KINETICS OF PRECIPITATION OF FERRIC DIBUTYLPHOSPHATE FROM AQUEOUS HNO₃ SOLUTIONS*

W. DAVIS, Jr., and D. O. RESTER

Oak Ridge National Laboratory, Chemical Technology Division, Oak Ridge, Tennessee

(Received 8 March 1968)

Abstract – The kinetics of the precipitation of iron(III) dibutylphosphate in 1, 3, and 5 M HNO₃ were studied at an initial Fe³⁺ concentration of 231 mg/l. (4·14 mM) and at initial dibutylphosphoric acid (HDBP) concentrations of 3·06 and 1·53 g/l. (14·56 and 7·28 mM). The experimental data on Fe³⁺ concentration (C, moles/l.) were used to obtain the nonlinear parameters of the integrated form of the rate equation

$$dC/dt = -k (C - S_{Fe})^n.$$

This equation is obtained from a more general expression of the form

$$dC/dt = -k'(C - S_{Fe})^{p}(C_{D} - S_{D})^{q}$$

where C_D and S_D are, respectively, instantaneous and final (i.e. its solubility) concentrations of dibutylphosphate, and S_{Fe} is the final (solubility) concentration of Fe^{3+} .

The assumed reaction, $Fe^{3+}+3$ HDBP \Rightarrow Fe (DBP)₃+3H⁺, appears to have a combined order n(=p+q) of approximately 2; the rate constant (k) is of the order of $10^{-3}-10^{-2}$ when time is expressed in minutes. The value of the solubility product increases from about 2×10^{-13} to 2×10^{-12} (moles/l.)⁴ as the nitric acid concentration increases from 1 to 5 M.

INTRODUCTION

SIGNIFICANT quantities of dibutylphosphoric acid (HDBP), monobutylphosphoric acid (H₂MBP) and orthophosphoric acid (H₃PO₄) will be produced in the processing of fast-reactor fuels by extraction with tributyl phosphate (TBP). These quantities will exceed those currently being produced in the processing of thermal reactor fuels because of the higher radiation levels that will be associated with fast reactors. Furthermore, the high burn-ups expected for fuels from these reactors will result in the formation of large quantities of fission products which might precipitate as the ortho, monobutyl, and dibutyl phosphates in the aqueous phase, the TBP phase, or in both phases. Iron corrosion products will also be encountered in fuel processing.

Davis [1] has measured the solubility of iron(III) dibutylphosphate in aqueous nitric acid solutions by agitating suspensions in $Fe(DBP)_3$ for periods as long as forty days. In addition, three kinetic experiments on the system HDBP-HNO₃- Fe^{3+} -H₂O have been reported [2]. It is evident that more information is needed

^{*}Research sponsored by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation.

^{1.} W. Davis, Jr., Solubilities of Uranyl and Iron(III) Dibutyl and Monobutyl Phosphates in TBP Solvent Extraction Solutions, ORNL-3084, April 19 (1961).

Semiannual Report of the Department of Chemistry, November 1965 through May 1966, Centre d'Études Nucléaires, Fontenay-aux-Roses, CEA-N-616, December (1966).

about the conditions under which butyl phosphates precipitate in TBP solvent extraction systems and about the kinetics of such precipitation. The purpose of the work reported here was to study the kinetics of precipitation of $Fe(DBP)_3$ in solutions of 1, 3, and 5 M HNO₃ using tracer methods of analysis. Qualitative observations concerning the precipitation process and the nature of the precipitate are also presented.

EXPERIMENTAL

Procedure

An aqueous solution (50 ml) of HDBP and an aqueous solution (50 ml) of Fe^{3+} in HNO₃ were prepared from stock solutions. Approximately $1-2\mu c$ of ${}^{59}Fe$ tracer (specific activity $1-2\mu c/ml$) was added to the iron solution. The HDBP solution was then poured into the Fe^{3+} solution at reference time t = 0, and 2-ml samples were withdrawn at various times thereafter. The combined solution was mixed well before and after sampling, but generally was not stirred otherwise. Each sample was filtered, and the filtrate was collected in a 1-oz sample bottle (which was subsequently placed in a lead castle for gamma-ray counting). The precipitate was washed with 2 ml of water, and this wash liquid was also collected in the sample bottle. (In nearly all cases, solids formed in this bottle after the filtration process.) This entire operation required about 10-15 sec. Therefore, the sampling process for each sample was started about 5 sec before, and completed about 5 sec after, the desired reaction time. All but one of the experiments were conducted at room temperature ($25 \pm 2^{\circ}C$).

Apparatus

Rapid sample filtration was achieved with Millipore vacuum filtration units connected to a vacuum pump with manifold. A "mixed esters of cellulose" filter paper (Millipore No. HAWG 04700) of 0.45- μ pore size was used. Rapid clogging of the filter was prevented by use of a prefilter (Millipore No. HP 2003500). An automatic pipetting apparatus, set to deliver 2-ml samples, was used to speed up the sampling process. Background and sample activities were determined with a ¹³⁷Cs-standardized scintillation counter employing an Nal detector (3-× 3-in. crystal).

