

0040-4020(95)00162-X

Synthesis of (±)-Carbocyclic Analogue of Spirohydantoin Nucleoside

Hiromi Sano * and Soji Sugai

Agroscience Research Laboratories, Sankyo Co. Ltd., 1041 Yasu-cho, Yasu-gun, Shiga-ken 520-23, Japan

Abstract: Synthesis of (\pm) -carbocyclic spirohydantoin derivatives of (+)-hydantocidin is described. The pivotal step in the synthesis is spirohydantoin ring construction from cyclopentanone 9. Using the Bucherer-Bergs condition predominately gave the epi-carbocyclic analogue 10, whereas the alternative spiroring formation method through α -aminonitrile 13 provided the carbocyclic analogue 2 after deprotection.

Recently, carbocyclic nucleosides, in which the furanose ring oxygen atom is replaced by a carbon atom, have become considerable targets in the search for antiviral, antitumor, and especially anti-human-immunodeficiency-virus agents, due to the discovery of several carbocyclic derivatives with potent antiviral activity.¹ This replacement could enhance the metabolic stability toward phosphorylases, which cleave the *N*-glycosidic bond between heterocycle moiety and sugar of nucleosides.²

The first naturally occurring spironucleoside (+)-hydantocidin³ has received wide attention^{4,5,6} because of its unique features: spirohydantoin ring at the anomeric position of D-ribofuranose and its potent herbicidal activites aganst troublesome perennial weeds. As part of our continuing interest in the structure-activity relationship of (+)-hydantocidin,^{7,8} we set out to make a carbocyclic analogue of (+)-hydantocidin, in an effort to explore the role of ether oxygen in the furanose ring. Although the metabolism of (+)-hydantocidin itself has not been clarified, the carbocyclic analogue would be chemically more stable than the parent compound: (+)-hydantocidin possessing N,O-hemiacetal functionality at the anomeric position could be easily isomerized to its 5-epimer; moreover, 5-epi-hydantocidin is thermodynamically more stable than the natural compound. ^{5,6}

Previous synthetic studies^{7,8} from our laboratories have demonstrated that modifications of the

natural compound only led to a loss of herbicidal activity, except for the formation of spirosuccinimide analogue 7f : All diastereoisomers and deoxy derivatives of the natural compound exhibited no herbicidal activity; only the 5-epimer showed a slight activity. A hydantoin ring expanded analogue, the spirodihydrouracil derivative, was also found to be inactive.

Our synthetic analysis is shown in Figure 2. We envisaged that spirohydantoin ring formation of the protected cyclopentanone 4 derived from 2,5-norbornadiene 3 would provide access to the desired compound 2, after deprotection. The key to our plan is stereochemistry at the anomeric position during the spirohydantoin ring formation.

Figure 2

Preparation of the intermediate cyclopentanone 9 is represented in Scheme 1. Ozonolysis of 5, prepared from 2,5-norbornadiene,⁹ followed by reductive workup with sodium borohydride, gave diol 6 in 99% yield, which was treated with benzyl chloride and t-BuOK in DMSO to afford benzyl ether 7 in 55% yield. Iodide 8 was obtained through two methods: Direct conversion of the hydroxymethyl group in 7 was accomplished with methyltriphenoxyphosphonium iodide in DMF, affording 8 in 58% yield. However, isolation of 8 was tedious due to the resulting phosphonium salts. Alternatively, mesylation of 7 followed by treatment with sodium iodide in acetone provided 8 in 78% yield. The latter method was suitable for a large scale preparation. Elimination of hydrogen iodide from 8 was achieved by treatment with DBU in refluxing toluene to give an excolefin, which was oxidized with sodium periodate in the presence of a catalytic amount of osmium tetroxide, to produce 9 in 61% yield from 8.

Scheme 1

Under Bucherer-Bergs condition, construction of a spirohydantoin ring from 9 was accomplished

(Scheme 2). Treatment of 9 with potassium cyanide and ammonium carbonate in MeOH-H₂O at 70 °C furnished spirohydantoin 10 in 91% yield as a single product possessing an undesired configuration at C5. Stereochemistry of 10 at its spiro center was assigned by a series of ¹H-NOE experiments of the dimethylated hydantoin 11, which was derived from 10: methylation of 10 with methyl iodide and *t*-BuOK in DMF afforded 11 in 48% yield. The NOE was observed between the N1 methyl protons and the C8 methine proton in 11. Removal of the protecting groups was accomplished by hydrogenation with 5% Pd-C under a hydrogen atmosphere followed by hydrolysis of the dimethylmethylene moiety with Dowex 50W^R (H⁺ form) in MeOH-H₂O to afford 5-epi-carbocyclic analogue 12 in 84% yield from 10. Although the spiroring formation using the Bucherer-Bergs method was efficient, the undesirable stereochemistry at the spiro center led us to consider an alternative spirohydantoin ring formation method.

Scheme 2

Reversal stereoselectivity has been described¹⁰ for spirohydantoin ring formation and α -amino acids synthesis after hydrolysis from some substituted cyclanones and bicyclo ketones. Edward¹¹ gave a coherent explanation that the Read reaction, hydantoin ring synthesis through an α -aminonitrile intermediate followed by cyclization, gives kinetically controlled products, whereas thermodynamically controlled spiro products are obtained under Bucherer-Bergs conditions. With this explanation in mind, we selected the Read reaction as an alternative ring construction method.

Table 1 summarized the results of intermediate α -aminonitrile synthesis. Exposure of 9 to potassium cyanide and ammonium chloride in MeOH-H₂O at room temperature for 7 d, provided only a trace of α -aminonitrile 14 (9% yield), whose configuration at C1 was opposite to the desired compound, and cyanohydrin 15¹² (72% yield) as a major product (entry 1). An elevated reaction temperature in EtOH-H₂O at 65 °C gave the desired α -aminonitrile 13 in a low yield (12% yield) together with 14 and 15 (entry 2). Heating at 90 °C for a prolonged time (24 hr) furnished 13 in 40% yield (entry 4). The product ratio was dependent upon the reaction temperature and the reaction time: a higher reaction temperature and a longer heating time afforded more of the desired intermediate 13 (entry 2, 3, and 4). In contrast, irradiation of a mixture of 9, potassium cyanide, ammonium chloride, and alumina in acetonitrile with ultrasound¹³ at 60

°C afforded undesired 14 in 63% yield and 15 in 35% yield, but none of 13 (entry 5).

