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Abstract: (3-Alkoxycarbonyl-2-oxo-propylidene)triphenylphosphorane reacts with 1,2-diacylethylenes 
to give cyclopentenones in a single operation. Use o f a  chiral acylmethylenemalonate led to formation 
of optically active cyclopentenone in a highly diastereoselective fashion. 

Short-step synthesis of substituted 5-membered carbocycles has been an attractive subject recently. 

Numerous interesting methodology have been documented for this purpose. 1 We have demonstrated that [3 + 

2] annulation using allylidenetriphenylphosphorane as a 3-carbon unit is powerful tool for the single-step 

preparation of substituted cyclopentadienes and cyclopentenones. 2 Recent paper has described that (3- 

alkoxycarbonyl-2-oxo-propylidene)phosphorane also proceeds [3 + 2] annulation with glyoxals to produce 

hydroxycyclopentenones in a single operation. 3 In this context, we report herein an additional [3 + 2] 

annulation of the phosphorane with diacylethylenes, leading to one-step formation of substituted cyclopentenone 

in a highly regioselective fashion. Furthermore, this method provides a direct access to optically active 

cyclopentenone by using chiral acyl-methylenemalonate as a substrate. 
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At first, the reaction of the phosphorane with an active Michael acceptor, acylmethylenemalonate 2, was 

examined (Scheme 1). Cyclopentenone formation occurred simply by stirring an equimolar mixture of I and 2 

in THF at room temp. to give 34 in 14% yield (Table 1, entry 1). The annulation was found to be much 

accelerated by addition of lithium salts to the reaction mixture, of which LiCIO4 gave the best yield (84%, entry 

2). 5 Furthermore, anion formation at the 3-position of I by adding a base was also effective. The phosphorane 

! was allowed to react with s-BuLi (1 equiv.) followed by 2 (1 equiv.) in THF at -78 °C. After disappearance 

of 2, the mixture was treated with acetic acid (1 equiv.) and aqueous NaHCO3, and left at 30 °C for 2 days. 

Work-up of the mixture gave the cyclopentenone 3 in 84% yield (entry 5). 

The procedure described above for entry 5 was applicable to annulation with various diacylethylenes 4 

(Scheme 2). The results are illustrated in Table 2. Dibenzoylethylene (4a) reacted with 1 (! equiv.) in a similar 
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Scheme 1. 

Table 1. Annulation of phosphorane 1 with 2. 

Entry Conditions Additive Isolated yield (%) of 3 

1 THF/rt./12 h 14 
2 THF/rt./I 2 h LiCO4 (1 equiv.) 84 
3 THF/rt./12 h LiBF4 (1 equiv.) 64 
4 THF/rt./I 2 h LiBr ( 1 equiv.) 57 
5 THF/-78 °C to ft. s-BuLi (1 equiv.) 84 

manner to give the cyclopentenone 5a in 84% yield (entry I). Diacetylethylene (4b) also underwent cyclization 

to afford 5b (entry 2). Thus, the symmetrical ethylenes underwent [3 + 2] annulation exclusively without being 

accompanied by [3 + 3] annulation. 6 On the other hand, methyl 4-oxo-2-pentenoate (4c) and ethyl 2-methyl-4- 

oxo-2-pentenoate (4d) produced cyclohexenones 6c and 6d, in 65 and 54% yields, respectively (entries 3, 4). 

Interestingly, S-ethyl 4-oxo-2-pentenethioate (4e) gave 5e via a regioselective Michael addition at the 3-position 

of 4e. An unsymmetrical ethylene, 1-phenyl-2-propen-l,4-dione (4t3, also gave 5f selectively in 88% yield. 

The observed regioselective outcomes of the initial Michael addition agreed with those anticipated from the 

electron population in LUMO of 1,2-diacylethylenes. 7 
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Scheme 2. For R 1, R 2 and R 3, see Table 2 

Table 2. Annulation of phosphorane 1 with 1,2-diacylethylenes 4. a 

Substrate Cyclopentenone 5 Cyclohexenone 6 
Entry No. R 1 R 2 R 3 Yield (%)b Yield (%)b 

1 4 a  Ph Ph H 84 
2 4b Me Me H 55 
3 4e  Me OMe H 
4 4 d Me OEt Me 
5 4 e Me SEt H 74 
6 4 f  Me Ph H 88 

65 
54 

aAll reactions were carried out in THF in the presence of an equiv, of s-BuLi: see text. blsolated yield. 

Next, an enantioselective synthesis of cyclopentenones was investigated with chiral acylmethylene- 

malonates. Chiral substrates 10a and 10b were prepared from the corresponding esters 7a and 7b in 45% and 
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52% overall yields, respectively, by straightforward sequences involving (i) addition of chloromethyllithium 8, 

(ii) treatment with tributylphosphine, and then (iii) Wittig reaction with diethyl ketomalonate. Compound 10a 

was treated with 1 in THF in the presence of 1 equiv, of LiC104 at room temp. to give 1:1 mixture of l l a  and 

12a in 35% total yield. Significant 1,3-asymmetric induction was observed under the conditions using s-BuLi 

in which initial Michael addition underwent at -78 °C and finally l l a  and 12a were obtained in a 7:3 ratio in 

79% yield, In a similar fashion, high level of asymmetric induction was accomplished by use of 10b as a 

substrate, which led to formation of l i b  and 12b in a 1:24 ratio in 72% yield. The stereochemistry of the 

major product 12b was determined to be 4R configuration by deriving it to known compound. 9 
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Table 3. Annulation of phosphorane 1 with chiral acylmethylenemalonates 10a and 10b. 

Substrate 
Entry No. Additive 

Yield (%) of Cyclopentenone 
(Ratio of 11 to 12) a 

1 10a LiCO4 (1 equiv.) b 35 (1:1) 
2 10a  s-BuLi (1 equiv.) c 79 (7:3) 
3 10b s-BuLi (1 equiv.) c 72 (1:24) 

aThe ratio was estimated on the basis of their 1H NMR spectra, bThe reaction was carried out in THF at rt. for a day. 
CThe reaction was carried out in THF at -78 °C for 8 h and then at 30 °C for 2 days after quenching with AcOH. 

The observed high level of 1,3-asymmetric induction may be rationalized by assuming a similar transition- 

state model reported previously for the formation of chiral 4-hydroxycyclopentenones from 1 and chiral 

glyoxals 3 (Scheme 4). The annulation must undergo stepwise, that is an initial Michael addition of 1 to 10b 

followed by an intramolecular Wittig reaction. In the first step, the carbanion of 1 attacks preferentially from the 

less hindered bottom face of the s-cis oriented double bond on a Felkin-Anh model to give 13. The observed 

high level of diastereoselection implied usefulness of 1,3-asymmetric induction based on this model. Final 

Wittig cyclization gave 12b in which the carboxyl ester adopted thermodynamically stable trans configuration. 

In summary, the [3 + 2] annulation between (3-alkoxycarbonyl-2-oxo-propylidene)triphenylphosphorane 

and 1,2-diacylethylenes provides an efficient method for the preparation of substituted cyclopentenones in a 

single operation. Furthermore this method is applicable for one-step preparation of optically active cyclo- 

pentenone by using chiral acylmethylenemalonates as a substrate. 
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Scheme 4. Plausible mechanism for the formation of 121} 
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