Reagents

Analytical-grade HNO_3 and $Fe(NO_3)_3 \cdot 9H_2O$ were used. A solution containing ${}^{59}Fe^{3+}$ (radiochemical purity, 99.4%) was obtained from Nuclear Science and Engineering Corporation. HDBP (Victor Chemical Company) analyzed as follows:

density at 27·4°C	0·9581 g/ml
m-equiv. HDBP/g	4.290
m-equiv./ml	4.11
mg/m-equiv. HDBP	233.0
theoretical mg/m-equiv. HDBP·H ₂ O	228.2
theoretical mg/m-equiv. HDBP	210.0.

These results are indicative of an approximately 50 mole % H₂O-HDBP solution.

The purity of the HDBP was also determined by an established methylation technique[3]. Subsequent gas chromatographic analysis showed >97 mole % methyl dibutylphosphate, 0.9 mole % dimethyl monobutylphosphate (from H₂MBP), < 0.1 mole % trimethyl phosphate (from H₃PO₄), and ~ 0.9 mole % butanol.

RESULTS AND DISCUSSION

Pertinent data concerning the various experiments are summarized Table 1. Some of the Fe^{3+} concentrations are shown as functions of sampling time in Figs. 1 and 2. Duplicate experiments were conducted, using 1, 3, and 5 M HNO₃, with initial Fe^{3+} concentrations of 231 mg/l. and HDBP concentrations of 3.06 3. C.J. Hardy, J. Chromatogr. 13, 372 (1964).

