THE PREPARATION OF MIXED-LIGAND DITHIOLENE COMPLEXES: X-RAY STRUCTURE OF Pt(PMe₂Ph)₂(mnt) AND [Bu₄N][Au(mnt)₂]

JONATHAN C. FITZMAURICE, ALEXANDRA M. Z. SLAWIN, DAVID J. WILLIAMS and J. DEREK WOOLLINS*

Department of Chemistry, Imperial College of Science and Technology, South Kensington, London SW7 2AY, U.K.

and

ALAN J. LINDSAY

Minnesota 3M Research Ltd, Harlow, Essex, U.K.

(Received 20 October 1989; accepted 21 February 1990)

Abstract—Reaction of $PtCl_2(PR_3)_2$ with sodium dithiolates gives mixed-ligand complexes such as $Pt(PR_3)_2(mnt)$ (1). Attempts to prepare mixed S—N/mnt complexes of gold were unsuccessful, $[Bu_4N][Au(mnt)_2]$ (2) being obtained. New compounds were characterized by IR and NMR spectroscopy and microanalyses, and in the case of 1 and 2 by X-ray crystallography. Both 1 and 2 are square planar. In 2, one of the crystallographically independent anions lies over a symmetry related neighbour.

Transition-metal dithiolene complexes have been of interest for a number of years as they have potential for conductivity in the solid state.¹⁻⁵ In general, bis complexes have been most studied since they are planar and resemble compounds used in organic metals [e.g. if a metal replaces the central ethylene group atoms in tetrathiofulvalene (TTF), M(dmit)₂ complexes are formed. Complexes containing the ligand dmit (4,5-dimercapto-1,3-dithiole-2-thione) and dddt (4,5-dihydro-1,4-dithiin-2,3-dithiolate) have a high structural resemblance to the bis (ethylenedithio)tetrathiafulvalene molecule (ET)]. Recently, we have prepared complexes of the type $[Pt(S_2N_2H)(PR_3)_2]X$ and note that despite their lack of symmetry these materials stack in the solid state.^{6,7} Here, we describe our investigations into the synthesis of mixed-ligand dithiolene complexes. The X-ray structures of Pt(PMe₂Ph)₂(mnt) (1) and $[Bu_4N][Au(mnt)_2]$ (2) are also reported.

^{*} Author to whom correspondence should be addressed.

EXPERIMENTAL

General conditions and spectroscopic methods were as described previously.⁸ Na₂mnt,⁹ Na₂edt,¹⁰ quinoxaline-2,3-dithiol (QDT),¹¹ S₄N₄H₄,¹² [Me₂SnS₂N₂]₂¹³ and [Bu₄N][Au(mnt)Br₂]¹⁴ were prepared as described in the literature. PtCl₂(COD) was prepared from K₂PtCl₄ and COD in the presence of SnCl₂·2H₂O.¹⁵ Compounds of the type *cis*-PtCl₂(PR₃)₂ were made by adding stoichiometric amounts of the appropriate free phosphine to PtCl₂(COD).

Electrochemical work was performed at ambient temperature and pressure using a Princeton Applied Research (PAR) Model 273 and peripheral equipment on solutions which were deoxygenated by purging with argon. $[Bu_4N][PF_6]$ was prepared by mixing hot aqueous solutions of $[Bu_4N]I$ and $[NH_4][PF_6]$; the precipitate was recrystallized twice from methanol and vacuum dried at 100°C for 24 h. CH₂Cl₂ (distilled from CaH₂) was transferred to a voltammetry cell containing sufficient $[Bu_4N][PF_6]$ and electroactive compound to make the solution ca 0.1 and 5×10^{-4} M in these compounds, respectively. All potentials are referred to the Ag/Ag⁺ electrode. Preparation of $Pt(PR_3)_2(mnt)$ (PR₃ = PEt₃, PMe₂Ph)

