Infrared Intensities as a Quantitative Measure of Intramolecular Interactions. Part XXVIII.¹ Benzenethiols and Methyl and t-Butyl Phenyl Sulphides

By Nigel C. Cutress, T. Bruce Grindley, and Alan R. Katritzky,* School of Chemical Sciences, University of East Anglia, Norwich NOR 88C

Ronald D. Topsom,* Department of Organic Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia

I.r. intensities of series of meta-substituted benzenethiols and methyl phenyl and phenyl t-butyl sulphides confirm the following order of resonance donation: SMe > SH > SBu^t. The intensities of the para-substituted benzenethiols and phenyl sulphides are interpreted in terms of sulphur d-orbital acceptance when the divalent sulphur opposes a donor substituent. A scale of *d*-orbital-acceptor ability is given for a range of substituents.

For a number of years there has been controversy as to the importance of *d*-orbital participation in the bonding of sulphides attached to π -bonded systems. The frequencies of bands in u.v. spectra of alkyl aryl sulphides have been quoted as evidence for *d*-orbital participation,² as evidence against ³ for simple sulphides or as contradictory when strong donors are present,³ and as inconclusive.^{4,5} Acidity values (pK_a) of substituted phenols and benzenethiols have also been quoted as evidence against 6 or for 7 *d*-orbital participation or as inconclusive.8 The application of Goodman's substituent interference experiment⁹ to the intensities of the $(A' - 'L_{\rm b})$ bands of benzenethiols has been used in turn as evidence for 10 and against 11 *d*-orbital bonding in these molecules. Photoelectron spectroscopy has suggested that the effect of *d*-orbital bonding in benzenethiol

¹ Part XXVII, G. Butt, M. Davis, Y. T. Pang, R. D. Topsom, ² E. A. Fehnel and M. Carmack, J. Amer. Chem. Soc., 1949,

71, 2889.

J. Degani, A. Mangini, A. Trombetti, and C. Zauli, Spectro-chim. Acta, 1967, 23A, 1351.
 ⁴ E. L. Wehry, J. Amer. Chem. Soc., 1967, 89, 41.
 ⁵ A. Mangini, Pure Appl. Chem., 1963, 7, 103.
 ⁶ F. G. Bordwell and P. J. Boutan, J. Amer. Chem. Soc., 1956,

78. 854.

 ⁷ R. R. Beishline, J. Org. Chem., 1961, 26, 2533.
 ⁸ G. Chuchani and A. Frohlich, J. Chem. Soc. (B), 1971, 1417. L. Goodman, A. H. Konstam, and L. H. Sommer, J. Amer. Chem. Soc., 1965, 87, 1012.

and some related compounds on the π -orbitals of the benzene ring is small.¹² The discrepancies between the additive dipole moments and the observed ones for para-NN-dimethylaminophenyl methyl sulphide and the corresponding methyl ether are 0.58 and 0.05 D, respectively.¹² This is good evidence that, at least where strong donors are para to the sulphide group,^{13,14} d-orbital acceptance is important. Kinetics of H-D exchange in aromatic sulphides also provide evidence 15 for $(p-d)\pi$ bonding.

Steric Considerations.---It is experimentally observed that in sterically twisted anisoles there is less conjugation.^{16,17} This is because, when one of the lone pair orbitals of oxygen is removed from conjugation, it is

10 L. Goodman and R. W. Taft, J. Amer. Chem. Soc., 1965, 87, 4385.

¹¹ G. di Lonardo and C. Zauli, J. Chem. Soc. (A), 1969, 1305.
 ¹² D. C. Frost, F. G. Herring, A. Katrib, C. A. McDowell, and R. A. N. McLean, J. Phys. Chem., 1972, 76, 1030; H. Bock, G. Wagner and J. Kroner, Tetrahedron Letters, 1971, 3713.

