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ABSTRACT: Catalytic C−H bond activation of methane and
ethane on a series of silica supported platinum catalysts
(Pt/SiO2) was studied by using hydrogen/deuterium (H/D)
exchange. Kinetic experiments demonstrate that under the
reaction conditions studied, the rate of C−H bond activation
shows approximate first order dependence in alkane and inverse
first order dependence in D2. The rate of C−H activation is
affected by the presence of sodium on the silica support, where
sodium-free supports have the fastest rates of C−H activation, as
assessed by H/D exchange. CO adsorption and FTIR studies
indicate that the Pt particles on the sodium-free support are
more electron-deficient, having the most blue-shifted linear CO
stretch, while sodium-containing supports are more electron-
donating, having the most red-shifted linear CO stretch. It is proposed, based on the results described in this article and
previous work in the literature, that more electron-donating supports cause the Pt particles to be more electron-rich and to
adsorb D* (or H*) more strongly, thereby stabilizing the ground state and resting state of the catalyst, resulting in a decreased
rate of C−H activation.
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■ INTRODUCTION

Developing new technologies for converting alkanes selectively
to higher value products is a major challenge for industrial
catalysis, due to the relative kinetic and thermodynamic
stability of alkanes and their C−H bonds.1 Current routes
typically implement high temperatures, exemplified by steam
methane reforming to produce syngas (CO and H2) or ethane
steam cracking to produce ethylene. Oxidative routes remove
thermodynamic limitations and high temperature require-
ments, but overoxidation (e.g., to CO2) becomes a major
problem.2 New catalytic routes for alkane upgrading are,
therefore, desired and understanding the mechanism(s) by
which C−H activation occurs, a necessary step in any alkane
transformation, can assist in catalyst development and
discovery.3,4 Platinum (Pt) is a well-known and important
metal for hydrocarbon catalysis,5 specifically alkane con-
versions, as exemplified by its industrial use in catalytic
reforming to produce high-octane gasoline,6 propane dehy-
drogenation to produce propylene,7 and hexane aromatization
to produce benzene.8 In this work, we sought to study the
C−H bond activation step itself, a step that precedes the
catalytic reactions mentioned above, and the effect of metal−
support interactions, by utilizing isotope exchange reactions
with hydrogen and deuterium (H/D). Specifically, on a series
of silica supported Pt catalysts, Pt/SiO2, we have (i) identified
a mechanism consistent with the observed kinetic data for

C−H activation in both methane and ethane, and (ii)
demonstrated that the presence of sodium (Na) on a silica-
support, which acts to modify the properties of the support
thereby influencing metal−support interactions, affects the
material’s ability to activate C−H bonds. These results have
connections with other catalytic reactions that have been
studied in the past, where metal−support interactions have
been implicated, and demonstrate the high sensitivity that
H/D exchange in alkanes can have as a characterization tool
for heterogeneous catalysts.

■ RESULTS AND DISCUSSION
A series of three silica-supported Pt catalysts (Pt/SiO2) having
sodium contents of either 0 or ∼500 ppm of Na were
synthesized (see Supporting Information, SI, for more details).
All samples were loaded with ∼0.75 wt % Pt by incipient
wetness impregnation, using aqueous solutions of Pt
tetraammine nitrate and arginine9 at a 1:8 molar ratio, dried
and then calcined in air at 425 °C for 2 h. Calcination in air
completely oxidized the arginine, which was verified by
temperature-programmed oxidation and reduction experi-
ments. The samples were then reduced in the reactor in H2
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at 450 °C for 4 h. The 0 ppm of Na sample (Pt-0) used an
ultrapure silica supplied by PQ Corporation where the sodium
level was below the detection limit of the experimental
techniques (<16 ppm). Two samples with ∼500 ppm of Na
sample were synthesized, which corresponds to an approximate
2:1 Pt:Na molar ratio; the first used Davisil 646 (Pt-500),
where the 500 ppm of Na is introduced from impurities in the
commercial silica. The second ∼500 ppm sample (Pt-500S)
was synthesized by treating the ultrapure silica with 500 ppm
of NaNO3, followed by calcination in air at 425 °C for 2 h,
thereby removing the nitrate groups. While Pt-500 and
Pt-500S both have the same loading of Na, the Na in Pt-
500S is expected to be on the surface of the SiO2 due to the
synthetic procedure (S indicates surface in 500S). The samples
were characterized by H2 and O2 chemisorption (Table 1)10