In a typical reaction, PtCl₂(PMe₂Ph)₂ (70 mg, 0.129 mmol) was mixed with an equimolar amount of Na₂mnt (24 mg, 0.129 mmol) and CH₂Cl₂-MeOH (20 cm³, 3:1). After 2 h, the orange-red solution was filtered and evacuated to dryness. The resulting solid was dissolved in $CDCl_3$ (2–3 cm³). The orange solid was recrystallized from hot ethanol to give shiny pink microcrystals of Pt(PMe₂ Ph)₂(mnt) (51 mg, 65%). Layering a CH₂Cl₂ solution of the compound with *n*-hexane gave crystals suitable for X-ray diffraction. Found: C, 39.2; H, 3.5; N, 4.3. Calc. for Pt(PMe₂Ph)₂(mnt): C, 39.3; H, 3.6; N, 4.3%. ${}^{31}P{}^{1}H{}$ (ppm): δ -19.34(s) ${}^{1}J({}^{195}\text{Pt}-{}^{31}\text{P})$ 2778 Hz; ${}^{1}\text{H}$ (ppm): δ 1.71 (s, 12H, Me) ${}^{2}J({}^{31}P_{-1}H)$ 10 Hz ${}^{3}J({}^{195}Pt_{-1}H)$ 29 Hz, 7.38 (m, 10H, Ph) o 7.35, p 7.39, m 7.42. IR (cm⁻¹): 2222m, 2205vs, 1492vs, 1436vs, 1420vs, 1385s, 1287m, 1154s, 1107vs, 946vs, 924vs, 851m, 807w, 741vs, 719vs, 691vs, 508w, 482s, 445m, 434m, 372w.

Pale pink crystals were obtained for the PEt₃ derivative. Found : C, 33.6; H, 5.2; N, 4.8. Calc. for Pt(PEt₃)₂(mnt) : C, 33.6; H, 5.3; N, 4.9%. ³¹P{¹H} (ppm) : δ 4.82(s) ¹J(¹⁹⁵P—³¹P) 2749 Hz, ¹H (ppm) : δ 1.12 (t, 3H, Me) ³J(CH₂—CH₃) 8 Hz ³J(³¹P—¹H) 16 Hz, 2.05 (m, CH₂) with Pt—H and P—H couplings. IR (cm⁻¹): 2221m, 2202vs, 1497vs, 1453s, 1416m, 1384m, 1260m, 1152s, 1110m, 1035vs, 1011m, 870w, 804w, 768s, 752vs, 745s, 726s, 701m, 629m, 508m, 441m, 426m, 387w, 310w.

Preparation of $Pt(PR_3)_2(edt)$ (PR₃ = PEt₃, PMe₂Ph)

Na2edt (27 mg, 0.2 mmol) was added to a stirred solution of PtCl₂(PEt₃)₂ (100 mg, 0.2 mmol) in CH_2Cl_2 (10 cm³). An immediate yellow coloration resulted. After 2 h, the solution was filtered and evacuated to dryness. The ³¹P{¹H} NMR revealed two peaks with accompanying Pt-P splittings; that of the desired product and the starting phosphine (δ 9.13 ppm, ¹J 3513 Hz). Evaporation of the solvent to ca 0.5 cm³ resulted in the formation of white needle-shaped crystals. Yield 55 mg (57%). Found: C, 32.1; H, 6.0. Calc. for Pt(PEt₃)₂(edt): C, 32.2; H, 6.2%. ${}^{31}P{}^{1}H{}$ (ppm): δ 4.35(s), ${}^{1}J({}^{195}Pt-{}^{31}P)$ 2732 Hz. IR (cm⁻¹): 1523m, 1453m, 1415m, 1384m, 1376m, 1103w, 1033vs, 811s, 767vs, 760vs, 725vs, 675vs, 634m, 417m, 354w, 325w, 292w.