Experiment number Initial HDBr (gl.1) HNO ₃ of Fe ^{3*} in mumber Concentration (mgl.1) Concentration (mgl.1) Concentration (mgl.1) East-squares parameters! (min) Based on k × 10 ³ Based on settivity activity Fread 306 1-0 1-22 330 1-58 2.03 0.803 3.7 Fe-10 3.06 1-0 1-95 1580 2.78 2.00 0.803 3.7 Fe-10 3.06 1-0 1-95 1538 1-05 2.74 74 Fe-15 3.06 1-0 1-95 1405 157 1-10 40 Fe-15 3.06 1-0 1-95 3.44 1880 6.07 1.76 4.20 6.2 Fe-15 3.06 5-0 3.83 1-05 1.77 1-10 4.0 Fe-15 3.06 1-0 1270 1295 5.47 7.8 Fe-13 1-53 1-0 8.84 1-96 12.95 5.47 7.8 Fe-13 1-				Final measured					Solubility $K_{sp} \times 10^{13}$, (product, moles/l.) ⁴	
Initial HDBP HNO3, initial HDBP of Fe ⁺¹ in (mi) Least-squares parameterst k× 10 ³ last ^w Fe activity measurement (g/L) Initial HDBP (mi) HNO3, k× 10 ³ is a measurement activity measurement (mi) Least-squares parameterst k× 10 ³ last ^w Fe activity measurement activity measurement (mi) Least-squares parameterst k× 10 ³ last ^w Fe activity measurement activity measurement (mi) Least-squares parameterst k× 10 ³ last ^w Fe activity k× 10 ³ last ^w Fe activity k Fe-15 3-06 1-0 1-36 3-45 1405 1-77 1-10 4-0 Fe-15 3-06 5-0 7-60 11270 1-96 1-96 2-37 8-47 7-8 Fe-13 1-53 3-06 5-0 1-96 1-96 2-17 840 ^w 8-6 Fe-13 1-53 1-33 1-36 2-17 840 ^w 1-6				concentration					Based on		
Experiment concentration concentration solutions Final time $x \times 10^3$ $x \times 10^3$ $x \approx 10^3$ activity Fe-9 3.06 1.0 (mgl.1) (mjn) $x \times 10^3$ $x \times 10^3$ $x \approx 10^3$ <		Initial HDBP	HNO ₃	of Fe ³⁺ in		Least-squ	iares par	ameters‡	last ⁵⁹ Fe		
Immber (g/1) (M) (mg/1,1) (min) k × 10 ³ n S ₁ , measurement Fe-10 3.06 1-0 1-22 330 1-58 2-05 0-72 2-4 Fe-10 3.06 1-0 1-95 1580 2-45 2-00 0-88 2-0 Fe-11 3.06 1-0 1-95 1338 11-05 1-77 1-10 4-0 Fe-15 3.06 3.0 2-84 1380 6-07 1-76 4-0 7-8 Fe-15 3.06 5.0 2-64 2895 4-44 1-89 8-07 186 Fe-12 1-53 1-0 84-5 1-405 1-95 5-47 7-8 Fe-13 3.06 5.0 7-60 11270 1-93 195 8-0 2-26 Fe-13 1-53 1-0 84-5 1-445 1-95 2-17 840 Fe-21 1-53 1-96 2-17 8-0	Experiment	concentration	Concentration	solutions	Final time				activity	Based on	
Fe-93.061.01.223.301.582.050.722.4Fe-103.061.01.951.863.002.452.03(0.80)\$3.7Fe-113.061.01.951.882.782.000.882.0Fe-153.061.01.951.33811.051.771.104.0Fe-163.063.02.8413806.071.764.206.2Fe-153.063.02.8413806.071.764.206.2Fe-163.065.07.60112701.951.965.477.8Fe-183.065.07.60112701.931.958.092.2.8Fe-131.531.084.514451.958.092.2.8Fe-131.531.084.514451.958.092.2.8Fe-211.531.084.512301.958.092.2.8Fe-231.531.084.512301.958.40Fe-241.535.0109015308.501.161.165Fe-231.531.935.0109015303.61.1651.165Fe-241.535.0109015303.61.1651.1651.165Fe-241.535.0109015303.61.1653.63.78Fe-241.535.0109015303.86 <th>number</th> <th>(g/l.)</th> <th>(M)</th> <th>(mg/l.†)</th> <th>(min)</th> <th>$k \times 10^3$</th> <th>и</th> <th>\mathbf{S}_{Fc}</th> <th>measurement</th> <th>Sre</th>	number	(g/l.)	(M)	(mg/l.†)	(min)	$k \times 10^3$	и	\mathbf{S}_{Fc}	measurement	Sre	
Fe-10 3:06 1:0 1:86 300 2.45 2.03 0.808 3.7 Fe-11 3:06 1:0 1:05 1:38 11:05 1:77 1:10 40 Fe-15 3:06 1:0 1:95 1338 11:05 1:77 1:10 40 Fe-16 3:06 5:0 3:45 1405 1:96 1:95 5:47 7:8 Fe-16 3:06 5:0 7:60 11270 1:95 5:47 7:8 Fe-12 1:53 1:0 84:5 1145 1:95 8:69 22:8 Fe-12 1:53 1:0 84:5 1445 1:96 2:17 8:0 8:69 25:8 Fe-13 1:53 3:0 0:09:0 13:95 1:96 2:16 3:6 2:17 8:40 1:8:6 Fe-20 1:53 3:0 0:09:0 1:395 1:96 2:17 8:40 1:4:3 Fe-21 1:53	Fe-9	3.06	1-0	1.22	330	1.58	2-05	0-72	2.4	1.4	
Fe-11 3.06 1-0 1-05 1680 2.78 2.00 0.88 2.0 Fee-15 3.06 1-0 1-95 1338 11-05 1-77 1-10 4-0 Fee-15 3.06 3.06 3.0 2.84 1380 6.07 1.76 4.20 6.2 Fe-16 3.06 5.0 3.45 1405 1.96 1.95 5.47 7.8 Fe-18 3.06 5.0 6.64 2895 4.44 1.89 8.07 18.6 Fe-13 1.53 1.0 8.45 1445 12.3 1.70 849 12.3 Fe-13 1.53 3.0 102.0 1336 10.41 18.6 8.07 18.6 Fe-13 1.53 3.0 109.0 1335 15.0 16.3 Fe-20 1.53 3.0 109.0 1336 16.7 10.53 Fe-21 1.53	Fe-10	3-06	1.0	1-86	300	2.45	2·03	§(08·0)	3.7		