and transmission electron microscopy (TEM), which indicate
similar Pt particle sizes (between 2.5 and 3.5 nm) in all the
samples (see SI).
The ability of the Pt/SiO2 materials to activate C−H bonds

in methane and ethane was studied by using H/D
exchange.11−13 Methane experiments are detailed below, and
ethane experiments can be found in the SI. Using this
technique, d0-methane (CH4) and D2 contact a heterogeneous
catalyst in a well-mixed batch reactor and undergo isotope
exchange. The extent of reaction was monitored by using GC−
MS (gas chromatography−mass spectrometry). H/D exchange
of alkanes (e.g., conversion of CH4 to CH3D, Figure 1)

requires C−H bond activation and, therefore, the measured
exchange rates reflect a catalyst’s ability to cleave C−H bonds.

Exchange rates were measured at conversions of 50% or less
and with excess D2 (generally here: 100 Torr CH4 and 800
Torr D2) to limit the influence of unproductive C−H
activation events (with HD or H2) that do not result in the
formation of new C−D bonds and the reverse reaction of
CH3D to form CH4. At higher conversions, mixtures of D2, H2,
and HD exist (in addition to the different isotopologues of the
alkanes); this does not change the intrinsic rate of C−H
activation (ignoring isotope effects) but assessment by H/D
exchange becomes more challenging as the molecules approach
isotopic equilibration, and at equilibration no reaction can be
observed.
The H/D exchange reaction progressions are shown in

Figure 2 for CH4/D2, on Pt-500S, Pt-500, and Pt-0 catalysts,
at the same catalyst loading (50 mg), temperature (275 °C),
and initial partial pressures of CH4 and D2 (100 and 800 Torr,
respectively). The three materials catalyze H/D exchange at
different rates, as seen by the change in CH4 concentration
(i.e., partial pressure, PCH4) over time, in the relative order Pt-0
> Pt-500 > Pt-500S (Figure 2). Similar data are shown in the
SI for methane/D2 exchange at other temperatures, in addition
to ethane experiments, demonstrating that catalysts that
contain sodium undergo H/D exchange more slowly compared
with catalysts that are sodium free, under the experimental
conditions studied.14

The rate of disappearance of CH4 follows the first order
equation (eq 1), allowing us to obtain kobs for each experiment,
which are normalized on a per mole of surface Pt atom basis.15

Experiments to assess reaction orders in CH4 and D2, by
changing their partial pressures and keeping the total system
pressure constant, demonstrate that H/D exchange is
approximately first order in CH4 pressure and inverse first
order in D2 pressure, under the experimental conditions
studied (Figure 3).16−18 Thorough studies on H/D exchange
in ethane have been previously reported by Zaera and co-
workers who made similar observations, finding a first order
dependence on ethane and −0.55 order in D2.

19−22 The focus

Table 1. Sample Descriptions and Characterization of Pt Particle Size by Chemisorptiona

pt conc. (wt%) alkali conc. (ppm) dispersion O2 (%)
b dispersion H2 (%)

c

Pt-0 0.75 <16 38(5) 35(5)
Pt-500 0.75 479 42(5) 46(5)
Pt-500S 0.75 500 (from IWI) 43(5) 38(5)

aNumbers in parentheses indicate two-standard deviations, i.e., 95% confidence intervals. bO2 chemisorption at 35 °C, assuming O:Pts = 1. cH2
chemisorption at 35 °C, assuming H:Pts = 1.

Figure 1. H/D exchange in methane (top) and ethane (bottom) to
produce deuterated isotopologues.