Addition of diethyl ether was required to precipitate the PMe₂Ph derivative as a yellow solid (63 mg, 61%). Found: C, 37.9; H, 4.2. Calc. for Pt(PMe₂Ph)₂(edt): C, 38.5; H, 4.3%. ³¹P{¹H} (ppm): $\delta - 19.00(s) {}^{1}J({}^{195}\text{Pt}-{}^{31}\text{P}) 2722 \text{ Hz. IR}$ (cm⁻¹): 1519w, 1475w, 1434m, 1417m, 1400m, 1312w, 1262w, 1155w, 1103vs, 945s, 905vs, 853w, 839w, 808m, 758m, 748s, 734s, 716m, 697s, 667s, 482m, 447m, 432m, 374w, 366w, 337w, 328w.

Preparation of $Pt(PR_3)_2(QDT)$ (PR₃ = PMe₂Ph, PEt₃)

To a stirred solution of QDT (30 mg, 0.154 mmol) in MeOH (5 cm³) was added sodium (10 mg, 0.435 mmol). After 10 min, PtCl₂(PMe₂Ph)₂ was added together with CH_2Cl_2 (5 cm³) and the resulting solution was stirred for 2 h. Evaporation of the solvent to 5 cm³ and addition of Et₂O resulted in precipitation of the orange complex. Found: C, 43.1; H, 3.9; N, 4.2. Calc. for Pt(PMe₂Ph)₂(QDT): C, 43.4; H, 3.9; N, 4.2%. ${}^{31}P{}^{1}H{}$ (ppm): δ -17.9(s) ¹J(¹⁹⁵Pt-³¹P) 2835 Hz. IR (cm⁻¹): 1547m, 1482w, 1434m, 1414m, 1387w, 1356m, 1328w, 1313w, 1259s, 1172vs, 1121vs, 1105s, 1049w, 1024w, 948s, 907vs, 843w, 805w, 762m, 743m, 717m, 689m, 599m, 489m, 445m, 428m. PEt₃ derivative: Found: C, 38.1; H, 5.4; N, 4.4. Calc. for Pt(PEt₃)₂(QDT): C, 38.5; H, 5.5; N, 4.5%. ${}^{31}P{}^{1}H{}$ (ppm): δ 5.5(s) ${}^{1}J{}^{195}Pt{}^{-31}P{}$ 2817 Hz. IR (cm⁻¹): 1550m, 1480w, 1458m, 1453m, 1417m, 1370w, 1365m, 1254s, 1179vs, 1123vs, 1038vs, 1025s, 1004m, 802w, 768vs, 757vs, 726vs, 638m, 598m, 444m, 426m.

Reaction of $[Bu_4N][Au(mnt)Br_2]$ with $S_4H_4N_4/dbu$

 $[Bu_4N][Au(mnt)Br_2]$ (59.2 mg, 8.01×10^{-5} mol) was dissolved in CH₂Cl₂ (10 cm³) to which was added S₄N₄H₄ (7.5 mg, 4.0×10^{-5} mol) and an excess of dbu (~ 5 drops). The solution darkened to an orange-brown colour. After filtration, the solvent was reduced *in vacuo* to 0.5 cm³. Dark red crystals were formed. Found : C, 39.5; H, 5.0; N, 9.6. Calc. for $[Bu_4N][Au(mnt)_2]$: C, 40.0; H, 5.0; N, 9.7%. Mass spectrometry: M⁻ (FAB): 477 Au(mnt)₂⁻.

Reaction of $[Bu_4N][Au(mnt)Br_2]$ with $[Me_2SnS_2N_2]_2$

 $[Bu_4N][Au(mnt)Br_2]$ (87 mg, 0.105 mmol) and $[Me_2SnS_2N_2]_2$ (28.3 mg, 5.25×10^{-5} mol) were combined in degassed CH₂Cl₂ (15 cm³). After 24 h, the yellow-brown solution was filtered through celite and reduced to ~ 5 cm³ in vacuo. Ether was added slowly until a dark brown, crystalline solid was deposited. Recrystallization from acetone-EtOH followed by slow hexane diffusion into a dichloromethane solution of the compound gave dark red crystals which analysed as $[Bu_4N][Au(mnt)_2]$.