Scheme 3

Table 1 The Results of α -Aminonitrile Synthesis from 9

entry	conditions	yields(%) ^{a)} 13	14	15
1	r.t. 7 d	0	9	72
2	65 °C 9 h	12	42	30
3	90 °C 9 h	35	31	23
4	90 °C 24 h	40	15	22
5	60 °C 20 h ^{b)}	0	63	35

a) isolated yields; b) irradiation with ultrasound

With 13 in hand, our attention was turned to the spiroring formation. Conversion of 13 to a hydantoin derivative proceeded smoothly with chlorosulfonyl isocyanide¹⁴ in CH_2Cl_2 , followed by hydrolysis to afford spirohydantoin 16 in 67% yield, whereas 14 afforded spiro-epimer 17 in 40% yield. Determination of

Scheme 4

the stereochemistry of 16 by NOE was performed on the dimethylated compound 18: treatment of 16 with 2-methoxypropene in the presence of PPTS, followed by methylation with methyl iodide and t-BuOK, gave 18 in 66% yield. Irradiation of the signal for C1 methyl hydrogens enhanced the signals for C6 and C7 methine hydrogens of 18, indicating that 16 possesses desired stereochemistry at the spiro center. 5-Epi-spirohydantoin 17 was identified by comparison to the authentic sample from 10 (Scheme 4).

Debenzylation of 16 with 5% Pd-C under H_2 atmosphere furnished the desired carbocyclic analogue 2 in 96% yield (Scheme 5).

The results of bioassay indicated that the carbocyclic compound 2 retained herbicidal activities in spite of its racemic form. The carbocyclic analogue 2 exhibited 90% herbicidal control of barnyard grass, 70% control of crabgrass, and 70% control of velvetleaf when applied to a foliage of the weeds at 1000 ppm, whereas the 5-epi-carbocyclic analogue 12 was inactive against these weeds at the same concentration. This finding shows that replacement of the oxygen atom in D-ribofuranose ring of (+)-hydantocidin with a methylene unit is acceptable for maintaining herbicidal activity. Thus, we have succeeded in preparing a hydantoin analogue with herbicidal activity that is chemically stable and that does not undergo isomerization.

In summary, we have described synthesis of a carbocyclic analogue of (+)-hydantocidin and its epimer at the spiro center, involving two spirohydantoin ring formation methods: 1) the Bucherer-Bergs method exclusively afforded the 5-epi isomer, and 2) α -aminonitrile intermediate 13, derived from cyclopentanone 9, was smoothly converted to the desired carbocyclic spirohydantoin. The results of bioassay indicated that the D-furanose ring oxygen atom can be replaced with a methylene unit for herbicidal activity. Synthesis of an optically active carbocyclic analogue of (+)-hydantocidin is in progress.

Acknowledgments

We wish to thank Mr. T. Honma and Mr. M. Shindou, Agroscience Research Laboratories, Sankyo Co. Ltd., for testing the herbicidal activity of derivatives 2 and 12. And the authors thank Mr. H. Kajino, Agroscience Research Laboratories, Sankyo Co. Ltd., for ¹H-NOE experiments of compounds 11, 18, and 19.

Experimental

All melting points were determined on a Yanaco micro melting point apparatus and were uncorrected. 1H-NMR spectra (270MHz) were recorded on a JEOL GX-270 spectrometer. IR spectra were recorded on a Jasco A-102 spectrometer. Mass spectra were recorded on a JEOL JMS-D300 spectrometer. Merck Kieselgel 60 was used for SiO₂ column chromatography. Merck TLC plate Art.5744 was used for preparative TLC.

(exo, exo)-5,6-Dimethylmethylenedioxy-bicyclo[2.2.1]hept-2-ene 5.

A solution of 2,5-norbornadiene 3 (169 g, 1.83 mol) in THF (300 ml) was added to a mixture of trimethylamine N-oxide dihydrate (203 g, 1.83 mol) and osmium tetraoxide (1 g, 3.9 mmol) in *t*-BuOH (500 ml), THF (500 ml), and H₂O (250 ml). After being stirred for 2 d, the reaction mixture was quenched with aqueous Na₂S₂O₄ solution, and filtered through a pad of Celite^R. The filtrate was concentrated and extracted with EtOAc. The combined organic layers were dried, evaporated, and chromatographed on silica gel (hexane/EtOAc 2:1 to 1:3) to give (*exo*, *exo*)-bicyclo[2.2.1]hept-5-ene-2,3-diol (69 g, 30%) as a colorless solid.

m.p. 100-104 °C; IR (CHCl₃) 3380, 2980, 2940, 1390, 1160, 1050 cm⁻¹; NMR (CDCl₃) δ 6.04 (2H, t, J = 1.8 Hz), 3.71 (2H, t, J = 1.8 Hz), 3.11-3.06 (2H, m), 2.70 (2H, td, J = 1.8, 1.8 Hz), 1.89 (1H, d, J = 9.3 Hz), 1.63 (1H, td, J = 9.3, 1.8 Hz); MS m/z 126 (M⁺), 107, 95, 79, 77.

A solution of the above diol (48.5 g, 0.38 mol) and 2,2-dimethoxypropane (52 g, 0.5 mol) in acetone (200 ml) was stirred in the presence of p-TsOH•H₂O (0.5 g) at room temperature for 15 h. The reaction solution was poured into H₂O and extracted with EtOAc. The organic phases were washed with brine, dried, and concentrated. Purification of the residue with silica gel chromatography (hexane/EtOAc 20:1) gave 58 g of acetonide 5 (92%) as a colorless oil.

For 5: IR (CHCl₃) 2980, 2930, 1450, 1380, 1270, 1210, 1060 cm⁻¹; NMR (CDCl₃) δ 6.07-6.06 (2H, M), 4.20 (2H, d, J = 1.5 Hz), 2.78 (2H, t, J = 1.5 Hz), 1.98 (1H, d, J = 9.1 Hz), 1.69 (1H, dd, J = 9.1, 1.5 Hz), 1.48 (3H, s), 1.34 (3H, s); MS *m*/*z* 167 (M⁺+1), 149, 113, 97, 71.

t-4,t-5-Dimethylmethylenedioxy-r-1,c-3-cyclopentanedimethanol 6.