Figure 2. Monitoring H/D exchange between methane and D2 on Pt/SiO2 catalysts at 275 °C: CH4 (black ○), CH3D (red □), CH2D2 (blue ◊),
CHD3 (green Δ), and CD4 (magenta ▽).
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of the work here is to understand the effect of the support on
C−H activation; although these data allow for analysis of rates
of secondary C−H activations (i.e., multiple exchange), as has
been shown previously,11,19 this is not within the scope of the
present work.
These data allow for the determination of turnover

frequencies (TOFs), in units of mols of CH4 activated (i.e.,
mols of CH4 molecules to undergo H/D exchange) per mol of
surface Pt atom per second, which follow rate eq 2 based on
the pressure dependencies above, where krxn is related to kobs
by eq 3. Thus, H/D exchange is informing us on the catalytic
rate of C−H bond cleavage on this series of Pt catalysts, and
the krxn values obtained are listed in Tables 2 and 3 for the

temperature dependence and partial pressure dependence
studies, respectively.23 These results clearly demonstrate that
the support can affect the rate of C−H bond activation.
Previous work has studied the exchange rate as a function of
particle size and the differences in TOF observed here based
on support are significantly larger than the minor differences
previously observed due to particle size;11c−e in fact, H/D
exchange was shown to be structure insensitive when Pt
dispersions are above 10%.11d These prior findings help to
support the notion that the different rates of C−H activation
reported here are largely a function of the support tuning the

metal active site electron-density, and not attributable only to
minor differences in particle size as assessed by chemisorption
and TEM.24

A mechanism consistent with the observed rate law involves
reversible dissociation of D2 (k1 and k−1, KD) on the catalyst
surface to open up a set of sites (* = site), followed by C−H
bond cleavage via dissociative adsorption (k2, the reverse of
which is k−2) to give R* (R = CH3 or C2H5) and H* (Figure
4). H*/D* scrambling is rapid on the catalyst surface, and with
an excess of D*, which is the situation at low conversions,
C−D bond formation occurs via associative desorption (k3) to
form product, which is a deuterated alkane. This mechanism
can be described by a bimolecular Langmuir−Hinshelwood
process, as has been used in similar studies previously,19,18 and
is shown in eq 4. Equation 4 can be transformed into eq 5
under conditions where (i) D2 adsorption is significantly
stronger than RH adsorption, (ii) we assume quasi-equilibrated
and steady-state concentrations of adsorbed D* and CH3*,
and (iii) that k3 and k−2 are the same when isotope effects are
ignored (i.e., both steps are C−xH bond formations, where x =
1 or 2). Equation 5 reduces to eq 6 under these conditions and
is consistent with our observed rate law (eq 2). Thus, the rate
constant of H/D exchange (krxn) is a function of the
equilibrium deuterium chemisorption (KD) and the rate
constant of C−H bond cleavage (k2) on the Pt surface (eq
7), which informs us of the rate of C−H bond activation, not
the rate of C−D bond formation, as k3, the rate constant of
C−D bond formation is not in the rate law under the
experimental conditions studied.
This effect holds true as long as the most abundant surface

intermediate (MASI) is D*. Further evidence to support this is
provided by (i) the inverse dependence of D2, which indicates
a D* covered surface that is energetically most favorable, (ii) if
the R* was energetically more favorable than H*, then the
surface would be primarily R* covered, which would be
expected to give a rate law that has a zero order dependence in
alkane,25 which is not observed, and (iii) calorimetry
experiments done by Campbell and co-workers that are in

Figure 3. Partial pressure dependence studies to determine krxn. CH4: 100 Torr, D2: 800 Torr (red ○); CH4: 50 Torr, D2: 800 Torr (blue □); and
CH4: 100 Torr, D2: 400 Torr (black ◊).

Table 2. Rate Constants (krxn, s
−1) Measured As a Function

of Temperature for Pt/SiO2 Catalysts

methane ethane

temp. (° C) Pt-500S Pt-500 Pt-0 Pt-500S Pt-500 Pt-0

150 0.6
175 0.5 1.3
200 0.2 0.2 1.3 7.1
225 0.4 1.3 0.7 5.8 24
250 0.2 1.9 4.7 2.2
275 1.1 8.1 18 9.6
300 3.9