Crystal data

C₂₀H₂₂N₂P₂PtS₂ (1), M = 611.6, triclinic, a = 9.22(5), b = 11.318(6), c = 11.552(7) Å, $\alpha = 84.02(4)$, $\beta = 84.64(4)$, $\gamma = 71.73(4)^{\circ}$, U = 1149Å³, space group PĪ, Z = 2, $D_c = 1.77$ g cm⁻³. Pink, air-stable prisms, α (Cu-K_w) = 146 cm⁻³, $\lambda = 1.54178$ Å, F(000) = 592. C₂₄H₃₆AuN₅S₄ (2), M = 719.8, triclinic, a = 13.405(5), b = 13.533(5), c = 17.612(5) Å, $\alpha = 75.98(3)$, $\beta = 79.92(3)$, $\gamma = 78.37(3)^{\circ}$, U = 3009 Å³, space group PĪ, Z = 4(two crystallographically independent molecules), $D_c = 1.59$ g cm⁻³, μ (Cu-K_a) = 120 cm⁻¹, $\lambda = 1.54178$ Å, F(000) = 1432.

Data collection and processing

Nicolet R3m diffractometer, ω -scan method ($\theta \leq 50$ and 58°, respectively), graphite monochromated Cu- K_{α} radiation; for 1 2662 and for 2 8126 independent measured reflections, 2559 and 6&83 observed [] $F_{\alpha} > 3\sigma$ {] F_{α}]), corrected for Lorentz and polarization factors; empirical absorption corrections based on 343 and 360 azimuthal measurements. Maximum and minimum transmission factors for 1 were 0.602 and 0.17, and for 2 0.131 and 0.042, respectively.

Structure analysis and refinement

Complex 1 was solved by the heavy atom method and 2 by direct methods; in both cases all the nonhydrogen atoms were refined anisotropically. The hydrogen atoms were idealized (C-H = 0.96 Å), assigned isotropic thermal parameters U(H) = 1.2Ueq(C) and allowed to ride on their parent carbons. In 2 the methyl groups were refined as rigid bodies. Refinement was by block-cascade full-matrix leastsquares to R = 0.040 $(R = \Sigma_{i})F_{a} - F_{a})/\Sigma_{i}F_{a}$ $R_{\rm w} = 0.042 \; ({\rm w}^{-1} = \sigma^2(F) + 0.0010F^2)$ for 1, and to $R = 0.050, R_w = 0.55 (w^{-1} = \sigma^2(F) + 0.00144F^2)$ for 2. The maximum and minimum residual electron densities in the final ΔF maps were 1.67, 1.25 and -1.07, -1.77 eÅ⁻³, and the mean and maximum shifts/error in the final refinement cycle were 0.002, 0.008 and 0.018, 0.048, respectively. Computations were carried out on an Eclipse S140 computer using the SHELXTL program system.¹⁶

RESULTS AND DISCUSSION

In the light of the observed stacking properties in $[Pt(S_2N_2H)(PR_3)_2]X$, we have prepared mixedligand complexes containing dithiolenes and phosphines as well as studying methods for the preparation of complexes containing dithiolenes and SN ligands. Reaction of PtCl₂(PR₃)₂ with the sodium salt of the appropriate dithiolene ligand (mnt, edt, QDT) gives the desired mixed-ligand complex in fair yield. The new compounds gave satisfactory microanalyses and had the expected spectroscopic properties. Their ³¹P NMR spectra consist of singlets with platinum satellites (³ $J(^{31}P-^{183}Pt) ca$ 2800 Hz).