V. Baliah and M. Uma, Tetrahedron, 1963, 19, 455.
 H. Lumbroso and R. Passerini, Bull. Soc. chim. France,

1955, 1179. ¹⁵ A. I. Shatenshtein and H. A. Gvozdeva, *Tetrahedron*, 1969,

¹⁶ See the section on durenes in R. T. C. Brownlee, R. E. J. Hutchinson, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1968, 90, 1757.
¹⁷ A. R. Katritzky, R. F. Pinzelli, and R. D. Topsom, Tetrahedron, 1972, 28, 3441.

J.C.S. Perkin II

not replaced by the other to the same extent, since the σ framework hybridization causes considerable angular deformation of the in-plane p-orbital. However, when *d*-orbitals are involved, as in thioanisole, one orbital of the appropriate symmetry replaces another in a bonding position as the group is rotated. Hence consideration of steric effects is a potential method of observing intensities and frequencies ^{3,4} and i.r. intensities ¹⁷ of the series of compounds PhSR, where R = Me, Et, Prⁱ, or Bu^t, and of the pK_a values of similarly para-substituted benzoic acids,¹⁹ all of which change uniformly, indicate clearly that $(p-p)\pi$ overlap has diminished but do not provide positive evidence for $(p-d)\pi$ resonance interactions.

			TAE	BLE 1					
Phys	ical and sp	ectral properties of	benzenethiols and me	thyl and	l t-butyl sul	phides su	bstituted i	n the <i>meta</i>	<i>i</i> -position
Substitu	uents			-	1600-1585	- o cm⁻¹ band	l	(A - 340)	-
$\overline{1}$	2	B.p. (°C) [mmHg]	Lit. b.p. (°C) [mmHg]	$\sigma^{\circ}_{\mathbf{R}}(2)$	رر ر	ε, α	~ A ^b	$\left(\frac{11}{19,000}\right)$) ² fm ^c
SH	Me		d	-0.10	1593	112	1650	0.26	0.26
	Cl	70[4.8]	205[207] ·	-0.22	1574 1578	$\frac{33}{269}$	3045	0.38	0.36
	F	67[23]	157[740]	-0.34	$1566 \\ 1599$	$\frac{114}{300}$	4985	0.49	0.47
	*		101[110]	0.01	1587	146	2000		~
	OMe	87-89[5.7]	78[4] ^g	-0.43	1588	360	6600	0.57	0.540.57†
SMe	Me	95-97[15]	96[15] ^h	-0.10	$1577 \\ 1592$	197 95	2090	0.09	0.08-0.10†
					$\begin{array}{c}1576\\1574\end{array}$	$34 \\ 42$			
	Cl	44 [0·08]	$112[16]^{j}$	-0.25	$\begin{array}{c} 1578 \\ 1562 \end{array}$	214 90	3280	0.12	0.13-0.19†
	n	4051 83		0.94	1558	77		0.00	0.00 0.004
	F	43[1-7]	186-187[740]7	-0.34	$1500 \\ 1584$	235 85	9799	0.28	0.220.307
	OMe	$104 - 106[7 \cdot 1]$	$125 - 127 [16 - 17]^{k}$	-0.43	$\begin{array}{c}1578\\1590\end{array}$	$\begin{array}{c} 228 \\ 339 \end{array}$	6985	0.35	0.27 - 0.42
	NMe	62_64[0,03]	165	-0.53	$\frac{1574}{1587}$	$184 \\ 519$	11915	0.57	0.40_0.54+
	rune ₂	03-04[0.03]	100-107[10]	0 00	1563	149	11210	0.01	0 40 0 0 41
SBut	Me	$72 \cdot 5[2 \cdot 3]$	†	-0.10	$1558 \\ 1589$	75	910	0.17	0.12
	Cl	$57 - 59[0 \cdot 05]$	+	-0.22	$\begin{array}{c}1572\\1573\end{array}$	$\frac{20}{107}$	2095	0.30	0.26
	F	50[0.9]	†	-0.34	$1560 \\ 1596$	$15 \\ 120$	3740	0.42	0.39
	-	- °[° °]	Ŧ		1588	120	_ • _ •	•	
	OMe	68[0.12]	*	-0.43	1587	273	5445	0.52	0.46 - 0.48
	Cl F OMe	$5759[0 \cdot 05]$ $50[0 \cdot 9]$ $68[0 \cdot 12]$	* * *	-0.22 -0.34 -0.43	$1572 \\ 1573 \\ 1560 \\ 1596 \\ 1588 \\ 1576 \\ 1587 \\ 1573 \\ 1575 \\ $	$20\\107\\15\\120\\120\\160\\273\\176$	2095 3740 5445	0·30 0·42 0·52	0.