Table 3. Rate Constants (krxn, s
−1) Measured as a Function of Alkane and D2 Partial Pressure for Pt/SiO2 Catalysts

condition methane ethane

alkane (Torr) D2 (Torr) He (Torr) Pt-500S (275 °C) Pt-500 (250 °C) Pt-0 (225 °C) Pt-500S (225 °C) Pt-500 (200 °C) Pt-0 (175 °C)

100 800 0 1.1 2.9 1.2 0.54 1.3 1.3
100 400 400 0.9 2.8 1.1 0.44 1.3 1.3
50 800 50 1.1 2.7 1.3 0.58 1.4 1.3
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accord with a H* covered surface being more stable than a
CH3* surface.26 On the basis of their thermochemical
measurements, an H* covered surface is approximately 14
kcal mol−1 more enthalpically stable than a CH3/H covered
surface.27
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The H/D exchange rate dependence on temperature was
studied (Figure 5). As expected, exchange rates increase with
temperature, and Arrhenius analyses (Figure 6) allow for the
determination of the apparent activation energies (Eapp) and
frequency factors (ln A), which are tabulated in Table 4. Pt-0
has the lowest Eapp for methane (28 kcal mol−1), while Pt-500S
has the highest Eapp (35 kcal mol−1). The Eapp for methane is
higher than that of ethane,28 which correlates with the C−H
bond dissociation energies of the free alkanes (methane: 105.0
kcal mol−1, ethane: 100.5 kcal mol−1).29 These results are
consistent with large bodies of literature on H/D exchange of
alkanes on metal catalysts, which show that H/D exchange of
ethane is faster than methane.13 This is also consistent with the
energy diagram in Figure 4, where the decreased rate in
methane exchange compared to ethane is due to the difference
in k2, while KD is not affected. It is interesting to compare the
Eapp here with previous work from Iglesia and co-workers on
(i) C−H activation of methane on bare Pt surfaces, where they

Figure 4. Proposed mechanism of C−H activation and H/D exchange on Pt/SiO2 catalysts (note: H* and D* are shown to represent the reaction
mechanism, and do not indicate the actual number of H*/D* species).

Figure 5. Monitoring H/D exchange between methane and D2 on Pt-500 at 225 °C, 250 °C, and 275 °C: CH4 (black ○), CH3D (red □), CH2D2
(blue ◊), CHD3 (green Δ), and CD4 (magenta ▽).
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measured ΔH‡ of ∼19 kcal mol−1,30,31 and (ii) hydrogen
chemisorption isotherms, which indicate that H* adsorption is
∼10 kcal mol−1.32 Thus, the sum of these two values is ∼29
kcal mol−1, which are the two steps implicated in this work for
C−H activation, which is similar to the Eapp observed here.33,34

The above catalytic data suggest that metal−support
interactions influence the material’s ability to activate C−H
bonds. To gain additional characterization on the Pt particles
in the Pt/SiO2 samples, the samples were analyzed by FTIR
spectroscopy combined with CO adsorption (see SI for
details).35−39 The difference spectra (before and after
treatment with 5% CO) are shown in Figure 7, and clear
differences can be observed.40 First, the linear CO stretching
band shifts progressively to lower energy in the sodium-
containing samples, from 2073 cm−1 for Pt-0 to 2061 cm−1 for
Pt-500S. In general, bands at lower energies (red-shifted)
often indicate that the Pt particles are more electron-rich, as
the increased electron density on Pt can backbond into CO
antibonding orbitals, thereby decreasing the effective CO bond
order and stretching frequency. As described above, the
samples containing sodium are calcined prior to treatment with
the Pt precursor, such that a sodium oxide like species forms.
Sodium oxide species are more basic compared to silica, and
the more basic material is more electron donating, thereby
making the Pt particles more electron-rich and red-shifting the
CO band. Previous work consistent with our results showed
that potassium (K) on silica supported Pt materials caused red-
shifts in the CO band.41,42 Additional evidence for an
electronic effect is provided by analysis of the linear and
bridged CO species; as the support becomes more basic, the
ratio of linear to bridged CO has been shown to decrease,43

which is observed for the Pt/SiO2 series here, as seen by the
increase in the bridging CO band at ∼1800 cm−1 for Pt-500S
and Pt-500 (Figure 7).
In addition to silica systems, significant work has been done

on basic-zeolite systems with different alkali exchanged
zeolites, which has shown that exchange with alkali cations