The IR spectra are as expected.¹⁷ In the case of the mnt complexes the v(C = N) and v(C - C)vibrations increase in frequency by *ca* 10 and 55 cm⁻¹, respectively, upon complexation indicating a decrease in bond length, whilst the $v(C - S)_{sym}$ vibration is reduced in frequency consistent with lengthening of the C—S bonds.

We have also attempted to prepare mixed dithiolene/SN complexes of gold. Thus reaction of $S_4N_4H_4$ or $[Me_2SnS_2N_2]_2$ with $[Bu_4N]$ $[Au(mnt)Br_2]$ was carried out by analogy with previous routes to $S_2N_2^{2-}$ complexes.⁶⁻⁸ In both cases we observed formation of $[Bu_4N][Au(mnt)_2]$ (2) rather than the desired complex. Complex 2 has previously been obtained¹⁸ from the reaction of auric acid and Na₂mnt.

A number of the compounds prepared have been studied by cyclic voltammetry. The cyclic voltammogram for Au(mnt)₂^{-/}/CH₂Cl₂ was found to contain oxidative and reductive one electron reversible couples at $E_{1/2(\text{oxid})} = +1.15$ V and $E_{1/2(\text{red})} = -0.88$ V. This compares with the results obtained by Schlupp and Maki¹⁹ for Au(mnt)₂^{-/} DMSO ($E_{1/2(\text{red})} = -0.41$ V vs SCE).

Gold(III) is isoelectronic with platinum(II) (d^8) and it is probable that the gold and platinum mnt complexes have similar electronic structures. Schlupp and Maki have calculated that in the formal gold(III) complex $Au(mnt)_2^{\lambda_-}$ (d^8) the electron is largely based on the ligand orbital (80% A_g character). Geiger *et al.*²⁰ have noted the difficulty in assigning Pt(mnt)₂³⁻ as platinum(I) (isoelectronic with Au(mnt)₂²⁻) and have concluded that reduction of the platinum(II) complex could be either metal or ligand based. This is also likely for Au(mnt)₂⁻.

The redox chemistry of $M[S_2C_2Ph_2]_2$ (M = Ni, Pd, Pt)²¹ and $[M(S_2C_2Ph_2)(PPh_3)_2]$ (M = Pd, Pt) has been studied with the existence of the dithioketyl radical $C_2S_2Ph_2^-$ characterized by ESR.

Fig. 1. The X-ray structure of 1.

Fig. 2. The X-ray structure of 2.

Reversible oxidation is found to occur on the dithiolene ligand and is relatively independent of the metal atom or phosphine. In the case of $Pt(PR_3)_2(mnt)$ studied here we observed irreversible oxidative peaks at +1.25 V indicating a secondary process (e.g. ligand dissociation).

The X-ray structures of $Pt(PMe_2Ph)_2(mnt)$ (1) and $[Bu_4N][Au(mnt)_2]$ (2) are shown in Figs 1 and 2, with selected bond lengths and angles in Tables 1 and 2. Complex 1 has the expected square-planar geometry with approximate non-crystallographic C_2 symmetry. There is a characteristic slight enlargement of the P—Pt—P angle (92.4(1)°) as a consequence of the bulk of the phosphine ligands. The Pt—P and Pt—S bond lengths are typical for platinum(II). The Pt—S bond length in 1 is slightly longer than in Pt(mnt)₂⁻,⁴ reflecting the difference

in the *trans* effect of sulphur versus phosphorus rather than the difference in formal oxidation state. The transannular $S \cdots S$ distance is 3.23 Å. In 2 there are two crystallographicaly independent molecules. There are no significant differences in their geometries; both anions having approximate non-crystallographic D_{2h} symmetry. The bond lengths and angles are within statistical significance identical to those reported²² for [Au(S₂CNBu₂)₂][Au(mnt)₂]. Replacement of platinum by gold does not appear to have any effect on the M—S distance in complexes of this type.^{4,22} The transannular $S \cdots S$ distance in 2 (3.27 Å) is essentially identical to the cis inter-ring S...S distance (3.28 Å) underlining that mnt^{2-} is an almost optimum chelating ligand for the formation of undistorted bis complexes.

