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Carbohydrates and natural products serve essential roles in nature, and also provide core scaffolds for pharmaceutical
agents and vaccines. However, the inherent complexity of these molecules imposes significant synthetic hurdles for their
selective functionalization and derivatization. Nature has, in part, addressed these issues by employing enzymes that are
able to orient and activate substrates within a chiral pocket, which increases dramatically both the rate and selectivity of
organic transformations. In this article we show that similar proximity effects can be utilized in the context of synthetic
catalysts to achieve general and predictable site-selective functionalization of complex molecules. Unlike enzymes, our
catalysts apply a single reversible covalent bond to recognize and bind to specific functional group displays within
substrates. By combining this unique binding selectivity and asymmetric catalysis, we are able to modify the less reactive
axial positions within monosaccharides and natural products.

D
eveloping site-selective catalysts1 for the functionalization of
naturally occurring compounds offers an efficient means of
accessing novel therapeutics2 as well as expediting the syn-

thesis of complex molecular probes. These molecules are often poly-
hydroxylated, which creates a significant synthetic challenge in
which the catalyst is required to differentiate between multiple
similar functional groups. The most prominent examples of these
molecules are carbohydrates, which mediate a diverse array of bio-
logical processes, including the control of cell-to-cell communi-
cation via cell-surface oligosaccharides3 and the facilitation of
protein folding in the endoplasmic reticulum4. Reflecting their
diverse function, saccharides are incorporated in proteins, lipids
and DNA, as well as in clinically relevant natural products5,6 such
as digoxin. Although significant progress has been made in oligosac-
charide synthesis7–10, the polyhydroxylated nature of these biomole-
cules requires elaborate protecting group strategies to ensure the
appropriate spatial and temporal control during molecular assem-
bly. Beyond carbohydrates, numerous natural products contain
multiple hydroxyl groups (Fig. 1a), and therefore suffer from
similar challenges in their selective derivatization. A suite of cata-
lysts that have the ability to target selectively and predictably specific
functional group displays (that is, site selectivity) would be a power-
ful approach for manipulating complex molecules without imple-
menting complex protecting group sequences.

Early work by Breslow and co-workers11–13 demonstrated that
steroids can be oxidized selectively using directing groups, and
more recent studies that used directing groups, reagents and cata-
lysts demonstrated the selective functionalization of a range of
natural products14–23. Over the past decade particular attention
has been devoted to using synthetic catalysts to control selectivity
in the modification and functionalization of carbohydrates24. The
Kawabata25,26 and Miller27 groups demonstrated the catalyst-con-
trolled acylation of the C4 equatorial hydroxyl group of monosac-
charides. More recently, Taylor and co-workers demonstrated that
borinic ester catalysts effectively transfer a range of electrophiles
to the equatorial position of a cis-1,2-diol within monosacchar-
ides28–31. Even with these successes, a major challenge in the area
of site-selective catalysis is the design and application of catalysts
that can overturn the inherent kinetic preference of the substrate.

For most monosaccharides, an axial hydroxyl group tends to be
inert kinetically, so selective modification of these groups has
proved more elusive using catalyst-controlled methodologies32.

Examining past triumphs for site-selective reactions, whether
enzymatic or synthetic, reveals that proximity effects33 are a power-
ful and reliable means of accessing less reactive sites in a molecule.
For example, Howell and co-workers elucidated the structure of
a-1,2-mannosyltransferase Kre2p/Mnt1p, which catalyses the man-
nosylation of the C2-hydroxyl of mannose; in the active site multiple
hydrogen bonding and van der Waals interactions are used to orient
mannose, which allows for selective functionalization of the axial
hydroxyl (Fig. 1b)34. In most cases, enzymes require multiple non-
covalent interactions to achieve substrate recognition, which
enables highly selective reactions, but this high specificity often
comes at the expense of broad substrate scope. A complementary
approach is to design catalysts that recognize a specific functional
group motif rather than the entire molecule. Such a catalyst would
allow for site selectivity within a complex molecule, but would be
broadly and predictably applicable to substrates that contain the tar-
geted functional group display. In this article we report the appli-
cation of catalysts that have the ability to recognize a selected
functional group motif within polyol frameworks (Fig. 1). In a criti-
cal advance this chiral catalyst is able to overturn the substrate’s
inherent reactivity bias, which allows the functionalization of the
axial positions within six-membered rings. Similar to enzymes,
the control of site selectivity arises from proximity effects within a
substrate-binding pocket (Fig. 1b,c). In contrast to an enzyme, the
catalyst is not constrained to a single substrate but rather is appli-
cable to a broad spectrum of biologically relevant molecules.
Moreover, the high selectivity is achieved with a catalyst that is
orders of magnitude smaller (molecular weight 307 g mol21) than
a typical enzyme.

