Reactions of 2-(Tributylstannyl)-4,4-dimethyl-2-oxazoline with Organic Halides. Unusual Product from Aroyl Halide

Masanori KOSUGI,* Akio FUKIAGE, Mitsuhiro TAKAYANAGI, Hiroshi SANO, Toshihiko MIGITA, and Mitsuo SATOH Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376

2-(Tributylstannyl)-4,4-dimethyl-2-oxazoline (1) reacted with aroyl chloride smoothly without any palladium catalyst to give the unusual product, bis(N-aroyl-4,4-dimethyl-2-oxazolinylidene) in good yields. The reaction of 1 with other types of halide needed a palladium catalyst, and gave the corresponding 2-substituted-4,4-dimethyl-2-oxazoline in good yields.

Oxazoline is an important synthetic intermediate which is easily converted into carboxylic acid, ketone, nitrile etc.¹⁾ Recently, 2-(trimethylstannyl)-4,4-dimethyl-2-oxazoline was reported to react with aryl bromides in the presence of a catalytic amount of tetrakis(triphenylphosphine)palladium giving the corresponding 2-aryl-4,4-dimethyl-2-oxazoline in good yields.²⁾ From the view of our series of investigation about the palladium-catalyzed reactions of organo-tin reagents, this behavior of stannyl oxazoline is interesting, because C-stannyl imines except stannyl aromatics such as 2-stannyl-benzoxazole, -thiazole, and -imidazole have been found not to react with organic halides.³⁾

So we clarify the scope and limitation of the coupling reaction of 2-(tributylstannyl)-4,4-dimethyl-2-oxazoline (1) with various types of halide,

$$Bu_{3}Sn \swarrow_{O}^{N} \downarrow^{+} RX \xrightarrow{[Pd]} R \swarrow_{O}^{N} \downarrow^{+} Bu_{3}SnX$$

and found that the unusual reaction took place with aroyl halide.

As shown in Table 1, the reaction of 1 with aroyl chloride which was carried out being expected to form the α -keto acid equivalents, proceeded smoothly without a catalyst to give the crystalline product in good yields. The result of elemental analysis of the crystal was consistent with that of the expected 2-benzoyl-4,4-dimethyl- 2-oxazoline. Its ¹H NMR spectra, however, showed the signal of methylene proton at 3.00 ppm which was different from that of the ordinary oxazoline (3.8-3.9 ppm). MS spectra showed that the molecular weight of the product corresponded to a dimer of the expected compound. A single crystal X-ray analysis showed the molecular structure being bis(Nbenzoyl-4,4-di-methyl-2-oxazolinylidene) (2-A) (Fig. 1). Such type of the product was so far reported to be formed from the reaction with 2-trimethylstannylbenzothiazole with acetyl chloride only in low yields, and not with 2trimethylstannylbenzoxazole.⁴)

Table 1. Reaction of 1 with Acid Chloride						
2 1 + 2	2 ArCOCl in	.t. hexane		$\frac{1}{2}$ + 2 Bu ₃ SnCl		
Ar- Yi	eld of 2 ^{a)} /%	Mp/°C	MS: M ⁺	$\frac{2}{1}$ H NMR δ		
Ph-	84, 2-A	302-303	406	1.36(s,6H), 3.00(s,2H),		
				7.20-7.78(m,5H)		
p-MeC ₆ H ₄ -	75, 2-в	286-287	434	1.34(s,6H), 2.40(s,3H),		
				3.30(s,2H), 6.98-7.70(m,4H)		
p-MeOC ₆ H ₄ -	73, 2-C	251-253	466	1.40(s,6H), 3.17(s,2H),		
				3.90(s,3H), 6.80-7.83(m,4H)		
p-ClC ₆ H ₄ -	82, 2-D	297-298	474	1.41(s,6H), 3.20(s,2H),		
				7.16-7.72(m,4H)		
p-NO ₂ C ₆ H ₄ -	85, <u>2</u> -Е	297-298	496	b)		
	76, 2-F	280-282	418	1.41(s,6H), 3.40(s,2H),		
s s s				6.82-7.88(m,3H)		
cyclo-C ₆ H ₁₁ -	17, 2-G	195-196	418	0.72-2.10(m,16H), 2.31-2.82		
	-			(m,1H), 3.71(s,2H)		

a) Elemental analyses gave satisfactory results.⁵) b) Insoluble in CDCl₃.