Pt—S(1)	2.309(2)	Pt—S(4)	2.301(2)
Pt - P(1)	2.278(2)	PtP(2)	2.289(2)
S(1)—C(2)	1.715(8)	P(1) - C(11)	1.828(7)
P(1)C(17)	1.824(9)	P(1)-C(18)	1.818(13)
P(2)—C(21)	1.819(8)	P(2)—C(27)	1.809(8)
P(2)—C(28)	1.817(12)		
S(1)—Pt—S(4)	88.8(1)	S(1)—Pt—P(1)	89.5(1)
S(4) - Pt - P(1)	178.3(1)	S(1)—Pt—P(2)	178.1(1)
S(4)P(2)	89.2(1)	P(1)PtP(2)	92.4(1)
Pt—S(1)—C(2)	102.7(3)	S(1)C(2)C(3)	124.1(6)
S(1) - C(2) - C(4)	117.4(7)	C(3) - C(2) - C(4)	118.5(7)
C(2) - C(3) - S(4)	120.9(6)	C(2)-C(3)-C(5)	121.6(8)
S(4) - C(3) - C(5)	117.5(8)	Pt—S(4)—C(3)	103.5(3)
C(2) - C(4) - N(4)	178.6(10)	C(3)—C(5)—N(5)	179.1(9)

Table 1. Selected bond lengths (Å) and angles (°) in 1

Au(1)—S(2)	2.308(3)	2.304(3)
Au(1)—S(6)	2.300(3)	2.312(2)
Au(1) - S(1)	2.307(3)	2.306(3)
Au(1)-S(5)	2.309(3)	2.309(3)
S(1) - C(1)	1.749(10)	1.731(10)
C(1)—C(3)	1.424(15)	1.453(13)
C(2) - C(4)	1.389(14)	1.421(16)
C(4) - N(4)	1.142(14)	1.162(18)
C(5)—C(6)	1.351(15)	1.336(13)
C(6)—S(6)	1.746(10)	1.707(9)
C(7)—N(7)	1.148(14)	1.160(14)
S(1)—Au(1)—S(2)	90.4(1)	90.6(1)
S(2)—Au(1)—S(5)	178.9(1)	179.6(1)
S(2)—Au(1)—S(6)	88.6(1)	90.1(1)
Au(1) - S(1) - C(1)	101.1(4)	100.1(3)
S(1) - C(1) - C(3)	115.3(9)	114.7(7)
C(1) - C(2) - S(2)	122.8(7)	122.7(8)
S(2) - C(2) - C(4)	114.8(9)	116.9(8)
C(1) - C(3) - N(3)	179.1(10)	177.2(12)
Au(1) - S(5) - C(5)	101.1(4)	100.5(3)
S(5)—C(5)—C(7)	116.6(8)	115.1(7)
C(5)-C(6)-S(6)	122.9(7)	124.2(7)
S(6)-C(6)-C(8)	114.4(8)	117.3(7)
S(1) - Au(1) - S(5)	90.6(1)	89.2(1)
S(1) - Au(1) - S(6)	178.9(1)	177.1(1)
S(5) - Au(1) - S(6)	90.4(1)	90.0(1)
S(1) - C(1) - C(2)	124.1(7)	125.6(7)
C(2) - C(1) - C(3)	120.5(9)	119.6(9)
C(1) - C(2) - C(4)	122.3(10)	120.3(9)
Au(1) - S(2) - C(2)	101.5(4)	100.8(3)
C(2)—C(4)—N(4)	176.4(12)	177.9(14)
S(5)-C(5)-C(6)	124.4(7)	124.1(7)
C(6)—C(5)—C(7)	119.0(9)	120.8(9)
C(5)-C(6)-C(8)	122.7(9)	118.5(8)
Au(1)-S(6)-C(6)	101.1(4)	101.1(3)