Results and discussion
As a first step towards developing this concept, our aim was to
design a catalyst that selectively functionalized cis-1,2-diols, a preva-
lent motif in biologically relevant molecules (Fig. 1a). We reported
previously that scaffold 135,36 is an effective catalyst for the desym-
metrization of cis-1,2-diols37 via silylation38–43. The catalyst binds
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to the substrate through a single reversible-formed covalent bond44–47,
which minimizes the number of interactions needed for effective
substrate localization and enables the desired proximity effects
(Fig. 1c). The catalyst contains a catalytically active imidazole ring
that is connected to the substrate-binding site via a chiral organic
scaffold. We reasoned that, although the catalyst can bind to mul-
tiple sites within the substrate, it would only functionalize the site
with the appropriate geometric and proximity constraints.

We investigated the effectiveness of the scaffolding catalyst in the
context of a methyl-a-D-mannose derivative. Using N-methylimi-
dazole (NMI) as a control catalyst demonstrated that in silyl transfer
the C3 hydroxyl is approximately four times more reactive than the
C4 hydroxyl and about 15 times more reactive than the C2 hydroxyl
(Table 1, entry 1). Silyl transfer with catalyst (þ)-1 reversed the
selectivity so that the major product is the protected C2 axial
hydroxyl (C2-OH:C3-OH¼ 90:10, Table 1, entry 2), allowing for
isolation of practical quantities of 4a (76% yield). At high conver-
sion (95%), a minimal amount of bis-silylation (9%) was observed
in the reaction, even though the more reactive C3 hydroxyl
remained available in the product. The suppression of a second sily-
lation event is attributed to the absence of a cis-1,2-diol in 4a, such
that the scaffolding catalyst cannot effectively activate the substrate
for an additional electrophile-transfer reaction. Switching to catalyst
(2)-2, a pseudo-enantiomer of (þ)-1, resulted in a highly site-selec-
tive reaction for silylation of the C3 hydroxyl (98% yield, Table 1,
entry 3). The excellent site selectivity is ascribed to the C3 hydroxyl
being both the inherently most reactive site as well as the stereoche-
mically preferred site for catalyst (2)-2 (that is, the matched case
between substrate and catalyst). Functionalizations of both the C3
and C2 hydroxyls were also carried out on a more synthetically
useful scale (4 mmol/1.2 g) to afford comparable selectivities and
yields for the desired products (Table 1, entries 2 and 3). To
probe the mechanism of catalysis, we performed two reactions
with control catalysts (þ)-1b and (2)-2b with substrate-binding
sites excised. Both catalysts prefer functionalization at the C3

hydroxyl; moreover, a dramatic loss of activity was observed for
both catalysts (,10% yield, Table 1, entries 4 and 5). The inability
to achieve axial functionalization and the decreased catalyst
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Figure 1 | The role of selectively modified polyols in naturally occurring compounds and approaches to their site-selective functionalization

a, Representative biologically relevant molecules that contain a cis-1,2-diol structural motif. b, Representation of the active site interactions between Kre2p/

Mnt1p a-1,2-mannosyltransferase and mannose. c, Proposed mode of substrate activation for scaffolding catalyst and methyl-a-L-mannose. E, electrophile.

Table 1 | Functionalization of mannose derivative.
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Entry Electrophile (E) Catalyst C2:C3:C4* Yield (%)†,‡

1 TESCl§ 20% NMI 5:78:17 77
2 TESCl§ 20% (þ)-1 90:10:– 84 (76/74})
3 TESCl§ 5% (2)-2 –:100:– (.98/.98})
4 TESCl§ 20% (þ)-1b 3:92:5 7
5 TESCl§ 20% (2)-2b 2:92:6 9
6 AcCl§ 20% NMI 9:84:7 39
7 AcCl§ 20% (þ)-1 84:15:1 74
8 AcCl§ 5% (2)-2 1:99:– (96)
9 MsCl‖ 20% NMI 22:56:22 68
10 MsCl‖ 20% (þ)-1 91:8:1 (80)
11 MsCl‖ 5% (2)-2 –:100:– (97)

Detailed reaction conditions are given in the Supplementary Information. *‘-’ indicates the isomer
was not observed by the mode of detection used. †Isolated yield of the isomeric mixture. ‡Yields
in parentheses are of the isolated major isomer. §Selectivity determined by 1H NMR spectroscopy.
‖Selectivity determined by gas chromatography (GC). }Reactions performed on a 4 mmol scale
(1.2 g) of substrate, selectivity matched small-scale reaction. DIPEA, N,N-diisopropylethylamine;
TESCl, triethylsilyl chloride; AcCl, acetyl chloride, MsCl, methane sulfonyl chloride.
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performance are consistent with the hypothesis that reversible
covalent bonding is necessary for the observed catalysis.