^a Peak extinction coefficient, $\varepsilon_A = a_{max}/cl$, where a_{max} is the absorbance at peak maximum, c is concentration in mol l⁻¹, and l is cell path length in cm. ^b The integrated intensity of the 1600—1585 cm⁻¹ band, in 1 mol⁻¹ cm⁻². ^c $f_m = [\sigma^{\circ}_R(1)]^2 + [\sigma^{\circ}_R(2)]^2 + [\sigma^{\circ}_R(1)\sigma^{\circ}_R(2)$. ^d From Kodak Limited. ^e G. Daccomo, 'Jahres Bericht uber die Fortshcritte der Chemie,' 1891, 1375. ^f R. W. Tatt, E. Price, I. R. Fox, I. C. Lewis, K. K. Andersen, and G. T. Davis, *J. Amer. Chem. Soc.*, 1963, **85**, 709. ^e D. S. Tarbell and A. H. Herz, *J. Amer. Chem. Soc.*, 1953, **75**, 1668. ^b G. Modena and L. Maioli, *Gazzetta*, 1957, **87**, 1306. ^j G. Leandri, A. Mangini, and R. Passerini, *Gazzetta*, 1954, **84**, 3. ^k F. G. Bordwell and P. J. Boutan, *J. Amer. Chem. Soc.*, 1957, **79**, 717. ^l M. T. Zincke and J. Muller *Berg*, 1013, **46**, 775. Muller, Ber., 1913, 46, 775.

† Corrected for asymmetry. ‡ New compound.

d-orbital effects. Phenyl methyl sulphides have been shown to be near planar.¹⁸ The effect has been previously observed in comparison 10 of the 19F n.m.r. spectra of 2,6-dimethyl-4-fluorothioanisole and 1,3-dimethyl-5-fluorobenzene; in the former the twisted methylthio-group behaves as a weak acceptor.⁴ Similar conclusions have been drawn from dipole moment studies of sterically hindered aryl methyl sulphides.¹³ The pK_a values of phenols with sterically hindered paramethylthio-substituents have been quoted as evidence for *d*-orbital participation.⁴ Consideration of u.v.

It has been previously demonstrated ²⁰ that the i.r. intensities of v_8 bands (v_{16} in Herzberg's notation) of benzenes may be related both to the overall resonance effect of a group and to its ability to accept electrons into its *d*-orbitals. A re-analysis²¹ has established equation (1) for *para*-disubstituted benzenes, where λ is a

$$A = 15,000 \left[\sigma^{\circ}_{\rm R}(1) - \sigma^{\circ}_{\rm R}(2) + \lambda\right] + 170 \quad (1)$$

measure of the electronic interaction additional to that based on additivity of substituent effects.

We have studied the i.r. intensities of the v_8 bands of substituted benzenethiols, methyl phenyl sulphides, and

¹⁸ M. J. Aroney, R. J. W. Le Fèvre, R. K. Pierens, and M. G. N. The, *J. Chem. Soc.* (B), 1971, 1132. ¹⁹ N. H. P. Smith, *Nature*, 1966, **211**, 186; N. H. P. Smith, personal communication of the pK_a of *p*-t-butylthiobenzoic acid; V. Baliah, Sp. Shanmuganathan, and R. Varadachari, *J. Phys. Chem.*, 1957, **61**, 1013.

²⁰ A. R. Katritzky and R. D. Topsom, Angew. Chem. Internat.

Edn., 1970, 9, 87. ²¹ R. T. C. Brownlee, D. G. Cameron, R. D. Topsom, A. R. Katritzky, and A. F. Pozharsky, *J.C.S. Perkin II*, 1974, 247.

