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Abstract: Asymmetric dihydroxylation of b,g-unsaturated esters 4
provided b-hydroxy-g-lactones 3 or ent-3. Methanolysis acetonide
formation and LDA-mediated fragmentation of the resulting esters
5/ent-5 furnished the g-chiral acrylates 6/ent-6 containing disubsti-
tuted C = C bonds (93-99% ee). Also, b-hydroxy-g-lactones ent-3a
and 3b were a-butylated and a-brominated, respectively, prior to
methanolysis, acetonide formation, and fragmentation which led to
the g-chiral acrylates 9 and 12 with trisubstituted C = C bonds (94
and 95% ee, respectively).

Key words: acetonides, asymmetric dihydroxylation, chiral acry-
lates, g-chiral a,b-unsaturated esters, b-hydroxy-g-lactones

Many reactions with acyclic stereocontrol exploit the
minimization of allylic strain.1 Accordingly, substrates
with stereodirecting allylic oxygen2 or nitrogen
substituents3 are frequently encountered in stereoselective
synthesis. Enantiomerically pure type-6 a,b-unsaturated
g-hydroxy esters are particularly versatile in this regard,4

although they are not accessible very generally. The most
common starting point are an enantiopure unprotected or
protected a-hydroxyaldehyde and a stabilized phospho-
rane.5,6 The limited supply of such aldehydes from the
„chiral pool“ and the possibility of stereorandomization at
C-a hinder this approach. More widely applicable but
lengthier are Sharpless epoxidation and photolysis of the
derived epoxydiazoketone.7 A promising yet little ex-
plored route is the enzymatic resolution of the racemic hy-
droxyester.8 A one-step synthesis of type-6 esters is the
reaction between aldehydes and enantiomerically pure
sulfinyl esters unfortunately, ee’s are only 50-75% and
five equivalents of the aldehyde are required to obtain
good yields.9 

Scheme 1 a) Modified AD mix-b  [containing 1 mol-%
K2OsO3(OH)2 and 5 mol-% (DHQD)2PHAL], MeSO2NH2; 81-
84%.10- b) SOCl2, NEt3, CH2Cl2.11- c) DBU; 87-92% over the two
steps.11

A highly stereocontrolled synthesis of the Weinreb amide
analogs 2 of type-6 esters appeared in the literature, too
(Scheme 1): Dihydroxylation of the b,g-unsaturated
amides 1 with AD mix-b 10 followed by conversion of the
resulting diols into cyclic sulfites and b-elimination/frag-
mentation.11 However, it is unlikely that this route can be
extended to obtaining g-hydroxy amides with trisubstitut-
ed Cα = Cβ bonds - while our approach described below
delivers esters of that substitution pattern. Moreover, it is
doubtful that the amides of Scheme 1 react like the corre-
sponding esters. Therefore, we adopted the strategy of
Scheme 1 for the conversion of different dihydroxylation
products - the hydroxylactones 3 or their enantiomers
ent-3 - into type-6 esters and reduced the step require-
ment  (Schemes 2-4).12  These  esters  may  contain  two
or three  substituents  at  the Cα = Cβ  bond. The  crucial
hydroxylactones 3/ent-3 are accessible13,14 through asym-
metric dihydroxylation (AD) of b,g-unsaturated esters 4.
They were already used as precursors for many saturated
and unsaturated g-lactones15-19 as well as simple
alcohols20 and 1,2-diols17 in our hands.

The trans-configured b,g-unsaturated ester 4a is commer-
cially available. Unsaturated esters 4b, d, e, g were pre-
pared in 71-77% yield and trans-selectively by
decarboxylative Knoevenagel condensations between an
appropriate aldehyde and monomethyl malonate.21,22 Es-
ter 4c was prepared by a decarboxylative Knoevenagel
condensation between phenylacetaldehyde and malonic
acid23 followed by TsOH-catalyzed esterification of the
b,g-unsaturated ester intially obtained. 

AD of esters 4b-g under standard conditions delivered
S,S- and R,R-configured hydroxylactones 3 and ent-3, re-
spectively, depending on whether AD mix-a  was em-
ployed - which contains (DHQ)2PHAL - or AD mix-b

- which contains (DHQD)2PHAL; the lactones resulted
with 93-99% ee in 74-90% yield (Scheme 2, Table). The
AD reaction of ester 4a was performed using 10 mol-%
(DHQD)2PHAL and 2 mol-% K2OsO3(OH)2, providing
hydroxylactone ent-3a with 94% ee (69% yield) while
standard AD conditions led to 80% ee and 38% yield.17 

The  conversion of lactones 3/ent-3 into acetonide-pro-
tected b,g-dihydroxy esters 5/ent-5 succeeded under the
conditions described for such a reaction of g-(hydroxy-
methyl)-g-lactone24 [under which, however, b-hydroxy-g-
(hydroxymethyl)-g-lactone failed to ring-open25]: Lac-
tones 3/ent-3 in excess 2,2-dimethoxypropane / methanol
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reacted at room temperature within 36 h giving the desired
acetonide esters 5/ent-5 in essentially quantitative yields
(Table).26 After filtration and removal of the solvent they
could be used in the next reaction without further purifi-
cation; the yield of material purified by flash chromatog-
raphy on silicagel27 was 82-98%. 

