A CONVENIENT SYNTHESIS OF BENZO[C]PHENANTHRIDINE ALKALOID, CHELERYTHRINE, BY THE PALLADIUM-ASSISTED INTERNAL BIARYL COUPLING REACTION

Takashi HARAYAMA,* Toshihiko AKIYAMA, and Kazuko KAWANO

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka 1-1-1, Okayama 700, Japan

Total synthesis of chelerythrine, a benzo[c]phenanthridine alkaloid, was accomplished *via* the internal aryl-aryl coupling reaction of halo-amide (4) by the palladium-assisted cyclization reaction.

KEY WORDS internal biaryl coupling; Heck type reaction; halo-amide; benz[c]phenanthridine alkaloid; chelerythrine

Benzo[c]phenanthridine alkaloids have attracted much attention because of their potent pharmacological activities.¹⁾ Recently, it was reported that chelerythrine (1)²⁾ and isofagaridine (2)³⁾ inhibited protein kinase C and DNA topoisomerase I, respectively. Although several reports on the total synthesis of chelerythrine have been published,⁴⁾ the methods had some disadvantages such as many steps, low yield, and/or no generality. Therefore, we planned to develop a convenient synthetic method for 1.

RORON Me

R, R' = Me chelerythrine (1) oxychelerythrine (3)

R = H, R' = Me isofagaridine (2)

MeO O N Me

Oxychelerythrine (3)

MeO O O O

MeO O O

NH2

$$X = Br, I$$

Chart 1

The cross-coupling reaction with palladium catalyst has been an extremely useful tool in organic synthesis.⁵⁾ We designed the synthetic plan for 1 involving an internal biaryl cyclization by palladium as a key reaction,⁶⁾ as shown in Chart 1. Since the coupling product (3), oxychelerythrine, had already been converted into chelerythrine (1),^{4e)} the synthesis of 3 indicates a formal synthesis of 1. It was reported that an internal coupling reaction of bromo-amide (7b) with a Pd reagent proceeded in 50% yield.^{6a)} In order to improve the yield, the reaction was re-examined using purified Pd(OAc)₂,⁷⁾ phosphine ligand and base. The results are summarized in Table 1. On

August 1996 1635

Table 1. Results of Cyclization Reaction of 2-Halo-N-methyl-N-phenylbenzamide (7)^{a)}

	Pd(OAc) ₂							Yield (%)	
X	Run	(eq.)	Ligand	Base	Solvent	Temp.	Time	8	S.M.
	1	0.05	PPh ₃	Ag ₂ CO ₃	DMF	Refl.	40 min	79	
	- 2	0.2	PPh ₃	Ag_2CO_3	DMF	Refl.	15 min	93	
	3	0.2	POT	Ag_2CO_3	DMF	Refl.	15 min	93	
	4	0.2	PPh ₃	Ag_2CO_3	DMF	30-35°C	35 h	85	
Ι	5	0.2	PPh_3	Ag_2CO_3	Xylene	30-35°C	23 h	93	
	6	0.2	PPh_3	Ag_2CO_3	Benzene	Refl.	10 min	98	****
	7	0.2	PPh_3	Ag_2CO_3	CH ₃ CN	Refl.	15 min	95	
	8	0.2	PPh_3	iPr ₂ NEt	DMF	Refl.	4.5 h	21	7
	9	0.2	PPh ₃	ⁱ Pr ₂ NEt	Benzene	Refl.	6 h	45	14
Br	10	1.0	PPh ₃	Ag ₂ CO ₃	DMF	Refl.	60 h	75	7
	11	0.2	POT	Ag ₂ CO ₃	DMF	Refl.	1.5 h	99	

a) All reactions were carried out using $Pd(OAc)_2$ and ligand in a ratio of 1:2 and 2 mol equivalent of base.

Table 2. Results of Cyclization Reaction of 6-Halo-2,3-dimethoxy-*N*-methyl-*N*-(6,7-methylenedioxy-1-naphthyl)benzamide (4) to Oxychelerythrine (3)^{a)}

		Pd(OAc) ₂						Yield (%)
X	Run	(eq.)	Ligand	Base	Solvent	Temp.	Time	3
I	1 2	0.2 0.2	PPh ₃ POT	Ag_2CO_3 Ag_2CO_3	DMF DMF	Refl. Refl.	20 min 20 min	85 94
Br	3 4	0.2 0.2	PPh ₃ POT	$\begin{array}{c} Ag_2CO_3 \\ Ag_2CO_3 \end{array}$	DMF DMF	Refl. Refl.	2 h 3 h	79 96

a) All reactions were carried out in the presence of ligand (0.4 eq) and base (2 eq).

