Stereoselective Synthesis of Ethyl (Z)-3-Aryl-2-ethoxyacrylates: Wittig Reaction of Diethyl Oxalate

R. Alan Aitken,* Gail L. Thom

Department of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, Scotland

The Wittig olefination of diethyl oxalate with a variety of arylmethylenetriphenylphosphoranes 1 proceeds readily in tetrahydrofuran at room temperature to give ethyl 3-aryl-2-ethoxyacrylates 2 with a Z/E selectivity of $\geq 10:1$.

Although most esters react with non-stabilized phosphorus ylides by acylation to produce β -oxo ylides, ¹ a few types such as formates, trifluoroacetates and oxalates instead undergo Wittig olefination. A recent comprehensive review on this area² prompts us to report our results on the olefination of diethyl oxalate. Previous studies on this reaction using both non-stabilized³ and stabilized⁴ ylides have been carried out by boiling in solvents such as dioxane, toluene, and xylene, and under these conditions the products were obtained as a mixture of the *Z*- and *E*-isomers of **2**. The alternative approach to **2** by reaction of aromatic aldehydes with ethyl α -ethoxy-(diethylphosphono)acetate also proceeds with low stereoselectivity. ⁵ We now report a convenient synthesis of **2**, which uses milder reaction conditions to produce good Z/E selectivity. The products, ethyl-3-aryl-2-ethoxyacrylates (α -ethoxycinnamates),

Ar PPh₃X BuLi THF, r.t.
$$\frac{12-18 \text{ h}}{21-67^{\circ}/_{\circ}}$$
 Ar CO₂Et OEt $\frac{1}{2}$ $\frac{2}{27-67^{\circ}/_{\circ}}$ Ar $\frac{2}{27-67^{\circ}/_{\circ}}$ Ar $\frac{2}{27-67^{\circ}/_{\circ}}$ Ar $\frac{2}{27-67^{\circ}/_{\circ}}$

1, 2	Ar	1, 2	Ar
a	Plı	f	3,4-(methylenedioxy)C ₆ H ₃
b	4-CH ₃ C ₆ H ₄	g	1-naphthyl
c	4-MeOC ₆ H ₄	ĥ	2-naphthyl
d	4-ClC ₆ H ₄	j	2-thiophenyl
e	2-MeOC ₆ H ₄		-

Table. Compounds 2a-i Prepared

Prod- uct	Reaction Time (h)	Yield (%)	Z/E Ratio	bp (°C)/ mbar	Molecular Formula ^a or Lit. bp(°C)/ mbar	IR (film) v(cm ⁻¹)	¹ H-NMR (CDCl ₃ /TMS) ^b δ , J (Hz)	MS (70 eV) m/z (%)
2a	18	63	15:1	135–137/ 0.07	114-115/ 1.3°.3 C ₁₃ H ₁₆ O ₃ (220.3)	1715	1.36 (t, 6H); 4.01 (q, 2H); 4.29 (q, 2H); 6.97 (s, 1H); 7.1–7.4 (m, 3H); 7.65–7.85 (m, 2H)	220 (M ⁺ , 25); 193 (23); 175 (13); 119 (58); 118 (100)
2b	18	55	15:1	152-155/ 0.03	$C_{14}H_{18}O_3$ (234.3)	1715, 1632, 1610	1.37 (t, 6H); 2.36 (s, 3H); 4.01 (q, 2H); 4.29 (q, 2H); 6.98 (s, 1H); 7.18, 7.70 (AB, 4H, J = 8)	234 (M ⁺ , 70); 149 (10); 133 (32); 132 (100); 121 (18); 105 (66); 104 (70)
2c	12	51	20:1	167–170/ 0.07	$C_{14}H_{18}O_4$ (250.3)	1712, 1630, 1604	1.35 (t, 3H); 1.36 (t, 3H); 3.80 (s, 3H); 3.97 (q, 2H); 4.27 (q, 2H); 6.86, 7.72 (AB, 4H, $J = 9$); 6.94 (s, 1H)	250 (M ⁺ , 65); 234 (30); 193 (22); 148 (66); 136 (57); 135 (100); 132 (60)
2d	18	66	16:1	157-159/ 0.013	C ₁₃ H ₁₅ ClO ₃ (254.7)	1720, 1632, 1590	1.35 (t, 3H); 1.37 (t, 3H); 4.02 (q, 2H); 4.29 (q, 2H); 6.89 (s, 1H); 7.30, 7.70 (AB, 4H, J = 8)	256, 254 (M ⁺ , 26, 80); 154 (70); 152 (100); 141 (21); 139 (22); 125 (60); 124 (62)
2e	12	47	12:1	178-181/ 0.07	$C_{14}H_{18}O_4$ (250.3)	1713, 1630, 1598	1.32 (t, 3H); 1.36 (t, 3H); 3.87 (s, 3H); 3.96 (q, 2H); 4.31 (q, 2H); 6.8–7.4 (m, 3H); 7.45 (s, 1H); 8.19 (m, 1H)	250 (M ⁺ , 50); 193 (7); 165 (11); 148 (100); 133 (27); 121 (37)
2f	18	21	16:1	190–193/ 0.13	C ₁₄ H ₁₆ O ₅ (264.3)	1712, 1630	1.36 (t, 3 H); 1.37 (t, 3 H); 3.99 (q, 2 H); 4.28 (q, 2 H); 5.98 (s, 2 H); 6.78 (half AB, 1 H, J = 8); 6.90 (s, 1 H); 7.13 (half AB of d, 1 H, J = 8, 2); 7.50 (d, 1 H, J = 2)	264 (M ⁴ , 58); 207 (21); 153 (14); 152 (100); 125 (33) 124 (35)
2g	72	65	6:1	186-188/ 0.07	$C_{17}H_{18}O_3$ (270.3)	1712, 1638	1.22 (t, 3H); 1.41 (t, 3H); 3.90 (q, 2H); 4.36 (q, 2H); 7.25–8.25 (m, 8H)	270 (M ⁺ , 10); 168 (100) 167 (67); 165 (62); 153 (95) 152 (58); 142 (98); 141 (97
2h	18	64	10:1	196–200/ 0.13 (mp. 33–35	C ₁₇ H ₁₈ O ₃ (270.3)	1713, 1631, 1592	1.38 (t, 3H); 1.40 (t, 3H); 4.06 (q, 2H); 4.33 (q, 2H); 7.15 (s, 1H); 7.35–7.55 (m, 2H); 7.70–8.05 (m, 4H); 8.21 (m, 1H)	270 (M ⁺ , 70); 185 (7); 168 (100); 157 (7); 139 (100) 129 (7)
2i	18	67	19:1	148-150/ 0.03	C ₁₁ H ₁₄ O ₃ S (226.3)	1710, 1625	1.35 (t, 3H); 1.44 (t, 3H); 4.09 (q, 2H); 4.28 (q, 2H); 7.01 (dd, 1H, <i>J</i> = 6, 4); 7.20–7.45 (m, 3H)	226 (M ⁺ , 36); 169 (12); 125 (23); 124 (100); 113 (14); 97 (50); 96 (85)