1974

t-butyl phenyl sulphides. We also reconsider results for other substituents in order to provide a relative order of *d*-orbital acceptor abilities. We had earlier ²² used an equation of type (1) but with a value of 11,800 instead of 15,000; we therefore also show, as in a preceding paper,²¹ that our previous conclusions are still valid.

EXPERIMENTAL

With the exception of certain phenyl t-butyl sulphides, the compounds were commercial samples or were prepared $(3 \times 25 \text{ ml})$. The combined extracts were washed with dilute aqueous sodium hydroxide (2 g in 30 ml) and water (25 ml), then dried (MgSO₄) and evaporated. The product was distilled to give *t-butyl* m-tolyl sulphide (0·4 g, 20%), as an oil, b.p. 72·5° at 2·3 mmHg (Found: C, 73·2; H, 8·9. C₁₁H₁₆S requires C, 73·2; H, 8·9%). The following were prepared similarly: m-chlorophenyl t-butyl sulphide, oil, b.p. 57—59° at 0·05 mmHg (Found: C, 60·0; H, 6·9; Cl, 17·7. C₁₀H₁₃ClS requires C, 59·9; H, 6·6; Cl, 17·7%); m-fluorophenyl t-butyl sulphide, oil, b.p. 50° at 0·9 mmHg (Found: C, 64·9; H, 7·2. C₁₀H₁₃FS requires C, 65·2; H,

TABLE 2

Physical and spectral properties of benzenethiols and methyl and t-butyl sulphides substituted in the para-position

					1600 -	-1585				
Subst	tituents				cm ⁻¹	band		(A - 170) =		
1	2	M.p. [B.p.](°C)	Lit. m.p. [b.p.] (°C)	$\sigma^{\circ}_{\mathbf{R}}(2)$	$\overline{}_{v}$	εAa	` A ^b	$\left(\frac{15,000}{15,000}\right)$	λ¢	$f_{\mathbf{p}}^{d}$
SH	Me	[48 at 0.1 mmHg]	[195] °	-0.10	1599	3	185	0.03	0.03	0.06
	C1	52-53	53 f	-0.22	1573	1	210	0.05	0.048	0.08
	F	[29—30 at 2·3 mmHg]	[64-65 at 12 mmHg] •	-0.34	1591	115	1140	0.25	0.12	0.27
	OMe	[57—59 at 0.7 mmHg]	[227-229] h	-0.43	1593	120	2370	0.38	0.15	0.39
					1573	56				
SMe	Me	[72 at 3.8 mmHg]	$[104-105 \text{ at } 20 \text{ mmHg}]^{j}$	-0.10	1604	10	295	0·08‡	0.05	0.10
	Cl	[44 at 0.08 mmHg]	$[112 \text{ at } 18 \text{ mmHg}]^{k}$	-0.22	1576	3	290	0·06‡	0.06§	0.04
	SMe	$[83 - 84 \cdot 5]$	[85] '	-0.25	1578	10	305	0·00‡	0	0.00
	\mathbf{F}	[65 at 7.7 mmHg]	[74 at 10 mmHg] ^m	-0.34	1589	60	1120	0.24^{+}_{+}	0.18	0.27
	OMe	[48—49 at 0.07 mmHg]		-0.43	1594	87	2755	0·40‡	0.22	0.40
		25-26	25-26 n		1571	58		•		
	$\rm NMe_2$	[112—114 at 3 mmHg]	[159—160 at 20 mmHg] °	-0.53	1596	240	5120	0.57 ‡	0.28	0.57
	NO ₂	6869	70·5—71·5 P	+0.12	1595	190	6400	0.64^{+}_{+}		
					1583	295				
	COMe	81-82	79—80 g	+0.22	1591	470	4815	$0.56 \ddagger$	0.09	0.58
	SO ₂ Me	9899	98—99 r	+0.01	1581	185	3005	0.43^{+}_{+}	0.12	0.43
SBu^t	Me	[59 at 0.6 mmHg]	$[142 \text{ at } 50 \text{ mmHg}]$ s	-0.10	1596	15	295	0.09	0.04	0.07
	C1	$[92 \text{ at } 1 \cdot 1 \text{ mmHg}]$	[75 at 0.6 mmHg]	-0.22	1571	47	670	0.18	0.02§	0.23
	F	[64—66 at 3·1 mmHg]	+	-0.34	1588	180	2630	0.41	0.14	0.41
	OMe	(77—79 at 0·3 mmHg]	[86 at 0.6 mmHg]'	-0.43	1590	230	4260	0.52	0.17	0.53
					1569	70				
	NO_2	[86—88 at 1·15 mmHg]		0.17	1597	180	2270	0.37		
		37	39 t		1576	77				