Ozone was bubbled through a solution of acetonide 5 (22.5 g, 135 mmol) in MeOH (400 ml) at -70 °C for 7 h, and the reaction mixture was allowed to warm up to 0 °C. Sodium borohydride (30.7 g, 0.81 mol) was added in many portions with vigorously stirring, and the resulting mixture was heated at 50 °C for 3 h, then stood at room temperature overnight. After removal of the solvent, brine was added to the residue, and the product mixture was extracted with EtOAc. The combined extracts were dried and evaporated in vacuo. The residue was purified with chromatography on silica gel (hexane/EtOAc 1:2 to EtOAc only) to afford diol 6 (27.1 g, 99%) as a colorless oil.

For 6: IR (CHCl₃) 3430, 3000, 2940, 2880, 1705, 1370, 1230 cm⁻¹; NMR (CDCl₃) δ 4.42 (2H, ABqd, J = 6.1, 0.8 Hz), 3.68 (4H, dd, J = 10.4, 6.0 Hz), 2.34-2.22 (2H, m), 2.07 (1H, td, J = 12.9, 7.2 Hz), 1.82 (2H, brd.), 1.51 (3H, s), 1.32 (3H, s), 1.26 (1H, d, J = 12.9 Hz); MS *m/z* 187 (M⁺-15), 145, 127, 109, 79; Anal. found: C, 59.18; H, 8.90. Calcd. for C₁₀H₁₈O₄: C, 59.39; H, 8.97%.

(1SR,2SR,3RS,4RS)-4-Benzyloxymethyl-2,3-dimethylmethylenedioxy-cyclopentanemethanol 7.

To a solution of diol 6 (27.1 g, 134 mmol) in DMSO (350 ml) was added t-BuOK (15.8 g, 141 mmol), and the mixture was maintained at room temperature for 2 h. Benzyl chloride (16.2 ml, 141 mmol) was added to the black mixture, and it was stirred for 1.5 h. Ice water was added, and the product mixture was extracted with EtOAc. The combined layers were washed with brine, dried, concentrated, and purified with silica gel chromatography (hexane/EtOAc 5:1 to 1:2) to give monobenxyl ether 7 (21.5 g, 55%) as a colorless oil.

For 7: IR (CHCl₃) 3450, 3000, 2940, 2860, 1370, 1090 cm⁻¹; NMR (CDCl₃) δ 7.32 (5H, brd.), 4.53 (2H, s), 4.39 (2H, ABqd, J = 7.0, 4.0 Hz), 3.68 (1H, dd, J = 10.8, 5.6 Hz), 3.61 (1H, dd, J = 10.8, 6.8 Hz), 3.48 (2H, ABqd, J = 5.2, 2.0 Hz), 2.36 (1H, m), 2.25 (1H, m), 2.10 (1H, ddd, J = 12.9, 7.3, 5.6 Hz), 1.66 (1H, brd.), 1.50 (3H, s), 1.31 (3H, s); MS *m*/*z* 291 (M⁺-1), 277, 237, 203, 107, 91; Anal. found: C, 69.59; H, 8.22. Calcd. for C₁₇H₂₄O₄: C, 69.84; H, 8.27%.

(1RS,2SR,3RS,4RS)-4-Benzyloxymethyl-2,3-dimethylmethylenedioxy-1-iodomethylcyclopentane 8. Method A:

Triphenyl phosphite (31.6 g, 102 mmol) and methyl iodide (9.3 ml, 150 mmol) were heated under N_2 atmosphere at 70 °C for 1 h and then at 130 °C for 15 h. After the mixture was allowed to cool to room temperature, a solution of monobenzyl ether 6 (8.5 g, 29 mmol) in DMF (40 ml) was added, and followed by stirring for 2 h. The reaction mixture was partitioned between H₂O and EtOAc, and the combined organic extracts were washed with brine and H₂O prior to drying and evaporation. The residue was purified by silica gel chromatography (hexane/EtOAc 20:1) to give iodide 8 (6.72 g, 58%) as a slightly red oil. **method B:**

Methanesulfonyl chloride (6.63 ml, 85.7 mmol) was added at -20 °C to a solution of monobenzyl ether 6

(20.9 g, 71.4 mmol) and triethylamine (11.9 ml, 85.7 mmol) in CH_2Cl_2 (250 ml). After being stirred for 30 min, the mixture was poured into H_2O , and extracted with CH_2Cl_2 . The organic layers were dried, evaporated, and chromatographed on silica gel (hexane/EtOAc 3:1) to give (1'SR,2'SR,3'RS,4'RS)-4'-benzyloxymethyl-2',3'-dimethylmethylenedioxy-cyclopentylmethyl methanesulfonate (25.6 g, 97%) as a colorless oil.

IR (neat) 3500, 2940, 2870, 1710, 1450, 1350, 1170 cm⁻¹; NMR (CDCl₃) δ 7.42-7.28 (5H, m), 4.52 (2H, ABq, J = 12.5 Hz), 4.41 (1H, dd, J = 6.9, 4.4 Hz), 4.34 (1H, dd, J = 6.9, 5.2 Hz), 4.24 (2H, ABqd, J = 14.1, 6.4 Hz), 3.48 (2H, d, J = 5.6 Hz), 2.98 (3H, s), 2.48-2.31 (2H, m), 2.17 (1H, td, J = 13.3, 7.2 Hz), 1.49 (3H, s), 1.41 (1H, td, J = 13.3, 10.2 Hz), 1.30 (3H, s); MS m/z 370 (M⁺), 355, 264, 203, 169, 110, 91, 79; HRMS. found: 370.1447. Calcd. for C₁₈H₂₈O₆S: 370.1450.

A mixture of the above mesylate (25.6 g, 69.2 mmol) and sodium iodide (183.1 g, 1.2 mol) in acetone (150 ml) was stirred at room temperature for 17 h. The reaction mixture was quenched by the addition of aq. Na_2SO_3 solution, and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried, and concentrated in vacuo. Silica gel chromatography (hexane/EtOAc 7:1) of the residue afforded iodide 8 (22.4 g, 80%) as a slightly red oil:

For 8: IR (CHCl₂) 3000, 2920, 2850, 1375, 1065 cm⁻¹; NMR (CDCl₂) δ ; 7.39-7.28 (5H, m), 4.53 (2H, ABq, J = 12.5 Hz), 4.43 (1H, dd, J = 6.8, 4.8 Hz), 4.20 (1H, dd, J = 6.8, 5.4 Hz), 3.47 (2H, d, J = 6.0 Hz), 3.36 (1H, dd, J = 10.0, 5.2 Hz), 3.20 (1H, dd, J = 10.0, 7.0 Hz), 2.41-2.31 (1H, m), 2.26-2.16 (2H, m), 1.50 (3H, s), 1.37-1.28 (1H, m), 1.31 (3H, s); MS m/z 402 (M⁺), 387, 238, 217, 92; Anal. found: C, 50.56; H, 5.72; I, 31.84. Calcd. for C₁₇H₂₃IO₃: C, 50.76; H, 5.76; I, 31.55%.