Table 2. Selected bond lengths (Å) and angles (°) for the two independent molecules in 2

In 1 there are no close contacts and there is no evidence of any intermolecular stacking. In 2 there are no significant intermolecular interactions between the crystallographically independent anions (the planes of the anions are inclined $ca 64^\circ$). However, centrosymmetrically related pairs of one of the anions pack parallel to each other (Fig. 3) with an interplanar separation of 3.7 Å; the C(5)— C(6) bond lying almost directly over, and parallel

Fig. 3. Line drawing of the packing of centrosymmetrically related anions in **2**.

to, the $S(5)'' \cdots S(6)''$ transannular vector of the symmetry related anion.

Acknowledgements—J.C.F. is grateful to Minnesota 3M Research Limited, Harlow and the SERC for support under the CASE scheme.

REFERENCES

- 1. J. S. Miller and A. J. Epstein, Prog. Inorg. Chem. 1976, 20, 1.
- J. M. Williams, H. H. Wang, T. J. Emge, U. Geiser, M. A. Beno, P. C. Leung, K. D. Carlson, R. J. Thorn and A. J. Schultz, *Prog. Inorg. Chem.* 1989, 35, 51.
- 3. S. Alvarez, R. Vicente and R. Hoffmann, J. Am. Chem. Soc. 1985, 107, 6253.
- P. I. Clemenson, A. E. Underhill, M. B. Hursthouse and R. L. Short, J. Chem. Soc., Dalton Trans. 1989, 61.
- M. B. Hursthouse, R. L. Short, P. I. Clemenson and A. E. Underhill, J. Chem. Soc., Dalton Trans. 1989, 67.
- R. Jones, P. F. Kelly, C. P. Warrens, D. J. Williams and J. D. Woollins, J. Chem. Soc., Chem. Commun. 1986, 711.
- R. Jones, P. F. Kelly, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans. 1988, 803.
- R. Jones, C. P. Warrens, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans. 1987, 907.
- E. I. Stiefel, L. E. Bennett, Z. Dori, T. H. Crawford, C. Simo and H. B. Gray, *Inorg. Chem.* 1970, 9, 281.
- 10. W. Schrath and J. Peschel, Chimia 1964, 18, 171.
- 11. L. J. Theriot, K. F. Ganguli, S. Kavanos and I. Bernal, J. Inorg. Nucl. Chem. 31, 3133.
- F. Feher, in Handbook of Preparative Inorganic Chemistry (Edited by G. Brauer), Vol. 1, p. 411. Academic Press, New York (1967).
- H. W. Roesky and H. Weizer, Angew. Chem. Int. Ed. Engl. 1973, 12, 674.
- R. Uson, J. Vicente and J. Oro, *Inorg. Chim. Acta.* 1981, **52**, 29.
- J. Chatt, L. M. Valerino and L. M. Venanzi, J. Chem. Soc. 1957, 2496.
- G. M. Sheldrick, SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. University of Göttingen, F.R.G. (1978); Revision 4.1 (August 1983).
- 17. C. W. Schlapfer and K. Nakamoto, Inorg. Chem. 1975, 14, 1338.
- A. Davison, N. Edelstein, R. H. Holm and A. H. Malik, *Inorg. Chem.* 1963, 2, 1227.
- R. L. Schlupp and A. H. Maki, *Inorg. Chem.* 1974, 13, 44.
- W. E. Geiger Jr, C. S. Allen, T. E. Miner and F. E. Senftleber, *Inorg. Chem.* 1980, 16, 2003.
- G. A. Bowmaker, P. D. W. Boyd and G. K. Campbell, *Inorg. Chem.* 1980, 19, 2679.
- 22. J. H. Noordik and P. T. Beurskens, J. Cryst. Molec. Struct. 1971, 1, 339.