³⁹ ¹⁵⁷⁰ ¹⁷⁷ ¹⁵⁷⁰ ¹⁷⁷ ^a Peak extinction coefficient; $\varepsilon_{A} = a_{max}/cl$, where a_{max} , is absorbance at peak maximum, c is concentration in moll⁻¹, l is cell path length in cm. ^b The integrated intensity of the 1600–1585 cm⁻¹ band in l mol⁻¹ cm⁻². ${}^{\diamond} = K_{X}\sigma^{\circ}_{R}D$ where SR is *para* to a donor; $\lambda = K_{A} (\sigma^{+} - \sigma)$ where SR is *para* to an acceptor (see ref. 21). ^d $f_{p} = [\sigma^{\circ}_{R}(1) - \sigma^{\circ}_{R}(2) + \lambda]$. ^e E. Bourgeois, *Rec. Trav. chim.*, 1899, **18**, **426**. ^f H. J. Backer and N. D. Dijkstra, *Rec. Trav. chim.*, 1933, **59**, 701. ^o G. Olah and A. Pavlath, *Acta Chim. Acad. Sci. Hung.*, 1954, **4**, 111. ^h F. Taboury, *Ann. Chim. (France)*, 1908, **15**, 21. ^j H. Gilman and N. J. Beaber, *J. Amer. Chem. Soc.*, 1925, **47**, 1449. ^k H. Lumbroso and G. Dumas, *Bull. Soc. chim. France*, 1955, 651. ⁱ T. Zincke and W. Frohneberg, *Ber.*, 1909, **42**, 2721. ⁿ H. Zahn and H. Zuber, *Chem. Ber.*, 1953, **86**, 172. ⁿ F. G. Bordwell and P. G. Boutan, *J. Amer. Chem. Soc.*, 1957, **79**, 717. ^o Ref. 23. ^p B. J. Lindberg and B. Schroder, *Acta Chem. Scand.*, 1970, **24**, 3089. ^q L. C. King, M. McWhirter, and R. L. Rowland, *J. Amer. Chem. Soc.*, 1948, **70**, 239. ^r H. Burton and P. F. Hu, *J. Chem. Soc.*, 1948, 604. ^s W. Hahn, G.P. 1,110,631/1961 (*Chem. Abs.*, 1966, **64**, 17395).

⁺ New compound. [‡] Corrected for asymmetry. § Also corrected for *d*-orbital interaction with Cl.

by literature methods. Their physical and spectral properties are described in Tables 1 and 2. Their purities were checked by g.l.c., by m.p. determination, and by standard spectroscopic methods. Benzene was dried with sodium wire. Spectroscopic grade carbon tetrachloride was stored over molecular sieves.

The new phenyl t-butyl sulphides were prepared by a standard method, illustrated for t-butyl *m*-tolyl sulphide.

t-Butyl m-*Tolyl* Sulphide.—t-Butyl alcohol (2·4 g) was slowly added to stirred concentrated sulphuric acid (20 ml; 15%) at 0—5°, and the mixture was stirred for 30 min. Toluene-*m*-thiol (1·5 g) was slowly added dropwise over 15 min, and the mixture was maintained between 0 and 5° for 1 h, and then at room temperature for 3 h. It was then poured onto crushed ice (50 g) and extracted with ether

²² P. J. Q. English, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, *J. Amer. Chem. Soc.*, 1968, **90**, 1767.