The scaffold-catalysed transfer of a triethylsilyl group enables the
selective protection of either the C2 or C3 hydroxyl groups within
the mannose derivative through the appropriate choice of catalyst.
To expand further the utility of this method we investigated the trans-
fer of both acetyl and mesyl groups. Acyl transfer offers both an
orthogonal protecting group and a means of functionalizing monosac-
charides, whereas a sulfonylating reagent can serve to activate the
hydroxyl, which provides an avenue for further chemical manipu-
lation. Catalysts (þ)-1 and (2)-2 were effective in performing both
acyl and sulfonyl transfer to the C2 and C3 hydroxyls, respectively.
For catalyst (2)-2, the acyl- and sulfonylated products were formed
exclusively at the C3 hydroxyl, consistent with a matched relationship
between the substrate and catalyst (Table 1, entries 8 and 11).
Switching to catalyst (þ)-1, the site selectivity in acylation altered
to favour the axial position (C2-OH:C3-OH:C4-OH¼ 84:15:1,
Table 1, entry 7). Similarly mesylation occurred at the C2 hydroxyl
with 91:8:1 selectivity (C2-OH:C3-OH:C4-OH, Table 1, entry 10)
and in an isolated yield of 80% of 4c.

The critical test of the functional group recognition strategy was
the application to other compounds that contain a cis-1,2-diol.
Rhamnose is a monosaccharide prevalent as a glycone in natural
products. Control reactions with NMI and the three electrophiles
revealed that all three hydroxyls of methyl-a-L-rhamnose are acces-
sible, with the C3 hydroxyl being the most reactive position
(Table 2, entries 1, 4 and 7). Application of the scaffolding catalyst
collection to methyl-a-L-rhamnose allowed for modification of
both hydroxyls of cis-1,2-diol with all three electrophiles
(Table 2, entries 1–9). As expected, catalyst (2)-2 provided 5:1 to
11:1 selectivity, depending on the electrophile for the C2 axial
hydroxyl, which demonstrates that inherent substrate bias can be
overturned via catalyst control (Table 2, entries 2, 5 and 8).
Catalyst (þ)-1 favours functionalization of the C3 hydroxyl in
excellent yields (.97%) for the three electrophiles (Table 2,
entries 3, 6 and 9); in these cases the other constitutional
isomers were observed in trace quantities in the crude reaction
mixture. Similarly, catalysts (þ)-1 and (2)-1 were applied to the
functionalization of methyl-b-L-arabinose, which allowed for
toggling of the functionalization between both the C3 and C4

Table 2 | Site-selective functionalization of methyl-a-L-rhamnose and methyl-b-L-arabinose.
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Entry Electrophile Catalyst C2:C3:C4* Yield (%)†,‡ Entry Electrophile Catalyst C2:C3:C4* Yield (%) †,‡

1 TESCl 20% NMI 7:79:14 78 10 TESCl 20% NMI 27:14:59 39
2 TESCl 20% (2)-2 89:11:– 88 11 TESCl 20% (2)-1 –:3:97 (92)
3§ TESCl 5% (þ)-1 –:100:– (.98) 12 TESCl 5% (þ)-1 –:98:2 (97)
4 AcCl 20% NMI 12:79:9 83 13 AcCl 20% NMI 22:72:6 6
5 AcCl 20% (2)-2 84:14:2 73 14} AcCl 20% (2)-1 5:9:86 61
6 AcCl 5% (þ)-1 1:99:– (98) 15 AcCl 5% (þ)-1 3:96:1 (83)
7‖ MsCl 20% NMI 24:57:19 72 16 MsCl 20% NMI 68:23:9 27
8‖ MsCl 20% (2)-2 92:8:– (82) 17 MsCl 20% (2)-1 3:10:87 93
9‖ MsCl 5% (þ)-1 1:99:– (.98) 18 MsCl 5% (þ)-1 1:92:7 (91)

The monosaccharides were functionalized with catalysts as listed, 3 mol% DIPEA.HCl, 1.2 equiv. electrophile and 1.2 equiv. DIPEA, 4 h. Reactions were performed in tert-amyl-OH or THF at 4 8C. Detailed reaction
conditions are given in the Supplementary Information. *‘–’ indicates the isomer was not observed by the mode of detection used. Selectivities were determined by 1H NMR spectroscopy. †Isolated yields of the
isomeric mixture. ‡Yields in parentheses are of the isolated major isomer. §Reaction time 20 h. ‖Selectivity determined by GC. }Reaction time 8 h.