Fe-19 3:06 10 1:95 1338 11:05 1:77 1:10 4:0 Fe-15 3:06 3:0 3:45 1380 6:07 1:76 4:20 6:2 Fe-16 3:06 3:0 3:45 1405 1:96 1:95 5:47 7:8 Fe-16 3:06 5:0 7:60 11:270 1:96 1:95 5:47 7:8 Fe-12 1:53 3:06 5:0 7:60 11:270 1:95 8:69 22:8 Fe-12 1:53 1:0 84:5 1324 12:3 1:70 (84-0) ¹ Fe-13 1:53 3:0 100 84:5 1324 1:96 2:17 84:0 Fe-21 1:53 3:0 100:0 1395 15:0 1:51 84:0 Fe-23 1:53 3:0 109:0 1395 1:56 1:14:3 1:14:3 Fe-24 1:53 3:6 1:020 1395 1:50 1:14:3 1:02 1:03 1:04 1:14:3 Fe-23 1:53 <td>Fe-11</td> <td>3-06</td> <td>1.0</td> <td>1.05</td> <td>1680</td> <td>2-78</td> <td>2.00</td> <td>0·88</td> <td>2.0</td> <td>1.7</td>	Fe-11	3-06	1.0	1.05	1680	2-78	2.00	0·88	2.0	1.7	
Fe-15 3-06 3-0 2-84 1380 6-07 1-76 4-20 6-2 Fe-16 3-06 3-0 3-45 1405 1-96 1-95 5-47 7-8 Fe-18 3-06 5-0 7-60 11270 1-95 8-69 22-8 Fe-12 1-53 1-0 83-4 1324 12-3 1-70 84-0 Fe-13 1-53 1-0 83-4 1324 12-3 1-70 84-0 Fe-13 1-53 3-0 100-0 1324 12-3 1-70 84-0 Fe-13 1-53 3-0 100-0 1324 12-3 1-70 84-0 Fe-13 1-53 3-0 100-0 1324 12-3 1-96 2-17 84-0 Fe-24 1-53 3-0 100-0 1530 38-6 1-94 114-3 Fe-24 1-53 5-0 109-0 1530 38-6 2-14 2-26 5-0	Fe-19	3.06	1-0	1.95	1338	11.05	1.77	1.10	4-0	2.1	
Fe-16 3.06 3.0 3.45 1405 1.96 1.95 5.47 7.8 Fe-18 3.06 5.0 6.64 2895 4.44 189 8.07 18.6 Fe-12 1.53 1.0 83.4 1324 1.93 1.95 8.69 22.8 Fe-12 1.53 1.0 83.4 1324 1.96 2.17 84.0 ¹¹ Fe-13 1.53 1.0 84.5 1445 1.96 2.17 84.0 ¹¹ Fe-13 1.53 3.0 109.0 1395 15.0 1.51 84.0 ¹¹ Fe-20 1.53 3.0 109.7 86.5 24.3 1.51 105.3 Fe-23 1.53 5.0 109.7 86.5 24.3 1.59 116.2 Fe-23 1.53 5.0 109.7 86.8 2.44 2.26 5.0 Fe-23 1.53 2.6 109.7 86.8 2.43 1.510.2 1.62 3.6 <td>Fe.15</td> <td>3-06</td> <td>3.0</td> <td>2.84</td> <td>1380</td> <td>6.07</td> <td>1.76</td> <td>4.20</td> <td>6.2</td> <td>10.1</td>	Fe.15	3-06	3.0	2.84	1380	6.07	1.76	4.20	6.2	10.1	
Fe-18 3.06 5.0 6.64 2895 4.44 1.89 8.07 18.6 Fe-22 3.06 5.0 7.60 11270 1-93 1.95 8.69 22.8 Fe-12 1.53 1.0 83.4 1324 12.3 1.70 (84.0) ¹ Fe-13 1.53 3.0 100 84.5 1324 12.5 105.3 Fe-20 1.53 3.0 100-0 1395 15.0 151 84.0 ¹ Fe-21 1.53 3.0 109-0 1395 15.0 151 105.3 Fe-23 1.53 3.0 109-0 1530 38.6 104 114.3 Fe-24 1.53 5.0 109-0 1530 38.6 1.04 116.2 Fe-23 1.53 5.0 109-0 1530 38.6 1.16.2 36.3 Fe-24 1.53 5.0 108-0 4218 93.8 1.15 1 Fe-23	Fe-16	3-06	3.0	3.45	1405	1.96	1-95	5.47	7.8	14·2	
Fe-12 3.06 5.0 7.60 11270 1.93 1.95 8.69 22.8 Fe-12 1.53 1.0 84.5 1324 12.3 1.70 (84.0) ¹¹ Fe-13 1.53 1.0 84.5 1324 12.3 1.70 (84.0) ¹¹ Fe-13 1.53 1.0 84.5 1395 15.0 1.51 84.0 Fe-20 1.53 3.0 109.0 1395 15.0 1.51 84.0 Fe-21 1.53 3.0 109.0 1395 15.0 1.51 84.0 Fe-23 1.53 3.0 109.0 1530 38.6 1.04 114.3 Fe-24 1.53 5.0 109.7 8658 24.3 1.59 110.2 Fe-24 1.53 5.0 108.0 4218 93.8 1.15 110.2 Fe-24 1.53 5.0 108.0 4218 93.8 1.15 110.2 Fontenayaux- <	Ea 19	3.06	5.0	6.64	2895	4.44	1.89	8-07	18.6	24.8	
Fe-12 1:53 1:0 83:4 1324 12:3 1.70 (84:0) ^{II} Fe-13 1:53 1:0 84:5 1445 1:96 2:17 84:0 Fe-20 1:53 3:0 100:0 1395 15:0 1:51 105:3 Fe-21 1:53 3:0 109:0 1395 15:0 1:51 84:0 Fe-23 1:53 3:0 109:0 1393 86.5 1:04 114:3 Fe-23 1:53 3:0 109:7 8658 24:3 1:5 110:2 Fe-24 1:53 5:0 108:0 4218 93:8 1:15 110:2 Fe-23 1:53 5:0 108:0 4218 93:8 1:15 110:2 Fe-24 1:53 5:0 108:0 4218 93:8 1:04 12:1 Fontenay-aux- 3 2 103:0 2:03 2:03 2:05 2:0 Fontenay-aux- 3 2:3 10:5 2:03 1:250 2:03 1:0:8 2:0 <th< td=""><td>Fe-22</td><td>3.06</td><td>5.0</td><td>7-60</td><td>11270</td><td>1-93</td><td>1.95</td><td>8-69</td><td>22.8</td><td>27.7</td></th<>	Fe-22	3.06	5.0	7-60	11270	1-93	1.95	8-69	22.8	27.7	