(2RS,3RS,4RS)-4-Benzyloxymethyl-2,3-dimethylmethylenedioxy-cyclopentanone 9.

A solution of iodide 8 (22.39 g, 55.6 mmol) and DBU (9.89 ml, 66.8 mmol) in toluene (150 ml) was heated at 100 °C under N₂ atmosphere for 14 h. The reaction mixture was poured into H₂O, and extracted with Et₂O. The organic layers were washed with brine, dried, and concentrated in vacuo. The residue was subjected to chromatography on silica gel (hexane/EtOAc 8:1) to give 10.4 g of (1SR,2RS,3RS)-3benzyloxymethyl-1,2-dimethylmethylenedioxy-5-methylenecyclopentane (68%) as a colorless oil.

IR(CHCl₃) 3000, 2950, 2865, 1375, 1105 cm⁻¹; NMR (CDCl₃) δ 7.34-7.27 (5H, m), 5.19 (1H, d, J = 1.4 Hz), 5.09 (1H, dd, J = 2.4, 1.4 Hz), 4.69 (1H, d, J = 5.8 Hz), 4.50 (1H, d, J = 5.8 Hz), 4.49 (2H, s), 3.26 (2H, d, J = 7.6 Hz), 2.83-2.72 (1H, m), 2.44 (1H, dd, J = 7.6, 7.2 Hz), 2.11 (1H, d, J = 15.7 Hz), 1.47 (3H, s), 1.32 (3H, s); MS *m*/*z* 275 (M⁺+1), 259, 217, 91; Anal. found: C, 74.11; H, 8.00. Calcd. for C₁₇H₂₂O₃: C, 74.42; H, 8.08%.

Sodium periodate (20.3 g, 94.7 mmol) was added in many portions to a cooled (0 °C) solution of the above exo-methylene compound (10.4 g, 37.9 mmol) and osmium tetraoxide (0.30 g, 1 mmol) in THF (200 ml) and H_2O (200 ml). The black mixture was stirred at room temperature for 36 h, and it was poured into H_2O . The product mixture was extracted with EtOAc, and the organic phases were washed with brine prior to drying and evaporation. Silica gel chromatography (hexane/EtOAc 5:1) of the residue gave ketone 9 (9.41 g, 90%) as a colorless oil.

For 9: IR (CHCl₃) 3000, 2940, 2860, 1755, 1380, 1150 cm⁻¹; NMR (CDCl₃) δ 7.37-7.20 (5H, m), 4.66 (1H, d, J = 5.6 Hz), 4.46 (2H, ABq, J = 12.5 Hz), 4.28 (1H, d, J = 5.6 Hz), 3.64 (1H, dd, J = 9.1, 2.8 Hz), 3.43 (1H, dd, J = 9.1, 3.2 Hz), 2.75 (1H, dd, J = 18.1, 9.3 Hz), 2.59-2.55 (1H, m), 2.14 (1H, dd, J = 18.1, 1.2 Hz), 1.43 (3H, s), 1.33 (3H, s); MS m/z 276 (M⁺), 261, 185, 127, 91; HRMS. found: 276.1354. Calcd. for C₁₆H₂₀O₄: 276.1361.

(5SR,6SR,7RS,8RS)-8-Benzyloxymethyl-6,7-dimethoxymethylenedioxy-1,3-diazaspiro[4.4]nonane-2,4-dione 10.

Potassium cyanide (0.52 g, 8.0 mmol) was added to a solution of ketone 9 (1.11 g, 4.0 mmol) in MeOH (20

ml), and stirred at room temperature for 15 min. Ammonium carbonate (3.84 g, 40 mmol) and H_2O (20 ml) were added to the mixture. The resulting mixture was heated at 70 °C for 4.5 h, and the solvent was removed in vacuo. H_2O was added, and the mixture was carefully acidified with 6N HCl, and extracted with EtOAc. (Caution: HCN can be evolved!) The organic layers were washed with brine, and dried. After removal of solvents, the residue was purified by silica gel chromatography (hexane/EtOAc 2:1 to 1:1) to give 5-*epi*-spirohydantoin 10 (1.26 g, 91%) as a colorless solid.

For **10**: m.p. 89-90 °C; IR (CHCl₃) 3450, 3205, 3000, 2950, 2870, 1780, 1730, 1380, 1230, 1090 cm⁻¹; NMR (CDCl₃) δ 7.90 (1H, brd.), 7.38-7.27 (5H, m), 5.69 (1H, brd.), 4.64 (1H, d, J = 6.0 Hz), 4.56 (1H, dd, J = 6.0, 3.0 Hz), 4.54 (2H, s), 3.55 (2H, d, J = 6.4 Hz), 2.50-2.39 (1H, m), 2.24-2.07 (2H, m), 1.54 (3H, s), 1.32 (3H, s); MS *m*/*z* 346 (M⁺), 331, 255, 240, 197, 91; Anal. found: C, 62.15; H, 6.40; N, 7.87. Calcd. for C₁₈H₂₂N₂O₅: C, 62.42; H, 6.40; N, 8.09%.

(5SR,6SR,7RS,8RS)-8-Benzyloxymethyl-1,3-dimethyl-6,7-dimethylmethylenedioxy-1,3-diazaspiro[4.4]nonane-2,4-dione 11.

To a solution of spirohydantoin 10 (50 mg, 0.14 mmol) in THF was added t-BuOK (40 mg, 0.36 mmol), and the mixture was stirred at room temperature for 30 min. Methyl iodide (0.087 ml, 1.4 mmol) was added, and the resulting mixture was stirred for 1.5 h. Brine was added, and the product mixture was extracted with EtOAc. The organic layers were dried and evaporated. The residue was purified with chromatography on silica gel (hexane/EtOAc 2:1) to give dimethyl product 11 (25 mg, 48%) as a colorless oil.