7.1%); m-methoxyphenyl t-butyl sulphide (the reaction mixture was kept at 0—5° for 3 h and then worked up), oil, b.p. 68° at 0.12 mmHg (Found: C, 67.3; H, 8.3. $C_{11}H_{16}OS$ requires C, 67.3; H, 8.2%); and p-fluorophenyl t-butyl sulphide, oil, b.p. 64—66° at 3.1 mmHg (Found: C, 65.6; H, 7.1. $C_{10}H_{13}FS$ requires C, 65.2; H, 7.1%).

p-NN-Dimethylaminophenyl Methyl Sulphide.—A literature method ²³ gave the title compound, b.p. 112—114° at 3 mmHg (lit.,²³ 159—160° at 20 mmHg) (Found: C, 64·5; H, 8·0; N, 8·6. Calc. for $C_9H_{13}NS$: C, 64·6; H, 7·8; N, 8·4%).

The intensities of the i.r. vibrations were measured as described previously ²⁴ on dilute solutions of compounds in carbon tetrachloride containing 10% benzene. Reproducibilities in $(A - 340)^{\frac{1}{2}}$ or $(A - 170)^{\frac{1}{2}}$ values are ± 1 intensity ²³ H. Gilman and F. J. Webb, J. Amer. Chem. Soc., 1949, **71**, 4062.

4062. ²⁴ R. T. C. Brownlee, A. R. Katritzky, and R. D. Topsom, J. Amer. Chem. Soc., 1966, **88**, 1413.

J.C.S. Perkin II

units for compounds where A is greater than 400 l mol⁻¹ cm⁻² but greater for lower values; in such cases the actual value is also less accurate because of uncertainty in the value of the overtone correction.

RESULTS AND DISCUSSION

Asymmetry.—Compounds of type (I) have intensities made up of contributions in both x and y directions.²²

For the compounds at present considered B = H, Me, or Bu^t. Thiols have not been corrected for asymmetry. The $\sigma^{\circ}_{\mathbf{R}}$ value for SBu^t (0.07) is too small for the asymmetric contribution to be significant; in addition SBu^t is twisted into a non-planar conformation ¹⁷ which will decrease $\sigma^{\circ}_{\mathbf{R}}y$. The $\sigma^{\circ}_{\mathbf{R}}x$ and $\sigma^{\circ}_{\mathbf{R}}y$ values for SMe have been calculated as previously ²² from the intensity of *p*-bis(methylthio)benzene to be ± 0.24 and ± 0.07 , respectively (cf. ± 0.42 and ± 0.06 for ²¹ OMe). Corrections for the intensities of *meta*- and *para*-substituted methyl phenyl sulphides have been applied ^{22, 25} as necessary.

FIGURE 1 Plot of $[(A - 340)/19,000]^{\dagger}$ against $\{[\sigma^{\circ}_{\mathbf{R}}(1)] + [\sigma^{\circ}_{\mathbf{R}}(2)]^2 + \sigma^{\circ}_{\mathbf{R}}(1)\sigma^{\circ}_{\mathbf{R}}(2)\}$ for *meta*-substituted benzenethiols and alkyl phenyl sulphiddes

meta-Disubstituted Benzenes.—Table 1 contains the spectral data for the *meta*-substituted alkyl phenyl sulphides and benzenethiols. Equation (2) has been

developed previously 25 to relate the combined intensity of 1600 and 1585 cm⁻¹ bands of *meta*-disubstituted benzenes to $\sigma^{\circ}_{\rm R}$ terms. Application of this equation to the *meta*-substituted sulphur compounds with an

$$A = 19,000 \ \{ [\sigma^{\circ}_{R}(1)]^{2} + [\sigma^{\circ}_{R}(2)]^{2} + \sigma^{\circ}_{R}(1)\sigma^{\circ}_{R}(2) \} + 340$$
 (2)

asymmetry correction 25 in the case of methyl phenyl sulphides using the previously determined σ°_{R} values