Fe-121:531:083-4132412:31:70(84-0) ^{ll} Fe-131:531:084-514451:962:1784-0Fe-201:533:0100-013951:962:1784-0Fe-211:533:0100-0153038-61:04114-3Fe-231:535:0109-7865824-31:59115-1Fe-241:535:0108-0421893-81:10-2Fe-241:535:0108-0421893-81:10-2Fe-24313:112502:092:142:26Fontenay-aux-313:112503:381:9410.8Fontenay-aux-33:6:312502:092:142:265:0Toses (Ref. [21)33:6:312:502:092:142:265:0210:512502:092:142:265:020 sous (Ref. [21)33:6:312:502:092:142:265:020 source3:36:31:2502:092:142:265:02:032:033:6:82:78*In all of our experiments the initial Fe st concentration was 231 mg/L; in the Fontenay-aux-Roses experiments[2]. it was 2302:00 mg/L*50*2:00 mg/L*50*2:00 mg/L230 mg/L*B* contring.*S* was fixed doccause of poor data) at the value calculated for experiment*50**50*1:08* <td colspa<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>i</td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i</td> <td></td> <td></td> <td></td>							i			
Fe-131:531:084:514451:962:1784:0Fe-201:533:0102:0139515:01:51105:3Fe-211:533:0109:0153038:61:04114:3Fe-231:535:0109:7865824:31:59115:1Fe-241:535:0109:7865824:31:59115:1Fe-241:535:0109:0421893:81:15110:2Fe-241:535:0109:02:1893:81:15110:2Fe-241:535:0109:02:1893:81:15110:2Fe-241:535:0109:02:1893:81:16:293:82:16Fontenay-aux-313:112502:092:142:265:0Fontenay-aux-3210:512503:381:9410:828:7Roses (Ref. [21)333:31:2502:031:2836:828:7230 mg/l.85.e. was fixed at 0.80.3:01:2502:031:2836:823:7FBy y-ray counting.85.e. was fixed at 0.80.85.e. was fixed the cause of poor data) at the value calculated for experiments21:01:2836:8FBy y-ray counting.85.e. was fixed the cause of poor data) at the value calculated for experiment	Fe-12	1.53	1.0	83-4	1324	12.3	1.70	(84-0)			
Fe-20 1·53 3.0 102·0 1395 15·0 1·51 105·3 Fe-21 1·53 3.0 109·0 1530 38·6 1·04 114·3 Fe-23 1·53 5·0 109·7 8658 24·3 1·59 115·1 Fe-24 1·53 5·0 109·7 8658 24·3 1·59 115·1 Fe-24 1·53 5·0 108·0 4218 93·8 1·59 110·2 Fontenay-aux- 3 1 3·1 1250 2·09 2·14 2·26 5·0 Fontenay-aux- 3 2 10·5 1250 3·3 1·94 10·8 28·7 Roses (Ref. [21) 3 3·3 1/250 2·0·30 1·28 36·8 5·0 *In all of our experiments the initial Fe ^{st+} concentration was 231 mg/L; in the Fontenay-aux-Roses experiments[2], it was 230 *By y-ray counting. §S _{te} was fixed at 0·80. So on data) at the value calculated for experiments[2], it was 230	Fe-13	1.53	1-0	84-5	1445	1-96	2.17	84.0			
Fe-21 1.53 3.0 109.0 1530 38.6 1.04 114.3 Fe-21 1.53 5.0 109.7 8658 24.3 1.59 115.1 Fe-24 1.53 5.0 108.0 4218 93.8 1.15 110.2 Fe-24 1.53 5.0 108.0 4218 93.8 1.15 110.2 Fontenay-aux- 3 1 3.1 1250 2.09 2.14 2.26 5.0 Roses (Ref. [21) 3 2 10.5 1250 3.38 19.4 10.8 28.7 *In all of our experiments the initial Fe ³⁺ concentration was 231 mg/L; in the Fontenay-aux-Roses experiments[2], it was 230 230 mg/L. \$57.8 *By y-ray counting. \$58.4 was fixed at 0.80. \$50.30 rdata) at the value calculated for experiments[2], it was 230	Ec 30	1.53	0-£	102-0	1395	15-0	1.51	105-3			
Fe-21 1:35 5:0 109:7 8658 24:3 1:59 115:1 Fe-23 1:53 5:0 109:7 8658 24:3 1:5 110:2 Fe-24 1:53 5:0 108:0 4218 93:8 1:15 110:2 Fontenay-aux- $\frac{3}{3}$ 1 $3:1$ 1250 $2:09$ $2:14$ $2:26$ $5:0$ Roses (Ref. [21) $\frac{3}{3}$ 2 $10:5$ 1250 $2:030$ $1:28$ $36:3$ $57:8$ *In all of our experiments the initial Fe ^{st+} concentration was 231 mg/l.: in the Fontenay-aux-Roses experiments [2]. it was 230 $230 mg/l.$ $57:8$ $57:8$ $57:8$ *By y-ray counting. $8S_{Fe}$ was fixed at 0.80. $8S_{Fe}$ was fixed for experiments $S_{21} mg/l.$ $8S_{Fe} was fixed for experiments on in me/l. S_{20} was fixed for experiments S_{21} was 230 $	Le-20			0.001	1530	38.6	1.04	114-3			