For 11: IR (CHCl₃) 3000, 2950, 2870, 1770, 1710, 1470, 1380, 1240, 1090 cm⁻¹; NMR (CDCl₃) δ 7.38–7.28 (5H, m), 4.62-4.57 (2H, m), 4.55 (2H, s), 3.64 (1H, dd, J = 8.9, 7.2 Hz), 3.52 (1H, dd, J = 8.9, 7.0 Hz), 3.11 (3H, s), 3.10 (3H, s), 2.67-2.61 (1H, m), 2.33 (1H, dd, J = 14.5, 9.0 Hz), 2.00 (1H, dd, J = 14.5, 8.9 Hz), 1.54 (3H, s), 1.30 (3H, s); MS m/z 374 (M⁺), 359, 283, 266, 225, 208, 195, 140, 91; HRMS. found: 374.1851. Calcd. for C₂₀H₂₆N₂O₅: 374.1842.

(5SR,6SR,7RS,8RS)-7,6-Dihydroxy-8-hydroxymethyl-1,3-diazaspiro[4.4]nonane-2,4-dione 12.

A solution of spirohydantoin 10 (0.27 g, 0.77 mmol) in MeOH (120 ml) was heated at 55 °C in the presence of 5% Pd/C (0.50 g) under H_2 atmosphere (3 Kg/cm²) for 5 h. The reaction mixture was filtered through a pad of Celite^R and concentrated in vacuo to give (5SR,6SR,7RS,8RS)-6,7-dimethylmethylenedioxy-8-hydroxymethyl-1,3-diazaspiro[4.4]nonane-2,4-dione (0.20 g, quantitative yield).

NMR (CD₃OD) δ 4.57 (2H, ABq, J = 6.4 Hz), 3.65 (2H, d, J = 6.4 Hz), 2.47-2.34 (1H, m), 2.05 (2H, d, J = 9.3 Hz), 1.53 (3H, s), 1.31 (3H, s).

A mixture of the above alcohol (0.20 g, 0.77 mmol) and Dowex^R 50W X2 (H⁺ form) (0.50 g) in MeOH (4 ml) and H₂O (4 ml) was stirred at room temperature for 4 h, and filtered through a pad of Celite^R. The filtrate was concentrated and subjected to chromatography on Dianion CHP 20P (H₂O only) to give 5-*epi*-spirohydantoin **12** (0.14 g, 84%) as a colorless solid.

For 12: m.p. 167-168 °C; IR (KBr) 3380, 3290, 3040, 1760, 1700, 1410, 1330, 1120, 1010 cm⁻¹; NMR (CD₃OD) δ 4.02-3.96 (2H, m), 3.55 (2H, ABqd, J = 10.9, 6.4 Hz), 2.31-2.20 (1H, m), 2.08 (1H, dd, J = 14.1, 9.3 Hz), 1.92 (1H, dd, J = 14.1, 7.3 Hz); MS m/z 217 (M*+1), 198, 152, 113, 86; Anal. found: C, 44.20; H, 5.53; N, 12.76. Calcd. for C₈H₁₂N₂O₅: C, 44.44; H, 5.59; N, 12.96%.

Synthesis of α -aminonitrile from cyclopentanone 9

At room temperature

A mixture of cyclopentanone 9 (0.19 g, 0.71 mmol), potassium cyanide (0.13 g, 2.1 mmol), and ammonium chloride (0.11 g, 2.1 mmol) in MeOH (3 ml) and H_2O (3 ml) was stirred at room temperature for 7 d. The reaction mixture was partitioned between H_2O and EtOAc, and the organic layers were dried and evaporated.

4643

Purification of the residue with silica gel chromatography (hexane/EtOAc 5:2) gave (1RS,2SR,3RS,4RS)-1amino-4-benzyloxymethyl-2,3-dimethylmethylenedioxy-1-cyclopentanecarbonitrile 14 (19 mg, 9%) and (1RS,2RS,3RS,4RS)-4-benzyloxymethyl-2,3-dimethylmethylenedioxy-1-hydroxy-1-cyclopentanecarbonitrile 15 (0.15 g, 72%) as colorless oils.

carbonitine 15 (0.15 g, 72%) as coloness on

Irradiation with ultrasound

A mixture of potassium cyanide (0.13 g, 2.0 mmol), ammonium chloride (0.12 g, 2.2 mmol), and neutral alumina (0.36 g) in MeCN (7 ml) was irradiated with ultrasound at 60 °C. After 10 min, a solution of cyclopentanone 9 (0.28 g, 1.0 mmol) in MeCN (3 ml) was added, followed by irradiation for 20 h. After filtration through a pad of Celite^R, the filtrate was concentrated in vacuo followed by purification by chromatography on silica gel (hexane/EtOAc 4:1 to 2:1) to give 14 (0.19 g, 63%) and 15 (0.11 g, 35%) as colorless oils.

Heating at 90 °C

A mixture of cyclopentanone 9 (1.05 g, 3.8 mmol), potassium cyanide (1.73 g, 26.6 mmol), and ammonium chloride (1.42 g, 26.6 mmol) in MeOH (15 ml) and H_2O (15 ml) was heated at 90 °C for 9 h. The black mixture was poured into H_2O and extracted with EtOAc. The organic phases were washed with brine, dried, and evaporated. The residue was purified by silica gel chromatography (hexane/EtOAc 6:1 to 2:1) to afford (15R,2SR,3RS,4RS)-1-amino-4-benzyloxymethyl-2,3-dimethylmethylenedioxy-1-cyclopentane-

carbonitrile 13 (0.46 g, 40%), 14 (0.17 g, 15%), and 15 (0.25 g, 22%) as colorless oils.

For 13: IR (CHCl₂) 3550, 3420, 3350, 3020, 2960, 2890, 2250, 1730, 1455, 1380, 1240, 1160 cm⁻¹; NMR (CDCl₂) δ 7.40-7.27 (5H, m), 4.63 (1H, d, J = 5.6 Hz), 4.51 (2H, ABq, J = 12.1 Hz), 4.29 (1H, d, J = 5.6 Hz), 3.61 (1H, dd, J = 9.3, 7.3 Hz), 3.52 (1H, dd, J = 9.3, 6.2 Hz), 2.63-2.49 (2H, m), 1.91-1.82 (1H, m), 1.74 (2H, brd.), 1.55 (3H, s), 1.31 (3H, S); MS *m*/*z* 302 (M⁺), 287, 276, 211, 196, 153, 123, 92; HRMS. found: 302.1632. Calcd. for C₁₇H₂₂N₂O₃: 302.1631.

