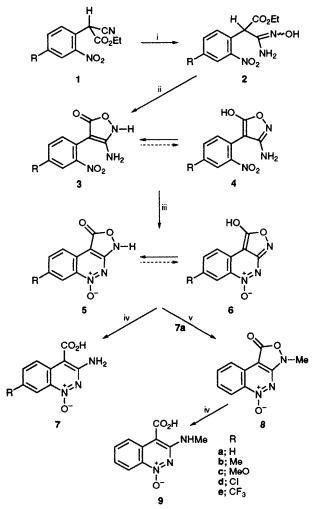
A Convenient Synthesis of Otherwise Inaccessible 3-Aminocinnoline-4-carboxylic Acid Derivatives


Martin Scobie and George Tennant*

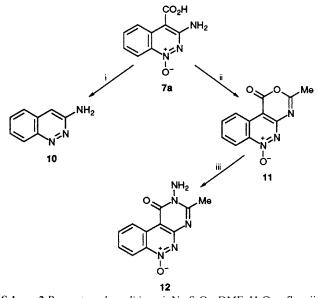
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK EH9 3JJ

3-Amino-4-(2-nitroaryl)-2*H*-isoxazolin-5-ones, readily available by the sodium ethoxide catalysed cyclisation of amidoximes derived from ethyl 2-cyano-2-(2-nitroaryl)acetates, ring-close in the presence of sodium hydride to afford high yields of isoxazolo[3,4-*c*]cinnolin-1(3*H*)-one 5-*N*-oxides; hydrazine effects the chemoselective reductive scission of the isoxazoline ring in these heterocycles allowing simple and efficient synthetic access to erstwhile unavailable 3-aminocinnoline-4-carboxylic acid 1-*N*-oxides.

In contrast to the abundance of methods for the ring synthesis of variously functionalised benz-fused azines in general, few such methods are available for the assembly of cinnoline derivatives usefully functionalised at the 3- and 4-positions of the hetero ring.¹ In connection with an investigation of the synthesis of new antiinflammatory agents with radical scavenging capacity² we required access to 3-hydroxycinnol-ine-4-carboxylic acids or the appropriate amine precursors and their *N*-oxides. We now report a simple new strategy for the efficient general synthesis of otherwise inaccessible 3-aminocinnoline-4-carboxylic acid 1-*N*-oxides.

The strategy adopted was based on a general synthetic principle which allies aldol-like condensation reactions of aromatic nitro substituents³ with appropriate azole ring scission to afford methods for the regiospecific synthesis of often inaccessible heterocyclic *N*-oxides and hence by de-

Scheme 1 Reagents and conditions: i, NH₂OH·HCl, Na₂CO₃, EtOH, room temp.; ii, NaOEt, EtOH, room temp.; iii, NaH, DMF, 100 °C; iv, NH₂NH₂·H₂O, EtOH, reflux; v, NaH, Mel, DMF, room temp.


oxygenation, the parent heterocycles. We recently described the application of this general principle in an efficient synthesis of cinnoline-4-carboxylic acid 1-*N*-oxides.⁴ Pivotal to the extension of this principle to the synthesis of the required 3-aminocinnoline-4-carboxylic acid 1-*N*-oxides (Scheme 1) was the ready availability of previously undescribed 3-amino-4-(2-nitroaryl)-2*H*-isoxazolin-5-ones **3**. It was anticipated that these heterocyclic derivatives would undergo base-catalysed cyclisation through aldol-like condensation^{3.4} between the amino and nitro substituents to afford the fused cinnolinone *N*-oxides **5**. Reductive cleavage of the isoxazolinone ring in the latter would then allow simple general access to the target aminocinnoline carboxylic acid derivatives **7**.

In practice, the isoxazolinones 3a-d required as starting materials were readily accessible in generally high yield (Table 1) by the sodium ethoxide catalysed cyclisation of the amidoximes 2a-d derived by the efficient reaction of the ethyl 2-cyano-2-(2-nitroaryl)acetates 1a-d with known⁴ hydroxylamine. The formulation of the isoxazole derivatives 3a-d as isoxazolinone structures 3 rather than hydroxyisoxazoles 4 is consistent with the presence in their IR spectra of carbonyl absorption of variable frequency (1750-1690 cm⁻¹) and in the case of the parent compound 3a by ¹³C NMR absorption of δ 170.0 attributable to a carbonyl group. The propensity of 3,4-disubstituted 2H-isoxazolin-5-ones to exist in the NH rather than the OH tautomeric form has ample precedent.⁵ In the case of the trifluoromethyl derivative 2e treatment with ethanolic sodium ethoxide yielded not the expected isoxazolinone derivative 3e but rather a low yield (Table 1) of a compound whose analytical and spectroscopic properties supported its formulation as the product of further ring-closure, namely the isoxazolocinnolinone N-oxide 5e, a derivative of the hitherto unknown isoxazolo[3,4-c]cinnoline ring system. The analogous isoxazolo[3,4-c]cinnolinone N-oxide derivatives 5a-d were readily obtained in largely excellent yield (Table 1) by the sodium hydride catalysed cyclisation of the isoxazolinones 3a-d in DMF at 100 °C. The formulation of the isoxazolocinnolinone N-oxides 5a-e as keto tautomers 5