At -78 °C the acetonide esters 5/ent-5 and 2.2 equivalents
of LDA reacted to completion within 10 min to give the
desired g-hydroxy a,b-unsaturated esters 6/ent-6 with
³98:2 trans-selectivity.28-30 The second equivalent of
LDA deprotonates the acetone released in the reaction,

since otherwise the acetone reprotonates the 5- or ent-5-
enolate, rendering the fragmentation incomplete. The
yields were 78-97% except starting from the OH-contain-
ing ester acetonide 5f which was fragmented with 3.2
equivalents of LDA and furnished 58% yield (Table). The
terminal alkyne group of acetonide ester 5g also required
an additional equivalent of LDA for clean acrylate forma-
tion (95% yield). The ee of esters 6/ent-6 should be unal-
tered compared with the precursor lactones 3/ent-3; 1H
NMR spectroscopy of the Mosher of ent-6e revealed
ee = 95% compared to 96% ee in ent-5e (determined by
GC). When the AD reactions 4 ® 3/ent-3 were performed
in the absence of MeSO2NH2 - which increased the reac-
tion times - the three-step sequences 4 ® 3/ent-3 ® 5/
ent-5 ® 6/ent-6 could be performed with unpurified inter-
mediates. 

Scheme 3 a) LDA (2.5 equiv.), THF, -78 °C, 2 h; BuI (1.2 equiv.),
THF/DMPU 1:1, -35 °C, 20 h; 84%.- b) Me2C(OMe)2 (10 equiv.),
MeOH (16 equiv.), Amberlyst 15 (20 mg/mmol), room temp., 3 d;
44%.- c) LDA (2.2 equiv.), THF, -78 °C, 10 min; 79%.

The b-hydroxylactone ent-3a was a-butylated in THF/
DMPU with complete trans-selectivity31 and the b-hy-
droxylactone 3b a-brominated trans-selectively. Thereby,
we obtained the trisubstituted g-lactones 7 (Scheme 3) and
10 (Scheme 4), respectively. These, too, were subjected to
methanolysis and acetonide formation by treatment with
dimethoxypropane in acidic methanol. These reactions -
other than those with their disubstituted counterparts 3/
ent-3 - did not go to completion, not even after prolonged
reaction times (3 d) or working at 40 °C rather than at
room temperature. Since we isolated the desired acetonide

Scheme 2 a) AD mix-a , tBuOH/H2O 1:1, MeSO2NH2 (1.0
equiv.), 0 °C, 36-72 h.- b) AD mix-b , tBuOH/H2O 1:1, MeSO2NH2

(1.0 equiv.; for the exceptional case of 4a see ref.17), 0 °C, 36-72 h.-
c) Me2C(OMe)2 (10 equiv.), MeOH (8 equiv.), Amberlyst 15 (20 mg/
mmol), room temp., 36 h.- d) LDA (2.2 equiv., 3.2 equiv. for 6f and
g), THF, -78 °C, 10 min.

Table Yields of Compounds 3/ent-3, 5/ent-5, 6/ent-6

a) Lactone 3f was prepared by desilylation of the corresponding tert-
butyldiphenylsilylether.17 b) Determined by chiral GC. c) Determined
by chiral GC of the corresponding b-elimination product. d) Determi-
ned by 1H-NMR spectroscopic analysis of the Mosher ester

Scheme 4 a) LDA (2.5 equiv.), THF, -78 °C, 2 h; Br2 (2.0 equiv.),
THF/DMPU 1:1, -35 °C, 20 h; 48%.- b) Me2C(OMe)2 (10 equiv.),
MeOH (16 equiv.), Amberlyst 15 (20 mg/mmol), room temp., 3 d;
41%.- c) LDA (2.2 equiv.), THF, -78 °C, 10 min; 77%.
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esters 8 and 11 in 44% and 41% yield, respectively, and
retrieved the residual starting material in 49% and 45%
yield, respectively, this means that the third substituent in
the lactone turned methanolysis/ketalization into thermo-
dynamically indifferent reactions. The LDA-induced
fragmentation of acetonide esters 8 and 11 afforded the
corresponding a-butylated and a-brominated g-hydroxy
acrylates 9 and 12 isomerically pure and in 79% and 77%
yield, respectively. In both compounds the CO2Me group
and the hydroxyalkyl substituent assume trans positions
at the C = C bond as they did in the a-unsubstituted esters
6/ent-6. However, as a consequence of the CIP priority
rules, the C = C configuration is E in 9 and Z in 12.

We are convinced that this catalytically asymmetric syn-
thesis - entailing four steps from aliphatic aldehydes if a-
unsubstituted hydroxy acrylates and five steps if a-substi-
tuted hydroxy acrylates are desired - will facilitate the use
of type-6 g-hydroxy acrylates in synthesis.
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