For 14: IR (CHCl₃) 3500, 3400, 3320, 3000, 2940, 2860, 2220, 1600, 1450, 1370, 1160 cm⁻¹; NMR (CDCl₃) δ 7.38-7.27 (5H, m), 4.66 (1H, d, *J* = 7.0 Hz), 4.59 (1H, dd, *J* = 7.0, 3.6 Hz), 4.53 (2H, s), 3.55 (1H, dd, *J* = 9.3, 5.6 Hz), 3.49 (1H, dd, *J* = 9.3, 5.6 Hz), 2.70-2.57 (1H, m), 2.17 (2H, d, *J* = 8.4 Hz), 1.77 (2H, brd.), 1.53 (3H, s), 1.34 (3H, s); MS *m/z* 302 (M⁺), 287, 275, 260, 174, 154, 96, 91; HRMS. found: 302.1636. Calcd. for C₁₇H₂₂N₂O₃: 302.1631.

For **15**: IR (CHCl₃) 3300, 3000, 2940, 2860, 2250, 1450, 1370 cm⁻¹; NMR (CDCl₃) δ 7.42-7.27 (5H, m), 5.24 (1H, s), 4.63 (1H, d, J = 5.2 Hz), 4.57 (2H, s), 4.45 (1H, dd, J = 5.2, 1.6 Hz), 3.65 (1H, dd, J = 9.3, 3.6 Hz), 3.50 (1H, dd, J = 9.3, 3.2 Hz), 2.78 (1H, dd, J = 14.5, 9.7 Hz), 2.52-2.46 (1H, m), 2.02 (1H, dd, J = 14.5, 1.2 Hz), 1.50 (3H, s), 1.31 (3H, s), ; MS *m*/*z* 303 (M⁺), 288, 235, 185, 154, 127, 92; HRMS. found: 303.1465. Calcd. for C₁₇H₂₁NO₄: 303.1471.

(5RS,6SR,7RS,8RS)-8-Benzyloxymethyl-6,7-dihydroxy-1,3-diazaspiro[4.4]nonane-2,4-dione 16.

Chlorosulfonyl isocyanide (0.082 ml, 0.95 mmol) was added at room temperature under N₂ atmosphere to a solution of aminonitrile 13 (0.26 g, 0.86 mmol) in CH₂Cl₂(10 ml). The reaction mixture was stirred for 20 min, and concentrated. 1N HCl (4 ml) was added to the residue, and the resulting mixture was stirred at room temperature for 20 min, and further stirred at 100 °C for 1 h. The reaction mixture was poured into H₂O, and extracted with EtOAc. The organic layers were washed with brine prior to drying and solvent evaporation. The residue was chromatographed on silica gel (hexane/EtOAc 1:5 to EtOAc only) to give spirohydantoin 16 (0.17 g, 67%) as a colorless solid.

For **16**: m.p. 136 °C; IR (KBr) 3250, 2930, 2870, 1775, 1720, 1405, 1050 cm⁻¹; NMR (CD₃OD) δ 7.36-7.23 (5H, m), 4.53 (2H, s), 3.97 (1H, d, J = 6.0 Hz), 3.89 (1H, dd, J = 6.0, 3.6 Hz), 3.52 (2H, ABqd, J = 9.3, 5.2 Hz), 2.55-2.42 (1H, m), 2.30 (1H, dd, J = 13.7, 9.7 Hz), 1.68 (1H, dd, J = 13.7, 8.5 Hz); MS *m*/*z* 306 (M⁺), 288, 215, 197, 137, 108; HRMS. found 306.1222. Calcd. for C₁₅H₁₈N₂O₅ : 306.1216.

(5SR,6SR,7RS,8RS)-8-Benzyloxymethyl-6,7-dihydroxy-1,3-diazaspiro[4.4]nonane-2,4-dione 17.

From 14: 5-*Epi* spirohydantoin 17 (72 mg) was obtained from aminonitrile 14 (0.18 g, 0.59 mmol) and chlorosulfonyl isocyanate (0.057ml, 0.65mmol) in 40% yield as a colorless solid under the same procedure used for 13.

From 10: A mixture of 5-epi spirohydantoin 10 (0.10 g, 0.29 mmol) and Dowex^R 50W (H⁺ form) (0.50 g) in MeOH (3 ml) and H₂O (3 ml) was stirred at room temperature for 14 h. After filtration through a pad of Celite^R, the filtrate was concentrated, and subjected to chromatography on silica gel (hexane/EtOAc 1:5) to give 5-epi-spirohydantoin 17 (88 mg, 99%) as a colorless solid.

For 17: m.p. 139-140 °C; IR (KBr) 3360, 3220, 2940, 2855, 1775, 1740, 1400, 1330, 1275 cm⁻¹; NMR (CD₃OD) δ 7.37-7.24 (5H, m), 4.52 (2H, ABq, J = 12.4 Hz), 4.04 (1H, d, J = 4.8 Hz), 3.99 (1H, dd, J = 4.8, 3.2 Hz), 3.49 (2H, d, J = 6.0 Hz), 2.43-2.31 (1H, m), 2.09 (1H, dd, J = 14.2, 9.4 Hz), 1.98 (1H, dd, J = 14.2, 7.8 Hz); MS *m*/*z* 306 (M⁺), 288, 215, 197, 149, 91; HRMS. found 306.1221. Calcd. for C₁₅H₁₈N₂O₅ : 306.1216.

(5RS,6SR,7RS,8RS)-6,7-Dihydroxy-8-hydroxymethyl-1,3-diazaspiro[4.4]nonane-2,4-dione 2.

A mixture of spirohydantoin 16 (0.12 g, 0.41 mmol) and 5% Pd/C (0.10 g) in MeOH (125 ml) was heated at 55 °C under H_2 atmosphere (3 Kg/cm²) for 6 h. Filtration through a pad of Celite^R followed by concentration and purification with chromatography on Dianion CHP 20P (H₂O only) afforded carbocyclic analogue 2 (84 mg, 96%) as a colorless solid.

For 2: m.p. 158-160 °C; IR (KBr) 3300, 2930, 1770, 1730, 1410, 1270, 1030 cm⁻¹; NMR (CD₃OD) δ 3.96 (1H, d, J = 6.0 Hz), 3.87 (1H, dd, J = 6.0, 3.2 Hz), 3.58 (2H, ABqd, J = 10.8, 5.2 Hz), 2.44-2.34 (1H, m), 2.29 (1H, dd, J = 12.9, 9.2 Hz), 1.62 (1H, dd, J = 12.9, 7.6 Hz); MS m/z 217 (M⁺+1), 198, 180, 152, 128, 114, 104, 100, 96; Anal. found: C, 44.15; H, 5.50; N, 12.70. Calcd. for C₈H₁₂N₂O₃: C, 44.44; H, 5.59; N, 12.96%.

