. These fragments can be readily prepared from methyl (R)- or (S)-3-hydroxy-2- 

methylpropionate and ethyl (R)- or (S)-hydroxybutyrate respectively.4- '~ Using Evans chemistry the C13 

and C14 stereocenters can then be set and used to direct the C12 stereochemistry. 6 Using this strategy we 

have synthesized fourteen diastereoisomers (some as a mixture of C12 epimers), 7 and after analysis of 

spectral data, we have concluded that 3 has the 7R,9S, 12S, 13S, 1 ?S, 18R stereochemistry. 
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a) Ph3P, CBr4, Et3N, CH2CI2, rt, (quant). b) i. ~JLi, THF, -78 °C; ii. Cul, THF, H2C=CHLi , -75 =C, 12 h; iii. DIBAL, CH2CI2, -78 =C; 
iv. MnO2, pentane, ft. c) tBuLi, THF, -100 =C, 12,= 17%, 12b 20%. d) i. TBSCI, irnidazole, DMF; ii. TBAF (1.0 M in THF), AcOH 
(1.0 I~/tO TBAF); iii. Dess-Martin periodinane, CH2CI 2. ft. e) i. Dess-Martin periodinane, CH2CI2, rt; ii. Ph3P=CHCO2Et, CH2CI2, 
rt, 48 h; iii. DIBAL, CH2CI 2, -78 °C; iv. MnO 2, pentane, rt. f) i. 7, Bu2BOTf, Et3N, CH2CI 2, -78 °C; ii. MPMOC(=NH)CCI 3, 0.03 
mol % TfOH, rt, Et20; iii. LiOH.HL:,O, THF:H2 O = 3:1, rt, 12 h; iv. CH2N 2, E120, g) i DIBAL, CH2CI2, -78 ~C;; ii. 3,4-Dihydro-2H- 
pyran, 10 tool % PPTS, C1-¢-zCI2, rt; ill. TBAF, THF; iv. Ac20, pyridine; v. 10 mol % PPTS, EtOH, 50 '~C, 20 I1; vi. Dess-Martin 

periodinane, CH~)CI2, rt; vii. (MeO)2P(O)Me, BuLl, -78 °C, 16:17 = 58:42 h) BzCI, pyridine, CH2Cl2, rt, 4 h, 91%. i) i. Dess-Martin 
periodlnane, CH2CI2, rt; ii. DIPEA. UCI, 13, CH3CN, rt, 50 h; iii. NaHTe, EtOH, rt, 6.0 h; 19 49%, 20 77% in 3 steps, j) DIBAL, 
CH,-J312, -78 *C. k) L Ac20, pyridine, CH2CI2; ii. DDQ, rt, CH2CI2:H20 = 20:1; iii. TBAF (1.0 M in THF), AcOH (0.5 eqto TBAP"), 22== 
30%, ~'~b 22% in 3 steps, I) Dess-Martin periodinane, CH2CI2, rt. 

S c h e m e  2 

Synthesis of 7R,9S, 12S, 13S, I7S, 18R-3 is shown in Scheme 2 as a representative example. Other 

diastereoi~mers were synthesized in a similar manner. Dienal 9 was synthesized stereoselectively using 

the cuprate method, 8 then coupled with the dimethylpentane 10 to give dienol 12. 4a To simplify NMR 

analysis, the C5-epimers were separated and 12a 9 was used for further reactions. The stereochemistry at 

C13 was ,set by coupling of  Evans' chiral oxazolidone 7 with enal 14. 6 After conversion of 16 and 17 to 

ketones 19 and 20,10 the carbonyl at C 12 was reduced with DIBAL to give an epimeric mixture of alcohols 

21. These epimers could be separated after conversion to the diols 22a and 22b .  I t  Final oxidation of 2,2b 

using the Dc,~s-Martin reagent afforded the desired tautomycetin degradation product 3. 
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As described below, IH-NMR of the various synthetic diastereoisomers of 3 clearly shows the 

general characteristias of the relative su~reochemistry of each pair of stereocenters. The relative 

stere(~chemistry at C12, 13 positions had the noticeable effect on the IH-NMR spectra. The chemical shifts 

of the olefinic proton at C16 and the methine proton at C12 of the 12, 13-ant/-isomers appear at 6.87-6.99_ 

and 5.07-5.10 ppm respectively, whereas those of 12, 13-syn-isomers appear at 6.75-6.81 and 5.16-5.17 

ppm. These facts strongly suggest that natural tautomycetin has the 12, 13-anti configuration as is found in 

2. The C6-methylene protons of the 7,9-syn isomer are found at ca. 2.18 and 2.43 ppm, whereas those of 

the 7,9-anti isomers are found at ca. 2.28 and 2.38 ppm, suggesting that natural 1 has the 7,9-anti 

configuration. The methine protons of C17 and C18 in the 17,18-syn isomer appear at ca. 2.53 and 4.93 

ppm, while those of the 17,18-anti isomer appear at ca. 2.58 and 4.90 ppm respectively. These 

observations suggest that the natural tautomycetin has the 7,9-anti, 12,13-anti, 17,18-syn configuration. 

Fortunately, it has not been necess~ary to synthesize all possible 32 diastereomers. The four possible 7,9- 

anti-12,13-anti-17,18-syn-diastereoisomers were synthesized in diastereomerically pure form, and their 

spectral data was carefully compared with those of 3 derived from natural 1. The Ill- and 13C-NMR, and 

IR spectra of the 7R,9S, l°S, 13S, 17S, 18R-isomer were found to be completely superimposable on those of 

the natural product derivative 3. IH-NMR spectra of both synthetic and natural product-derived 3 are 

shown in Figure 1. The sign of the [a]D 26 of synthetic 3 [+ 36.6* (c 0.24, CHCI3)] was also same as that 

reported [+ 46.2* (c 2.0, CHCI3)] lb indicating that the absolute stereochemistry of the synthetic 3 is same 

as the natural prcxluct. 12 
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In cxmclusion, we have assigned the sterexwchemistries of tautomycetin (1) to be 

7R,gS,12S,13S,17S,18R through the synthesis of 3. The structural information described here will be 
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crucial for the total synthesis of I, and the configuration of C16 may be readily determined on completion 

of  this synthesis. The total synthesis of tautomycetin I will pave the way for further biological studies, and 

work along this line is currently underway. 
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