Table 3 | Site-selective functionalization of galactose derivative and 1,6-anhydro-b-D-galactose.
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1 TESCl 20% NMI 86:14:– 77 7 TESCl 20% NMI 91:–:9 51
2 TESCl 20% (þ)-1 6:94:– 95 8 TESCl 5% (2)-2 1:–:99 (98)
3 AcCl 20% NMI 42:58:– 26 9 AcCl 20% NMI 75:8:17 53
4 AcCl 20% (þ)-1 19:81:– 96 10 AcCl 5% (2)-2 –:3:97 (93)
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6 MsCl 20% (þ)-1 –:100:– (74) 12 MsCl 5% (2)-2 –:1:99 (88)

The monosaccharides were functionalized with catalysts as listed, 3 mol% DIPEA.HCl, 1.2 equiv. electrophile, and 1.2 equiv. DIPEA, 4 h. Reactions were performed in tert-amyl-OH or THF at 215 8C or 4 8C.
Detailed reaction conditions are given in the Supplementary Information. *‘–’ indicates the isomer was not observed by the mode of detection used. Selectivities were determined by 1H NMR spectroscopy.
†Isolated yields of the isomeric mixture. ‡Yields in parentheses are of the isolated major isomer.
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hydroxyls of the cis-1,2-diol and for minimizing the reaction at the
C2 hydroxyl (Table 2, entries 10–18).

The substrate scope was expanded further to the derivatization of
galactose, in which the C2 equatorial hydroxyl is generally the most
reactive site. Catalyst (þ)-1 provided access to functionalization of
the C3 hydroxyl with all three electrophiles (Table 3, entries 2, 4
and 6); however, attempts to functionalize the axial C4 hydroxyl
were unsuccessful. In the control reaction with the galactose deriva-
tive no axially silylated product was observed, which suggests that
this position is inherently at least 100-fold less reactive than in the
other hydroxyls. Although scaffolding catalyst (2)-2 is unable to
overturn this large substrate bias, simply employing 1,6-anhydro-
b-D-galactose, in which the substrate is constrained into the 1C4
chair, enables the functionalization of the C4 hydroxyl (Table 3,
entries 8, 10 and 12). In the case of 1,6-anhydro-b-D-galactose,
use of catalyst (þ)-2 afforded mesylation of the axial C3-OH as
the major product (see Supplementary Information for details).
As 1,6-anhydro-b-D-galactose is unable to undergo a chair flip,

the result implies that the scaffolding catalyst can bind to an equa-
torial position and then functionalize the axial hydroxyl (see
Supplementary Fig. S1a). The result does not preclude the possi-
bility that sugars able to undergo chair flipping (for example,
methyl-a-D-mannose) react through a minor conformer in which
the scaffolding catalyst binds to the axial position and functionalizes
the equatorial position followed by interconversion back to the most
stable conformer (see Supplementary Fig. S1b).