(*SRS*,6*SR*,7*RS*,8*RS*)-8-Benzyloxymethyl-1,3-dimethyl-6,7-dimethylmethylenedioxy-1,3-diaza-spiro[4.4]nonane-2,4-dione 18.

A solution of spirohydantoin 16 (0.19 g, 0.63 mmol) and 2-methoxypropene (0.18 ml, 1.9 mmol) in CH₂Cl₂ (5 ml) was stirred at room temperature in the presence of p-TsOH•Py (20 mg) for 1 h. The reaction mixture was quenched with H₂O and extracted with CH₂Cl₂ prior to drying and evaporation. Chromatography on silica gel of the residue (hexane/EtOAc 3:2) afforded (5*RS*,6*SR*,7*RS*,8*RS*)-8-benzyloxymethyl-6,7-dimethylmethylenedioxy-1,3-diazaspiro[4.4]nonane-2,4-dione (0.20 g, 94%) as a colorless syrup.

IR (CHCl₃) 3440, 3200, 3000, 2950, 2870, 1780, 1730, 1380, 1240, 1060 cm⁻¹; NMR (CDCl₃) δ 7.58 (1H, brd.), 7.44-7.30 (5H, m), 6.49 (1H, brd.), 4.62 (1H, d, *J* = 5.4 Hz), 4.56 (1H, ABq, *J* = 11.4 Hz), 4.54 (1H, d, *J* = 5.4 Hz), 3.66 (1H, dd, *J* = 9.5, 3.0 Hz), 3.54 (1H, dd, *J* = 9.5, 3.0 Hz), 2.88 (1H, dd, *J* = 14.1, 9.4 Hz), 2.56-2.53 (1H, m), 1.74 (1H, dd, *J* = 14.1, 1.0 Hz), 1.54 (3H, s), 1.27 (3H, s); MS *m*/z 346 (M⁺), 331, 238, 197, 149, 91; HRMS. found: 346.1535. Calcd. for C₁₈H₂₂N₂O₅: 346.1528.

A solution of the above spirohydantoin (32 mg, 0.092 mmol) and t-BuOK (83 mg, 0.74 mmol) in THF (3 ml) was stirred at room temperature for 30 min, and methyl iodide (0.07 ml, 1.1 mmol) was added. The resulting mixture was stirred at room temperature for 24 h, before dilution with water and extraction with EtOAc. The organic layers were washed with brine, dried, and purified with silica gel chromatography (hexane/EtOAc 3:1) to afford dimethylspirohydantoin 18 (24 mg, 70%) as a colorless oil.

For 18: IR (CHCl₃) 3670, 3470, 3000, 2920, 2860, 1765, 1710, 1460, 1380, 1220 cm⁻¹; NMR (CDCl₃) δ 7.39-7.29 (5H, m), 4.68 (1H, d, J = 8.1 Hz), 4.63 (1H, dd, J = 8.1, 5.2 Hz), 4.55 (2H, ABq, J = 12.1 Hz), 3.61 (1H, dd, J = 9.5, 4.8 Hz), 3.52 (1H, dd, J = 9.5, 4.4 Hz), 3.18-3.05 (1H, m), 3.00 (3H, s), 2.91 (3H, s),

2.12 (1H, t, J = 13.3 Hz), 1.95 (1H, dd, J = 13.3, 7.3 Hz), 1.49 (3H, s), 1.28 (3H, s); MS m/z 374(M⁺), 359, 266, 225, 208, 195, 140, 91; HRMS. found 374.1848. Calcd. for $C_{20}H_{26}N_2O_5$: 374.1842.

(5SR,6RS,7RS,8RS)-8-Benzyloxymethyl-6,7-dimethylmethylenedioxy-1-oxa-3-azaspiro[4.4]nonan-2-one 19.

A solution of cyanohydrin 15 (0.13 g, 0.43 mmol) in Et_2O (3 ml) was added at 0 °C to a suspension of lithium aluminum hydride (35 mg, 0.86 mmol) in Et_2O (5 ml), and the resulting mixture was stirred at room temperature for 3 h. The reaction mixture was quenched with 4N NaOH and extracted with EtOAc. The combined organic layers were washed with brine, dried, and concentrated. The residue was diluted with CH_2Cl_2 (10 ml), and stirred with triethylamine (0.85 ml, 6.1 mmol) and phosgene (1.3 M in toluene, 5.3 mmol) at room temperature. After being stirred for 2 h, the reaction mixture was poured into H_2O , and extracted with CH_2Cl_2 . The organic layers were washed, dried, evaporated, and purified with silica gel chromatography (hexane/EtOAc 3:1 to 1:1) to afford spirooxazolidone 19 (60 mg) in 44% yield from 15 as a colorless oil.

For **19**: IR (CHCl₂) 3460, 3260, 2980, 2930, 1750, 1370, 1260, 1070 cm⁻¹; NMR (CDCl₃) δ 7.35-7.28 (5H, m), 5.28 (1H, bd.) 4.67 (1H, d, J = 5.6 Hz), 4.53 (2H, s), 4.48 (1H, dd, J = 5.6, 1.4 Hz), 3.90 (1H, d, J = 9.1 Hz), 3.55 (1H, dd, J = 9.3, 9.3 Hz), 3.45 (1H, dd, J = 9.3, 7.2 Hz), 3.36 (1H, d, J = 9.1 Hz), 2.51-2.42 (1H, m), 2.15 (1H, dd, J = 14.3, 8.1 Hz), 2.01 (1H, d, J = 14.3 Hz), 1.42 (3H, s), 1.30 (3H, s); MS *m/z* 333 (M⁺), 318, 214, 201, 149, 91; HRMS. found: 333.1569. Calcd. for C₁₈H₂₃NO₅: 333.1576.