Fe-23 1.53 5.0 109.7 8658 24.3 1.59 115.1 Fe-24 1.53 5.0 108.0 4218 93.8 1.15 110.2 Fontenay-aux- 3 1 3.1 1250 2.09 2.14 2.26 5.0 Fontenay-aux- 3 2 10.5 1250 2.09 2.14 2.26 5.0 Roses (Ref. [21) 3 3.5 10.5 1250 2.030 1.28 36.8 57.8 *In all of our experiments the initial Fe ³⁺ concentration was 231 mg/l.: in the Fontenay-aux-Roses experiments [2]. it was 230 $230 mg/l.$ 85_{re} was fixed at 0.80.*By y-ray counting. 85_{re} was fixed (because of poor data) at the value calculated for experiment the initial Fe ³⁺ concentration in me/l. 85_{re} was fixed (because of poor data) at the value calculated for experiment	Fe-21	٤¢٠I	0.6	0.601	Nec I	2					
Fe-24 1.53 5.0 108.0 4218 93.8 1.15 110.2 Fontenay-aux- 3 1 3.1 1250 2.09 2.14 2.26 5.0 Fontenay-aux- 3 2 10.5 1250 2.09 2.14 2.26 5.0 Roses (Ref. [21) 3 3 36.3 1250 20.30 1.28 36.8 57.8 *In all of our experiments the initial Fe ^{st+} concentration was 231 mg/L; in the Fontenay-aux-Roses experiments[2], it was 230 230 mg/L. $8S_{re}$ was fixed at 0.80. fby y-ray counting. $8S_{re}$ was fixed to ecause of poor data) at the value calculated for experiments the initial for experiments in me/L . $8S_{re}$ was fixed (because of poor data) at the value calculated for experiments in me/L .	Fe-23	1.53	5.0	109.7	8658	24.3	1-59	115-1			
Fontenay-aux- Boses (Ref. [2]) 3 3 $13 3 \cdot 110 \cdot 5 12501250 2 \cdot 043 \cdot 38 1 \cdot 9410 \cdot 8 28 \cdot 728 \cdot 7 Roses (Ref. [2]) 3 3 \cdot 3 1 \cdot 26 5 \cdot 0 28 \cdot 7 8 \cdot 57 \cdot 8 36 \cdot 3 1250 20 \cdot 30 1 \cdot 28 36 \cdot 8 57 \cdot 8 * 1 n all of our experiments the initial Fe3+ concentration was 231 mg/L; in the Fontenay-aux-Roses experiments [2], it was 230 230 \text{ mg/L}. 85_{\text{re}} was fixed at 0 \cdot 80. * 1 \text{ main. } 1 ma$	Fe-24	1.53	5-0	108-0	4218	93·8	1.15	110-2			
Fontenay-aux-310.512503.381.9410.828.7Roses (Ref. [2])3336.310.5125030.301.2836.857.8*In all of our experiments the initial Fe ³⁺ concentration was 231 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 23020.30 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 23020.30 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 230*In all of our experiments the initial Fe ³⁺ concentration was 231 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 23085 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 230*By y-ray counting.85 mg/l.85 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 230*Time in mill.85 mg/l.85 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 230		"	-	3.1	1250	2.09	2·14	2.26	5.0		
Roses (Ref. [21) 3 36.3 1250 20.30 1.28 36.8 57.8 *In all of our experiments the initial Fe ³⁺ concentration was 231 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 230 20.30 1.28 36.8 57.8 230 mg/l. *In all of our experiments the initial Fe ³⁺ concentration was 231 mg/l.; in the Fontenay-aux-Roses experiments[2], it was 230 230 mg/l. \$5.4 was fixed at 0.80. fBy y-ray counting. \$5.4 was fixed at 0.80. \$5.4 was fixed (because of poor data) at the value calculated for experiment + rime in min. \$5.0 was fixed (because of poor data) at the value calculated for experiment	Fontenay-au	۲- ۲	- (10.5	1250	3.38	1-94	10·8	28.7		
 *In all of our experiments the initial Fe³⁺ concentration was 231 mg/L; in the Fontenay-aux-Roses experiments[2], it was 230 230 mg/L. *By y-ray counting. *S_{Fe} was fixed at 0.80. *Time in min. Fe³⁺ concentration in mg/L. 	Roses (Ref.	[2]) 3	1 ო	36.3	1250	20.30	1-28	36.8	57.8		
*By γ-ray counting. §S _{Pe} was fixed at 0.80. *Time in min. Fra ³⁺ concentration in mg/l. *S _{Pe} , was fixed (because of poor data) at the value calculated for experimentation in mg/l.	*In all of our e; 230 mg/l.	kperiments the in	nitial Fe ³⁺ concent	tration was 231 m	g/l.; in the Fon	itenay-aux-l	koses ex	periments	i[2], it was 230	mg/l.	
$\frac{1}{1}$ $\frac{1}$	+By wray conn	tina		8See was fixed	d at 0-80.						
	Time in min: I	umg. ⁵ e ³⁺ concentrativ	on in mg/l.	Spe was fixed	l (because of po	oor data) at 1	the value	e calculate	d for experime	nt 13.	