To test further the capabilities of the scaffolding catalysts, we
investigated the functionalization of other biologically and thera-
peutically important compounds that contain cis-1,2-diols. We
tested the site-selective functionalization of the monosaccharide
Helicid, which contains a cis,cis-1,2,3-triol. In this case (2)-2 and
(þ)-2 afford silylation of the C2 and C4 hydroxyls, respectively
(Fig. 2). These results suggest that, potentially, the scaffolding cata-
lysts can be applied to the derivatization of other cis,cis-1,2,3-triols,
such as myo-inositol. Suitably protected ribonucleoside monomers
are required for the automated synthesis of RNA. It is common to
use monomers with the 2′-hydroxyl protected with a tert-butyldi-
methylsilyl group (TBS) and the 5′-hydroxyl with a dimethoxytrityl
group (DMTr), but leave the C3′-hydroxyl available for coupling.
Direct silylation of DMTr-protected ribonucleosides leads to a
mixture of silylated products at the C3′- and C2′-hydroxyls; there-
fore, multistep protecting group sequences are often used to
obtain the desired monomers48. Using scaffold catalyst (2)-2, a
TBS group was transferred efficiently to the C2′-OH of uridine
with minimal amounts of C3′-OH protection (93% yield,
C2′-OH:C3′-OH¼.98: , 2, Fig. 3a). Digoxin, a natural product
produced by Digitalis lanta, is a cardiac glycoside used in the treat-
ment of congestive heart failure49. Starting from commercially avail-
able digoxin, which contains six free hydroxyls, we attempted to
synthesize both a- and b-acetyl digoxin (also therapeutics for con-
gestive heart failure) without the use of protecting groups. Applying
catalyst (þ)-2 resulted in the formation of b-acetyl digoxin in
90% yield as a single isomer (Fig. 3b). Switching to catalyst (2)-1
allowed the functionalization of the less reactive axial hydroxyl,
yielding a-acetyl digoxin in 56% yield (a:b¼ 91:9, Fig. 3b). We
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ARTICLES NATURE CHEMISTRY DOI: 10.1038/NCHEM.1726

NATURE CHEMISTRY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturechemistry4

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/compfinder/10.1038/nchem.1726_comp1-plus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-minus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-plus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-minus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-plus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-minus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-plus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp1-minus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-minus
http://www.nature.com/compfinder/10.1038/nchem.1726_comp2-plus
http://www.nature.com/doifinder/10.1038/nchem.1726
www.nature.com/naturechemistry


further applied our scaffolding catalysts to the activation of the C6-
OH and C7-OH of mupirocin methyl ester50, an antibiotic that
targets transfer RNA synthetase51. Scaffolding catalysts (2)-2 and
(þ)-1 provide access to both mesylated hydroxyls of the cis-1,2-
diol (Fig. 3c). In particular, the axial C7 hydroxyl was mesylated
with a site selectivity of 18:82 (33:34) with an isomerically pure iso-
lated yield of 57%.

Conclusion
In this article we demonstrate that chiral catalysts that use reversible
covalent bonding to the substrate are able to functionalize selectively
multiple sites within complex molecules, including sites that are
naturally kinetically less reactive. Similar to enzymes, this is
achieved by properly leveraging proximity effects within a chiral
binding pocket. In the future, we envision (through the appropriate
choice of the scaffold) that the catalytic residue could be reoriented
to activate other sites within polyfunctional molecules. Moreover,
the catalysts could be reappropriated to perform transformations
beyond electrophile transfer simply through the judicious choice
of the catalytic residue. A library of these catalysts, in which each
catalyst targets a specific functional group array, would allow for
the general reengineering of complex molecular architectures
devoid of using sophisticated protecting group strategies.

Methods
In a dry box, a solution of 3 (62 mg, 0.20 mmol), catalyst (þ)-1 (11 mg, 0.040 mmol,
20 mol%) and N,N-diisopropylethylamine hydrochloride (1.0 mg, 0.0060 mmol,
3 mol%) in anhydrous tert-amyl alcohol (1.0 ml, distilled over CaH2 before use) was
prepared in a glass reaction vial (4 ml, oven dried). The solution was brought out of
the dry box, and N,N-diisopropylethylamine (42 ml, 0.24 mmol, 1.2 equiv., distilled
over CaH2 before use) was added to the stirring reaction at room temperature. The
reaction was stirred at 4 8C for ten minutes, followed by dropwise addition of
chlorotriethylsilane (40 ml, 0.24 mmol, 1.2 equiv., distilled over CaH2 before use).
The reaction was stirred at 4 8C for two hours. MeOH (50 ml, reagent grade) was
added to quench the reaction. The mixture was filtered through a Pasteur pipette
packed with silica gel, followed by flush with EtOAc (15 ml, reagent grade). The
solvent was removed under reduced pressure. Column chromatography
(hexane/EtOAc¼ 20/1 to 1/1) afforded the bisfunctionalized products (10 mg, 9%),
substrate 3 (3 mg, 5%) and a mixture of monofunctionalized products (71 mg, 84%).
1H NMR spectroscopy of the mixture afforded the selectivity (C2:C3:C4¼ 90:10:–).
A second column chromatography (hexane/EtOAc¼ 20:1 to 5:1) was performed to
isolate the pure product 4a (64 mg, 76%).

Received 28 March 2013; accepted 3 July 2013;
published online 11 August 2013
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