(e.g., K, Cs) cause red-shifts in the CO adsorption band,44−57

and this area has been reviewed by Barthomeuf.58 Dipole−
dipole interactions have also been reported to cause shifts in
the CO stretching frequency, and may be responsible for the
different CO stretching frequencies observed.59 In this regard,
the CO stretching frequency as a function of coverage60 was
measured (Figure 8), and extrapolation to zero-coverage allows
for estimation of the singleton frequency (Figure 9), the CO
stretching frequency in the absence of CO−CO dipole−dipole
coupling interactions. As can be seen in Figure 8, all linear CO
stretching bands red-shift at lower coverage, such that Pt-500S
is still red-shifted compared to Pt-0 by about 23 cm−1, in fact
even more so than at high coverage (Δcm−1 = 12). These data
support the hypothesis that sodium on the support results in
electronic modification of the Pt particles.
This work has led us to one main question, which is why is

C−H activation slower on Pt materials that contain sodium?
Analysis of the energy diagram in Figure 4 helps us to address
this question. Specifically, the rate of C−H activation is
dependent on both (i) the ground state energy of the D*
covered surface, which we can equate to an H* covered surface
when ignoring isotope effects, and (ii) the transition state
energy of an open set of sites interacting with a C−H bond to
cleave and form R* and H* (KH and k2, where KH = KD).
Therefore, the samples containing sodium either (i) have lower
ground state D* (H*) surfaces, indicating stronger Pt−D(H)
interactions with less modulation of the transition state energy,
or (ii) have higher transition state energies where ground state
modulation is less. Previous measurements by Dumesic and co-
workers showed that hydrogen (and carbon monoxide) heats
of adsorption were ∼5 kcal mol−1 greater for Pt particles on
basic supports compared with acidic supports,61 which is in
accord with scenario (i) where the ground state D* (H*)
surface in Pt-500S is more stable than that of Pt-0. Campbell
has also reported calorimetry data on metal−support

Figure 6. Arrhenius analysis for methane/D2 H/D exchange on Pt/
SiO2 catalysts.

Table 4. Arrhenius Analysis of H/D Exchange Reactions on Pt/SiO2 Catalysts
a

methane ethane

temp. range (° C) Eapp (kcal mol−1) ln (A) temp. range (° C) Eapp (kcal mol−1) ln (A)

Pt-500S 250−300 35 (1) 32 (1) 225−275 28 (1) 28 (1)
Pt-500 225−275 32 (1) 31 (1) 175−225 22 (1) 24 (1)
Pt-0 225−275 28 (1) 29 (1) 150−225 21 (1) 24 (1)

aNumbers in parentheses indicate two-standard deviations, i.e. 95% confidence intervals.

Figure 7. FTIR difference spectra of CO adsorbed on Pt/SiO2
materials (Pt-500S, red; Pt-500, black; Pt-0, blue).
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interactions, with the general finding that weaker metal−
support interactions result in stronger metal−adsorbate
interactions, influencing catalytic rates.62 This is in line with
our CO adsorption work above, as red-shifts in CO bands are
often indicative of stronger metal−CO interactions. Therefore,
it is proposed that Pt particles in the Pt/SiO2 series described
here are electronically modified by the support, which results
largely in ground state stabilization of D* (H*) surfaces on
more basic supports, more so than transition state stabilization,
and thus slower rates of C−H activation when D* is the MASI,
as depicted in Figure 10.
Other work has been reported in favor of metal−support

effects. For example, Haller and co-workers demonstrated that
basic supports could influence the electron-richness of a Pt
particle as assessed by both catalytic reactions (e.g.,
competitive toluene/benzene hydrogenation63 and hydro-
genolysis64) and spectroscopy (e.g., X-ray spectroscopic
measurement),65 in accord with spectroscopies on other
materials.41−43 Correlations between the acidic/basic nature
of the support as assessed by CO adsorption and catalytic
activity have been reported; these include heptane reform-
ing,66−68 hydrogenolysis,69,70 aromatic hydrogenation,44−46

and catalyst deactivation studies.71 Catalytic studies on formic
acid decomposition and water−gas shift have also demon-
strated that sodium can influence activity and selectivity, in
some cases accelerating rates due to the weakening of the
formate C−H bond.72 Supported organometallic complexes
have also been reported to be greatly modified by the support,

as shown by both catalytic measurements and CO
adsorption.73 Additionally, H/D exchange studies have been
previously shown to be affected by changes in support.74