Kinetics of precipitation of ferric dibutylphosphate

and 1.53 g/l. In each case white Fe(DBP)₃ particles (particle size, 0.1-0.5 mm) formed rapidly (1-5 min after contact) on the surface of the solution. The initial precipitation was followed by the slow formation of a milky dispersion, which began to settle after 2-3 hr.

Fig. 1. The residual concentration of dissolved Fe^{3+} decreases as iron precipitates as $Fe(DBP)_3$. Each curve is calculated from Equation 8 and parameters of Table 1. Initial conditions: 231 mg $Fe^{3+}/l.$; 3.06 g HDBP/l.; 1 M HNO₃. \bullet – Our data. \bigcirc – Data from[2].

Several trends are readily observable from Table 1. When the HDBP concentration is initially 3.06 g/l., the final concentration of Fe^{3+} in solution increases from ~ 1 mg/l. to ~ 7 mg/l. as the HNO₃ concentration increases from 1 to 5 M. When the initial concentration of HDBP is reduced from 3.06 to 1.53 g/l. (compare Figs. 1 and 2), the final Fe^{3+} concentration (that is, the solubility) increases from ~ 84 mg/l. in 1 M HNO₃ to ~ 110 mg/l. in 5 M HNO₃. Davis[1] has reported a similar increase in the solubility of $Fe(DBP)_3$ as the HNO₃ concentration increases.

Experiment Fe-19 was conducted with constant stirring. The rate of reaction was somewhat higher than that of the corresponding static test, but there was a 4.5° C temperature increase (above room temperature) due to the heating effect

Fig. 2. The residual concentration of dissolved Fe³⁺ decreases as iron precipitates as Fe(DBP)₃. The final Fe³⁺ concentration increases as the HNO₃ concentration increases. Each curve is calculated from Equation 8 and the parameters of Table 1. Initial conditions: 231 mg Fe³⁺/l.; 1.53 g HDBP/l.

of the magnetic stirrer. The effect of temperature on the reaction rate may be important; to date, however, it has not been investigated further.

Kinetics of precipitation of $Fe(DBP)_3$

Data on the Fe³⁺ concentration versus time were used to obtain a preliminary description of the kinetics of the precipitation of Fe(DBP)₃ in 1-5 M HNO₃ solutions.

The model we used is given by the equation:

$$\frac{\mathrm{dC}}{\mathrm{dt}} = -\mathbf{k}'(\mathbf{C} - \mathbf{S}_{\mathrm{Fe}})^p \ (\mathbf{C}_{\mathrm{D}} - \mathbf{S}_{\mathrm{D}})^q,\tag{1}$$

where C°, C, and S_{Fe} are the initial, instantaneous, and final (solubility) concentrations of Fe^{3+} , respectively, and C_D° , C_D , and S_D are the corresponding values for HDBP. The exponents p and q are the kinetic orders with respect to the degrees of supersaturation of the solution with regard to Fe^{3+} and DBP^- . From the stoichiometry of the reaction

 $Fe^{3+} + 3DBP^{-} \rightleftharpoons Fe(DBP)_{3},$ (2)

we find that

$$C_{\rm D}^{\circ} - C_{\rm D} = 3(C^{\circ} - C)$$
 (3)

and

$$C_{\rm D}^{\circ} - S_{\rm D} = 3(C^{\circ} - S_{\rm Fe}).$$
 (4)

By subtracting Equation (3) from Equation (4), we obtain:

$$C_{\rm D} - S_{\rm D} = 3(C - C_{\rm Fe}), \qquad (5)$$

which, on substitution into Equation (1), yields the simpler equation

$$\frac{dC}{dt} = -k' (3)^{q} (C - S_{Fe})^{p+q} = -k (C - S_{Fe})^{n}, \qquad (6)$$

where

Thus the two rate orders, p and q, of the present kinetic model cannot be determined separately; only their sum can be determined.