It should be noted here again that $2 \\ \sim 2 \\ \sim$

Fig.1. Computer-generating drawing of 2-A as determined by X-ray crystallographic analysis.⁶)

The reaction of 1 with other types of organic halide needed a palladium catalyst like the reaction with aryl bromide reported by Dondori et al.,²) but the most effective catalyst was dichloro-bis(triphenylphosphine)palladium in place of tetrakis(triphenylphosphine)palladium as shown in Table 2.

Table 2. Palladium-Catalyzed Reaction of 1 with Other Type of Halides

RX	[Pd](mol%)	Isolated yield of 3/%
PhBr	Pd(PPh ₃) ₄ (1)	(25)a)
PhBr	$Pd(PPh_3)_4$ (5)	(81)
PhBr	$PdCl_2(PPh_3)_2$ (1)	(73), 70
PhBr	$PdCl_2[P(o-tolyl)_3]_2$ (1)	trace
PhCH ₂ Cl	$PdCl_2(PPh_3)_2$ (1)	58
Me ₂ C=CHBr	$PdCl_2(PPh_3)_2$ (1)	51
Me ₂ C=CMeBr	$PdCl_2(PPh_3)_2$ (1)	65
PhCH=CHBr (E)	$PdCl_2(PPh_3)_2$ (1)	77 (E)
PhCH=CHBr (Z>90%)	$PdCl_2(PPh_3)_2$ (1)	95 (Z/E= 1/1)
CH2=CMeCH2Cl	$PdCl_2(PPh_3)_2$ (1)	47
Me ₂ C=CHCH ₂ Br	$PdCl_2(PPh_3)_2$ (1)	51

 $RX + 1 \longrightarrow Bu_3SnX$

a) In parentheses GLC yield.

The gift of tributyltin oxide by Hokkoh Kagaku Kogyou Co. Ltd. is gratefully acknowleged. The present work was partially supported by a Grant-in-Aid for Special Project Research No. 61225002 from the Ministry of Education, Science and Culture.

References

1) A. I. Meyers and E. D. Milhelich, "New Synthetic Methods," Verlag Chemie, Wheinheim (1975), Vol. 5, p. 105 ; M. Reuman and A. I. Meyers, Tetrahedron, <u>41</u>, 5402 (1985) and references cited therein.

2) A. Dondori, M. Fogagnolo, G. Fantin, A. Medici, and P. Pedrini, Tetrahedron Lett., <u>27</u>, 5269 (1986); Synthesis, <u>1987</u>, 693.

3) M. Kosugi, M. Koshiba, A. Atoh, H. Sano, and T. Migita, Bull. Chem. Soc. Jpn., 59, 677 (1986).

4) P. Jutzi and U. Gilge, J. Heterocyclic Chem., <u>20</u>, 1011 (1983) and references cited therein.

5) 2-A, Found: C, 70.98; H, 6.42; N, 6.98%. Calcd for $C_{12}H_{13}O_2N$: C, 70.91; H, 6.45; N, 6.89%. 2-B, Found: C, 71.68; H, 6.85; N, 6.45%. Calcd for $C_{13}H_{15}O_2N$: C, 71.86; H, 6.96; N, 6.45%. 2-C, Found: C, 66.62; H, 6.61; N, 6.19%. Calcd for $C_{13}H_{15}O_3N$: C, 66.93; H, 6.48; N, 6.01%. 2-D, exact MS, Found: m/e 474.1090. Calcd for $C_{24}H_{24}O_4N_2Cl_2$: 474.1113. 2-E, Found: C, 57.73; H, 4.87; N, 11.29%. Calcd for $C_{12}H_{12}O_4N_2$: C, 58.06; H, 4.87; N, 11.29%. 2-F, exact MS, Found: m/e 418.1075. Calcd for $C_{20}H_{22}O_4N_2S_2$: 418.1021. 2-G, Found: C, 69.06; H, 8.95; N, 6.64%. Calcd for $C_{12}H_{19}O_2N$: C, 68.87; H, 9.15; N, 6.69%.

6) Crystal data of 2-A: $C_{24}H_{26}O_{4}N_{2}$, Fw 406.2, space group P_{21}/n , a=10.687 (8), b=16.999 (9), c=5.818 (1) Å, β =93.14°(4), V=1055.3 (9) Å³, Z=2, d_{calcd}=1.28 g cm⁻³, the final R factor 0.0903, number of unique reflections ($|F_{0}|_{2}3\sigma|F_{0}|$) 3075.

(Received May 24, 1988)