It should be noted, however, that metal−support inter-
actions have been a subject of debate.75 One catalytic reaction
studied in particular was n-hexane aromatization to ben-
zene,76,77 a reaction which requires C−H bond activation. A Pt
on K exchanged LTL-zeolite (Pt/K−L) was reported as a
highly active and selective catalyst for conversion of n-hexane
to benzene;8 this led to questions of why was this material
better than others, and gave rise to many studies aimed to
understand Pt/K−L’s superior activity. Many explanations
were proposed, including the pore geometry of the
zeolite,78−80 Pt particle size,81 selectivity as a function of Pt
coking and deactivation,82−85 and metal−support interactions,
as K−L is an electron-donating basic support.63,75,86,87

Evidence for metal−support interactions in Pt/K−L were
provided by FTIR spectroscopy with CO adsorption, which
indicated that the Pt particles in Pt/K−L were electron-rich
compared to other more acidic supports, like our work
above.50,51,53,58,88 Platinum on a nonzeolitic basic support,
aluminum stabilized MgO, by Davis and Derouane, displayed
similar conversions and selectivities compared with the
aforementioned Pt/K−L catalyst,89−92and was originally
proposed to behave similarly due to the basic nature of the
MgO support; FTIR spectroscopy and CO adsorption

Figure 8. FTIR difference spectra of CO adsorbed on Pt/SiO2 materials at varying CO coverages.

Figure 9. Extrapolation of linear CO stretching frequencies as a
function of CO coverage to obtain singleton frequencies.

Figure 10. Depiction of proposed ground state stabilization
(exaggerated for clarity) in Pt-500S catalyst due to stronger Pt-D*
interaction compared to Pt-500 and Pt-0. The Pt surfaces with two
open sites (middle species) have all been set to the same energy.
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demonstrated red-shifts in the CO bands,93 in accord with the
basic nature of the support. Thus, there is a rich history of
work on metal−support effects and the reported consequences
they can have on catalytic activity, and our work provides
additional data to demonstrate their potential effect on
catalytic reactions. Our results do not rule out other effects,
which may also play a significant role in influencing the activity
of a catalytic metal.

■ CONCLUSIONS
In summary, we have demonstrated that the presence of Na on
a silica-supported Pt catalyst can influence the rates of C−H
activation in alkanes, as assessed by H/D exchange. Catalytic
results in combination with CO adsorption FTIR spectroscopy
suggest that metal−support interactions influence Pt reactivity,
where more electron-donating basic supports produce more
electron-rich Pt particles that undergo C−H activation more
slowly. Kinetic and mechanistic studies indicate that C−H
bond cleavage is preceded by D2 desorption, resulting in an
approximate inverse order dependence on D2 and first order
dependence on alkane, similar to previous findings.18,19 In
accord with previous calorimetry data,61 we suggest that the
principal reason for the difference in H/D exchange rates is a
consequence of different Pt−D ground-state adsorption
energies, where electron-donating supports cause Pt particles
to have relatively stronger D* resting states (Figure 10). The
TOFs and rate constants (krxn) of C−H activation have been
quantified over a range of temperatures and conditions, which
is useful as C−H activation is prevalent in hydrocarbon
transformations, and required in catalytic alkane trans-
formations. On the basis of the work cited above and our
work here, a support can clearly impact the properties of
supported metal particles, and H/D exchange is a sensitive
technique to assess metal−support interactions. Seeing as
adsorbate interactions of disparate species are often correlated
with each other by well-known scaling relationships,94 C−H
activation experiments may be helpful to understand other
hydrocarbon transformations, some of which were mentioned
above,95 and further research is required to show these
correlations explicitly.
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