Integration of Equation (6) gives the following results:

$$\frac{1}{(C-S_{Fe})^{n-1}} - \frac{1}{(C^{\circ}-S_{Fe})^{n-1}} = (n-1) \text{ kt}$$
(7)

or

$$C = S_{Fe} + [(C^{\circ} - S_{Fe})^{-n+1} + (n-1) kt]^{-1/(n-1)}.$$
 (8)

Equation (8) was used in a least-squares analysis of the various experiments. In this analysis the initial Fe^{3+} concentration (C°) was fixed at 231 mg/l., a more accurate value (based on chemical analysis) than we expected to obtain for S_{Fe} , k, or *n*. Table 1 lists the calculated values of these three constants. This table also contains a summary of our calculations of the same constants for data reported from Fontenay-aux-Roses[2].

The present study was not extensive enough to allow us to draw more than a few firm conclusions. One is that Equations (1) through (8 satisfactorily describe our data within the known experimental uncertainties; they also describe the Fontenay-aux-Roses[2] (FAR) data with standard deviations of 0.8, 1.5, and 5.7 mg Fe³⁺/l. for the experiments using 1, 2 and 3 M HNO₃, respectively. Furthermore, a consistent set of values of k, n, and S_{Fe} is obtained for our experiments, as well as for those at FAR in which the initial concentration of HDBP was $\sim 3 \text{ g/1}$. This concentration corresponds to only a small excess of Fe³⁺ over the stoichiometric value. Less reproducibility in calculated parameters was obtained when the initial HDBP concentration was only 1.53 g/l., which is somewhat less than half the stoichiometric quantity for reaction with all the Fe³⁺ present. Finally, although k and n were treated as independent variables, the nonlinear correlation coefficient showed a strong correlation between k and n for both our data and those from FAR. The reason for this inverse relationship (which may be seen in Table 1) is not known, but the rapid initial rate of precipitation and the associated precipitation in the sampling pipette may make an important contribution both to this correlation and to the variation in these calculated parameters from one experiment to another.

While Equations (1) through (8) describe our and the FAR data within reasonable limits, we emphasize that these equations are not meant to imply a *mechanism* as simple as

$$Fe^{3+}+3 HDBP \rightleftharpoons Fe(DBP)_3+3H^+$$
.

We have not proved the stoichiometry to correspond to $Fe(DBP)_3$, although in a previous report[1] we described the preparation of a white (as in the present study) ferric dibutylphosphate whose composition was found by analyses to be quite close to that for $Fe(DBP)_3$.

Within the uncertainties posed by the factors mentioned above, the rate of precipitation is approximately proportional to the square of the instantaneous degree of supersaturation $[(C - S_{Fe})^2]$ with respect to iron when the initial HDBP concentration is 3.06 (or 3) g/l. and the initial Fe³⁺ concentration in 1–5 M HNO₃ solutions is 231 (or 230) mg/l. At the lower HDBP concentration (1.53 g/l.), neither the rate nor the order is as well defined, although the order is probably nearer 1.5 than 2.

Solubility product

Solubility products calculated from the data in Table 1 are presented in Fig. 3. These include values based on the final ⁵⁹Fe measurement, those based on S_{Fe} from the least-squares analysis of Equation (8), and values calculated from the data previously reported[1]. There is considerable scatter, but it is apparent that the data previously presented for solubilities of Fe(DBP)₃ in 1 and 3 M HNO₃ solutions are in good agreement with the more extensive data of the present study. Obviously, the solubility products calculated from the FAR data exceed our values by a factor of about 3–4. In terms of the solubility of Fe(DBP)₃, the FAR data are 30–40% higher than ours, however, we consider this agreement to be quite satisfactory.

SUMMARY AND CONCLUSIONS

This study of the kinetics of precipitation of $Fe(DBP)_3$ from aqueous nitric acid solutions and the rather good degree of reproducibility show that the experimental techniques are satisfactory and that they should apply to other precipitation systems. In each experiment the initial concentration of Fe^{3+} was 231 mg/l. while that of HDBP was either 3.06 or 1.53 g/l. At the higher HDBP concentration the rate of precipitation of $Fe(DBP)_3$ from 1 to 5 M HNO₃ solutions is approximately second order with respect to the instantaneous degree of supersaturation of the solution with regard to Fe^{3+} ; at the lower HDBP concentration the order may be more nearly 1.5. The dependence of the precipitation

Fig. 3. The solubility product of $Fe(DBP)_3$ in aqueous HNO_3 solutions increases as the HNO_3 concentration increases.

rate on HDBP concentration has not been determined since the individual exponents, p and q of Equation (1), enter the mathematical analysis only as a sum.

Solubility values and solubility products, which are based either on the last measurement of ⁵⁹Fe gamma-ray activity (5–190 hr after mixing Fe³⁺ and DBP⁻ solutions) or on an extrapolation of a kinetic equation are in good agreement with data previously presented [1]. We find satisfactory agreement between our results and those reported from the Fontenay-aux-Roses laboratory [2].