FIGURE 2 Plot of $[(A - 170)/15,000]^{\frac{1}{2}}$ against $[\sigma^{\circ}_{R}(1) - \sigma^{\circ}_{R}(2)]$ for *para*-substituted benzenethiols and alkyl phenyl sulphides

(SH, -0.19; ¹⁶ SMe, -0.25; ¹⁶ SBu^t, -0.07 ¹⁷) gave a good straight line (Figure 1), thus confirming the values adopted.

para-Disubstituted Benzenes.—Table 2 contains the spectral data for the *para*-substituted alkyl phenyl sulphides and benzenethiols. The intensities of the chloro- (290; lit.,²² <50) and fluoro-(methylthio)benzenes (1120; lit.,²² 895) differ from previous values because in the present study the intensity of an overtone at 1640 cm⁻¹ was included in the integration. The intensity of *para*-dimethylamino(methylthio)benzene also differs considerably (5120; lit.,²² 3107). Since the present compound gave good analytical figures and was homogeneous by g.l.c., we conclude that there was an error in the previous calculation or that the previous sample was impure.

Equation (1)²¹ describes the intensities of *para*disubstituted benzenes; $\lambda = 0$ where there is no inter-

²⁵ A. R. Katritzky, M. V. Sinnott, T. T. Tidwell, and R. D. Topsom, *J. Amer. Chem. Soc.*, 1969, **91**, 628.

267

action between substituents. Figure 2 shows a plot of $[(A) - 170)/15,000]^{\frac{1}{2}}$ against $[\sigma^{\circ}_{\rm R}(1) - \sigma^{\circ}_{\rm R}(2)]$ and the line drawn assumes a linear relationship of unit slope. There are significant deviations from this line for the derivatives of all three sulphur substituents. This type of behaviour has been previously ²² observed for benzene

tuents, in comparison to hydrogen, caused the *d*-orbitals to contract in size and drop in energy so as to be more available for bonding.

Relative d-Orbital Acceptor Abilities.—In Table 3 we list the previous published i.r. intensity data and derived σ values for *para*-donor-substituted chlorobenzenes,²²

Resonance	e interactions in <i>pa</i>	ara-disubstituted	benzenes cont	aining one res	sonance-donating s	substituent a	nd one <i>d</i> -orbital
			Acceptor (A	4 in l mol ⁻¹ cm ⁻	-2)		
				(A - 170)	ł		
		$\sigma^{\circ}_{\mathbf{R}}(2)$	A - 170 a	(15,000)	$[\sigma_{\mathbf{R}}(1) - \sigma_{\mathbf{R}}(2)]$	λ°	fp ^d
C1	NMe,	0.54	2780	0.43	0.32	0.12	0.44
	NHMe	0.52	2760	0.43	0.30	0.12	0.42
	ND,	0.47	1850	0.32	0.25	0.10	0.35
	OMễ	0.43	1454	0.31	0.21	0.09	0.30
	F	0.34	440	0.17	0.12	0.07	0.19
	Me	0.10	110	0.09	-0.15	0.02	0.10
Br	NMe.	0.54	3350	0.47	0.31	0.12	0.48
	NHMe	0.52	2970	0.44	0.29	0.17	0.46
	ND,	0.47	2450	0.40	0.24	0.15	0.39
	OMe	0.43	1694	0.34	0.20	0.14	0.34
	F	0.34	630	0.20	0.11	0.11	0.22
	Me	0.10	70	0.07	-0.13	0.03	0.10
I	NMe.	0.54	4610	0.55	0.32	0.23	0.55
	ND.	0.47	3050	0.45	0.25	0.20	0.45
	OMễ	0.43	2294	0.39	0.21	0.18	0.39
	F	0.34	690	0.21	0.12	0.15	0.27
	Me	0.10	0	0.00	-0.15	0.03	0.09
SiMe.	NMe.	0.54	9930 5	0.81	0.56	0.23	0.79
3	OMe	0.43	5830 b	0.62	0.45	0.18	0.63
	F	0.34	3190 *	0.46	0.36	0.12	0.51
	Cl	0.23	1270 0	0.29	0.25	0.10	0.35
	Me	0.10	550 b	0.19	0.12	0.03	0.15