^a Satisfactory microanalyses obtained: $C \pm 0.32$, $H \pm 0.33$.

would seem to have considerable synthetic potential, since they can be regarded either as α -ethoxy- α , β -unsaturated esters or as the enol-ethers of 3-arylpyruvic esters.

The reactions were carried out by adding diethyl oxalate (1.04 equiv) to a solution of ylides 1 formed by treatment of the appropriate phosphonium salts with butyllithium in tetrahydrofuran, at room temperature. After the appropriate reaction time a simple extractive workup followed by direct distillation of the organic products afforded the desired esters 2 in moderate to good yield (Table). Of the nine different aryl groups examined, only 1-naphthyl was particularly slow to react requiring 72h to achieve a reasonable yield (this example also gave the poorest Z/E selectivity).

The Z/E ratio was determined in each case both by ¹H-NMR using the integrals of the singlets of the olefinic proton at C-3 ($\delta_z \approx 7$, $\delta_E \approx 6$) and by GC (3% OV101, 220°C). In all cases the Z isomer of 2 predominated and the Z/E ratio was generally between 10:1 and 20:1. The literature report³ of the preparation of 2a in boiling toluene does not mention the Z/E ratio obtained, but in our hands the reaction of diethyl oxalate with 1a, generated using either butyllithium or sodium tert-amyloxide, in boiling toluene for 1 h gave 2a with a Z/E ratio of 6–7:1.

IR spectra were recorded on a Perkin Elmer 1420 spectrophotometer.

¹H-NMR were measured using a Jeol FX-90 spectrometer and mass spectra were recorded on an AEI MS-902 instrument.

Ethyl (Z)-3-Aryl-2-ethoxyacrylates 2; General Procedure:

A suspension of the (arylmethyl)triphenylphosphonium halide (25 mmol) in dry THF (100 mL) is stirred at r. t. under N_2 while a 2.5 M solution of BuLi in hexane (10 mL, 25 mmol) is added by a syringe. After 30 min redistilled diethyl oxalate (3.5 mL, 3.8 g. 26 mmol) is added and the mixture stirred at r. t. under N_2 for 18-72 h. The mixture is then added to water (250 mL) and the product extracted with Et₂O (3×100 mL). The extract is dried (MgSO₄) and evaporated. Kugelrohr distillation of the residue at 0.133 mbar gives the desired esters 2 (Table) as colourless liquids boiling between 150 and 200 °C (oven temperature). Triphenylphosphine oxide remains in the distillation flask.

Received: 14 February 1989; revised: 28 June 1989

- Wittig, G., Schöllkopf, U. Chem. Ber. 1954, 87, 1318.
 Trippett, S., Walker, D.M. J. Chem. Soc. 1961, 1266.
- (2) Murphy, P.J., Brennan, J. Chem. Soc. Rev. 1988, 17, 1.
- Le Corre, M. C.R. Acad. Sci. Ser C 1973, 276, 963.
 Le Corre, M. Bull. Soc. Chim. Fr. 1974, 2005.
- (4) Grell, W., Machleidt, H. Liebigs Ann. Chem. 1966, 693, 134.
- (5) Grell, W., Machleidt, H. Liebigs Ann. Chem. 1966, 699, 53.

b Spectra are reported for the major Z-isomer only, the small singlet for (E)-2 generally appeared at $\delta = \sim 6.0$. For all triplets and quartets J = 7 Hz.

^c Mixture of E- and Z-isomers (ref. 3).