References

- Reviews: a) Marquez, V. E.; Lim, M.-L. Med. Res. Rev. 1986, 6, 1; b) Katagiri, N. Yuki Gosei Kagaku Kyokaishi 1989, 47, 707; c) Matsuda, A. ibid. 1990, 48, 907; c) Borthwick, A. D.; Biggadike, K. Tetrahedron 1992, 48, 571; d) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, S. R.; Earl, R. A.; Guedj, R. ibid. 1994, 50, 10611.
- a) Bricaud, H.; Herdewijn, P.; De Clercq, E. Biochem. Pharmacol. 1983, 3583; b) Herdewijn, P.; De Clercq, E.; Balzarini, J.; Vanderhaeghe, H. J. Med. Chem. 1985, 28, 550; c) Borthwick, A. D.; Butt, S.; Biggadike, K.; Exall, A. M.; Roberts, S. M.; Youds, P. M.; Kirk, B. E.; Booth, B. R.; Cameron, J. M.; Cox, S. W.; Marr, C. L. P.; Shill, M. D. J. Chem. Soc., Chem. Commun. 1988, 656; d) Borthwick, A. D.; Kirk, B. E.; Biggadike, K.; Exall, A. M.; Butt, S.; Roberts, S. M.; Knight, D. L.; Coates, J. A. V.; Ryan, D. M. J. Med. Chem. 1991, 34, 907.
- a) Sankyo, *Eur. Pat. Appl.* 0232 572 A2, 19. 08. 87; b) Haruyama, H.; Takayama, T.; Kinoshita, T.; Kondo, M.; Nakajima, M.; Haneishi, T. *J. Chem. Soc. Perkin Trans. 1* 1991, 1637; c) Nakajima, M.; Itoi, K.; Takamatsu, Y.; Kinoshita, T.; Okasaki, T.; Kawakubo, K.; Shindou, M.; Honma, T.; Tohjigamori, M.; Haneishi, T. *J. Antibiot.* 1991, 44, 293; d) Ciba Geigy AG, *DE Pat.* 4129-616-A, 10. 09. 90; e) Mitsubishi Kasei Corp., *Jap. Pat.* 04222589-A, 19. 12. 90.
- Synthesis of spirosugars at anomeric position, see: a) Ferris, J. P.; Devadas, B. Tetrahedron Lett. 1986, 27, 323; b) Ferris, J. P.; Devadas, B. J. Org. Chem. 1987, 52, 2355; c) Yokoyama, M.; Yamada, N. Tetrahedron Lett. 1989, 30, 3675; d) Yokoyama, M.; Yamada, N.; Goto, H. Chem. Lett. 1990, 753; e) Kittaka, A.; Tanaka, H.; Odanaka, Y.; Ohnuki, K.; Yamaguchi, K.; Miyasaka. T. J. Org. Chem. 1994, 59, 3636; f) Csuk, R., Glänzer, B. I., Hu, Z., Boese, R. Tetrahedron 1994, 50, 1111; g) Noort, D.; Van der Marel, G. A.; Mulder G. J.; Van Boom, J. H. Synlett 1992, 224.
- 5. Synthesis of (+)-hydantocidin, see: a) Mio, S.; Ichinose, R.; Goto, K.; Sugai, S.; Sato, S. Tetrahedron

1991, 47, 2111; b) Mio, S.; Kumagawa, Y.; Sugai, S. *ibid.* 1991, 47, 2133; c) Ciba Geigy AG, *DE Pat.* 4129-728-A, 10. 09. 90; d) Matsumoto, M.; Kirihara, M.; Yoshino, Y.; Katoh, T.; Terashima, S. *Tetrahedron Lett.* 1993, 34, 6289; e) Chemla, P. *ibid.* 1993, 34, 7391; f) Harrington, P. M.; Jung, M. E. *ibid.* 1994, 35, 5145.

- a) Fairbanks, A. J.; Ford, P. S.; Watkin, D. J.; Fleet, G. W. *Tetrahedron Lett.* 1993, 34, 3327; b) Burton, J. W.; Son, J. C.; Fairbanks A. J.; Choi, S.; Taylor, H.; Watkin, D. J.; Winchester, B. G.; Fleet, G. W. *ibid.* 1993, 34, 6119.
- a) Mio, S.; Shiraishi, M.; Sugai, S.; Haruyama, H.; Sato, S. Tetrahedron 1991, 47, 2121; b) Mio, S.; Ueda, M.; Haruyama, M.; Kitagawa, J.; Sugai, S. *ibid*. 1991, 47, 2145; c) Mio, S.; Sano, H.; Shindou, M.; Honma, T.; Sugai, S. Agri. Biol. Chem. 1991, 55, 1105; d) Mio, S.; Sugai, S. Annu. Rep. Sankyo Res. Lab. 1991, 43, 133; e) Sano, H.; Mio, S.; Kitagawa, J.; Sugai, S. Tetrahedron: Asymmetry 1994, 5, 2233; f) Sano, H.; Mio, S.; Tsukaguchi, N.; Sugai, S. Tetrahedron in press.
- a) Sugai, S., Abstract paper 7th International Congress of Pesticide Chemistry, Hamburg, Aug. 1990, Abstr. No. 01A-71; b) Mio, S., Ph. D. Thesis, Nagoya University, 1991.
- 9. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 23, 1973.
- a) Maki, Y.; Masugi, T.; Ozeki, K. Chem. Pharm. Bull. 1973, 21, 2446; b) For a review of the hydantoin ring, see: Lõpez, C. A.; Trigo, G. G. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic, 1985; Vol. 38, pp 177-228 and references cited therein.
- 11. Edward, J. T.; Jitrangsri, C. Can J Chem. 1975, 53, 3339.
- 12. Stereochemistry of cyanohydrin 15 was determined by ¹H-NOE experiment of spirooxazoline 19 (Scheme 6). Reduction of 15 with LiAlH₄ in THF followed by treatment with phosgene and triethylamine afforded spirooxazoline 19 in 44% yield. Irradiation of the signal for C4 methylene protons enhanced the signals for the C7 methine and C8 methylene protons of 19, indicating that a cyano group was introduced from the opposite side of the dimethylmethylenedioxy unit in cyclopentanone 9.

- 13. Using ultrasound for Strecker reaction, see: a) Menèdez, J. C.; Trigo, G. G.; Söllhuber, M. M. *Tetrahedron Lett.* 1986, 27, 3285; b) Hanafusa, T.; Ichihara, J.; Ashida, T. *Chem. Lett.* 1987, 687.
- 14. Sarges, R.; Howard, Jr., H. R.; Kelbaugh, P. R. J. Org. Chem. 1982, 47, 4081.
- 15. (+)-Hydantocidin exhibited complete control of all species under the same condition.

(Received in Japan 13 January 1995; accepted 16 February 1995)