TABLE 3

• From ref. 22 unless otherwise stated. • Ref. 26. • $K_{\mathbf{X}}\sigma^{\circ}_{\mathbf{R}}D$. • $\left[\left[\sigma^{\circ}_{\mathbf{R}}(1) - \sigma^{\circ}_{\mathbf{R}}(2) + \lambda\right]\right]$.

derivatives with strong donors *para* to substituents with available *d*-orbitals, and the correction term λ † has been introduced and analysed in terms of equation (3); K_X is

$$\lambda = K_{\mathbf{X}} \sigma^{\circ}{}_{\mathbf{R}} D \tag{3}$$

an empirical measure of the electron-accepting power of the *d*-orbital substituent determined by plotting Δ ,* obtained from {[(A - 170)/15,000]^{$\frac{1}{2}$} – [$\sigma^{\circ}_{\rm R}(1) - \sigma^{\circ}_{\rm R}(2)$]}, against $\sigma^{\circ}_{\rm R}D$ where *D* refers to an opposing electron donating substituent. Application of this treatment to the data in Table 2 gave $K_{\rm X}$ values of 0.34 ± 0.03 , 0.51 ± 0.02 , and 0.40 ± 0.03 for SH, SMe, and SBu^t, respectively.

The $K_{\rm X}$ values for the SR groups (R = Me or Bu^t) differ much less than their $\sigma^{\circ}_{\rm R}$ values (-0.25 and -0.07 respectively). The ability of the sulphur atom to accept electrons into its vacant *d*-orbitals under the influence of *para*-donor substituents is thus much less affected by rotation of the alkyl sulphur group out of the plane of the benzene ring than the overlap of the sulphur lone-pair orbitals with the π -systems.

The $K_{\rm X}$ value for the SH group (0.34) is smaller than that of the methylthio-substituent (0.51). This is in agreement with the theory of Craig,²⁶ who considered the effects of substituents on sulphur on the availability of *d*-orbitals for bonding. He found that alkyl substibromobenzenes,²² iodobenzenes,²² and trimethylphenylsilanes.²⁶ Use of equations (1) and (3) allows the

calculation of $K_{\mathbf{X}}$ values, and thus of the overall *d*-orbital acceptor abilities as follows:

Group:	SMe	SiMe ₃	I	SBu^t	\mathbf{SH}	Br	Cl
$K_{\mathbf{X}}$	0.51	0.43	0.43	0.40	0.34	0.32	0.22
Range	± 0.02	± 0.04	± 0.05	± 0.04	± 0.04	± 0.02	± 0.01

²⁶ N. C. Cutress, A. R. Katritzky, C. Eaborn, D. R. M. Walton, and R. D. Topsom, J. Organometallic Chem., 1972, 43, 131.

^{*} We use the term λ to denote the calculated correction term and Δ to denote the measured difference between $[(A - 170)/15,000]^{\frac{1}{2}}$ and $[\sigma^{\circ}_{\rm R}(1) - \sigma^{\circ}_{\rm R}(2)]$.

J.C.S. Perkin II

Figure 3 shows the good relation obtained by plotting $[(A - 170)/15,000]^{\frac{1}{2}}$ against $(\sigma^{\circ}_{\rm R}D - \sigma^{\circ}_{\rm R}X + K_{\rm X}\sigma^{\circ}_{\rm R}D)$ for the compounds in Tables 2 and 3. The values for SiMe₃, I, Br, and Cl are all lower than previously reported $(0.62,^{26} 0.55,^{22} 0.42,^{22} \text{ and } 0.32,^{22})$ as a result of the more definite value of the constant in equation (1). The

numerical values provide an albeit approximate quantitative measure of d-orbital acceptance by the substituents.

We thank the S.R.C. for a Research Studentship (to N. C. C.).

[3/1197 Received, 8th June, 1973]