Table	1
-------	---

Compound ^a	Yield (%) ^b	Mp/°C	Compound	Yield (%) ^b	Mp/°C
2a	88	153	5d	97	195
2b	78	153	5e	34	191
2c	74	141	7a	98	215
2d	84	154	7b	82	264
2e	46	117	7c	50	215
3a	91	175	7d	92	254
3b	80	159	7e	91	242
3c	71	100	8	78	204
3c	90	178	9	83	182
5a	97	185	10	48	158 ^d
5b	80	201	11	96	260
5c	25	200	12	41 ^c	284

^{*a*} Satisfactory elemental combustion analyses and mass, IR, and ¹H NMR spectral data were obtained for all new compounds. ^{*b*} Yields are unoptimised. ^{*c*} **7a**, 44%, also formed. ^{*d*} Lit.,⁸ 163–165 °C.

Scheme 2 Reagents and conditions: i, $Na_2S_2O_4$, DMF, H_2O , reflux, ii, Ac_2O , reflux; iii, NH_2NH_2 · H_2O , dioxane, reflux

rather than hydroxy structures **6** follows from the presence of carbonyl absorption at $1780-1750 \text{ cm}^{-1}$ in their IR spectra.

After a number of orthodox reducing agents had failed to achieve the efficient and selective reductive cleavage of the isoxazolinone ring in the isoxazolocinnolinone N-oxides (5–7) attention was turned to the use of hydrazine for this purpose. This reagent is known⁶ to effect the reductive ring-opening of the hetero ring in 2,1-benzisoxazoles. Analogously, heating with 100% hydrazine hydrate in ethanol converted the isoxazolocinnolinone derivatives **5a–e** into the required 3aminocinnoline-4-carboxylic acid 1-N-oxides **7a–e** in largely high yield (Table 1). The structure of the parent compound **7a** was fully substantiated (Scheme 2) by its reduction with concomitant decarboxylation⁷ to give the known⁸ 3-aminocinnoline **10**. In addition the aminocinnoline carboxylic acid N-oxide **7a** underwent ring-closure with acetic anhydride to

J. CHEM. SOC., CHEM. COMMUN., 1994

afford the oxazinocinnoline derivative 11 whose structure in turn is supported by its reaction with hydrazine to give the pyrimidocinnolinone 12. Reaction with carboxylic anhydrides to give fused 1,3-oxazinones is a well established⁹ transformation of *ortho*-aminocarboxylic acid structures.

The precise mode of reduction involved in the ring-opening reactions (5 to 7) awaits the outcome of further investigation. However these processes reveal an intriguing chemoselectivity on the part of hydrazine for reduction of the N-O bond of the isoxazole ring in preference to that of the N-oxide substituent. In the context of mechanism it is also interesting that this apparent selectivity extends to the N-methyl derivative **8** of the parent isoxazolocinnolinone **7a** which is reduced to the cinnoline N-oxide **9** by hydrazine in high yield (Table 1).

We thank the SERC for a research studentship (M. S.) and Hoechst UK Ltd. for financial support.

Received, 30th August 1994; Com. 4/05279J

References

- G. M. Singerman, in *Condensed Pyridazines including Cinnolines* and *Phthalazines*, ed. A. Weissberger and E. C. Taylor, Wiley, New York, 1973, vol. 27, ch. 1, pp. 1–321; M. Tisler and B. Stanovnik, in *Comprehensive Heterocyclic Chemistry*, ed. A. J. Boulton and A. McKillop, Pergamon, Oxford, 1984, vol. 3, ch. 2.12, pp. 1–56.
- B. Halliwell, R. J. Hoult and D. R. Blake, *Faseb J.*, 1988, 2, 2867;
 C. Pellerano, L. Savini, P. Massarelli, G. Bruni and A. I. Fiaschi, *Farmaco*, 1990, 45, 269.
- 3 J. D. Loudon and G. Tennant, *Quart. Rev., Chem. Soc.*, 1964, **18**, 389; P. N. Preston and G. Tennant, *Chem. Rev.*, 1972, **72**, 627.
- 4 M. Scobie and G. Tennant, J. Chem. Soc., Chem. Commun., 1993, 1756.
- 5 S. A. Lang and Y. I. Lin, in *Comprehensive Heterocyclic Chemistry*, ed. K. T. Potts, Pergamon, Oxford, 1984, vol. 6, ch. 4.16, p. 11.
- 6 R. K. Smalley, Adv. Heterocycl. Chem., 1981, 29, 49.
- 7 Ref. 1, p. 251.
- 8 E. J. Alford and K. Schofield, J. Chem. Soc., 1953, 811.
- 9 R. C. Elderfield, W. H. Todd and S. Gerber, in *Heterocyclic Compounds*, ed. R. C. Elderfield, Wiley, New York, 1957, vol. 6, ch. 12, p. 577.