1636 Vol. 44, No. 8

using 0.2 eq of Pd(OAc)₂, PPh₃, and Ag₂CO₃, the solvent had no crucial effect on the internal coupling rection of iodo-amide (**7a**), although Ag₂CO₃ was superior to Hünig base. On the other hand, the coupling reaction of bromo-amide (**7b**) proceeded slowly even when using a stoichiometric amount of Pd(OAc)₂ in the presence of PPh₃ as a ligand in DMF (see run10 in Table 1). However, on using tris(2-methylphenyl)phosphine (POT) as ligand, the reaction proceeded smoothly using 0.2 eq of Pd(OAc)₂ and gave phenanthridone (**8**) in an excellent yield (see run 11 in Table 1).

Next, we applied these methods to the synthesis of oxychelerythrine (3) from halo-amides (4), which were prepared from iodo-acid (5a)⁸⁾ or bromo-acid (5b)⁹⁾ and naphthylamine (6),¹⁰⁾ as shown in Chart 2. The results are summarized in Table 2. The coupling reaction of both halo-amides (4) with Pd(OAc)₂, PPh₃ or POT and Ag₂CO₃ in DMF under reflux afforded oxychelerythrine (3) in an excellent yield, although iodo-amide (4a) was more reactive than bromo-amide (4b).

In conclusion, the present method using the Pd reagent is very convenient and effective for preparing benzo[c] phenanthridine alkaloids. We are now investigating the generality of this method.

REFERENCES AND NOTES

- 1) a) Simanek V., "The Alkaloids," Vol. 26, ed. by Brossi A., Academic Press. Inc., New York, 1983, pp185-240; b) Dostal J., Potacek M., Collect. Czech. Chem. Commun., 55, 2840-2873 (1990).
- 2) Herert J. M., Augereau J. M., Gleye J., Maffrand J. P., Biophys. Res. Commun., 172, 993-999 (1990).
- 3) Fang S.-D., Wang L.-K., Hecht S. M., J. Org. Chem., 58, 5025-5027 (1993).
- 4) a) Bailey A. S., Warthing C. R., J. Chem. Soc., 1956, 4535-4543; b) Ninomiya I., Yamamoto O., Naito T., J. Chem. Soc., Perkin Trans. I, 1983, 2171-2174; c) Kesser S. V., Gupta Y. P., Barakrishnan P., Sawal K. K., Mohamamad T., Dutt M., J. Org. Chem., 53, 1708-1713 (1988); d) Smidrkal J., Collet. Czech. Chem. Commun., 49, 1412-1420 (1984); e) Hanaoka M., Motonishi T., Mukai C., J. Chem. Soc., Perkin Trans. I, 1986, 2253-2256: Ishii H., Takeda S., Ogata K., Hanaoka M., Harayama T., Chem. Pharm. Bull., 39, 2712-2714 (1991); f) Ishii H., Ishkawa T., Takeda S., Suzuki M., Harayama T., Chem. Pharm. Bull., 40, 2002-2006 (1992); g) Martin G., Guitian E., Castedo L., J. Org. Chem., 57, 5907-5911 (1992).
- a) Tsuji J., "Palladium Reagents and Catalysts," John Wiley & Sons Inc., New York, 1995, pp 125-252; b) Knight D.W., "Comprehensive Organic Synthesis," Vol. 3, ed by Trost B. M. Fleming I., Pergamon Press, Oxford, 1991, pp 481-520.
 a) Ames D. E., Opaeko A., Tetrahedron, 40, 1919-1925 (1984); b) Bringmann G., Walter R.,
- 6) a) Ames D. E., Opaeko A., Tetrahedron, 40, 1919-1925 (1984); b) Bringmann G., Walter R., Weirich R., Angew. Chem. Int. Ed. Engl., 29, 977-991 (1990) and references cited therein; c) Hosoya T., Takashiro E., Matsumoto T., Suzuki K., J. Am. Chem. Soc., 116, 1004-1015 (1994) and references cited therein; d) Deshpande P., Martin O. R., Tetrahedron Lett., 31, 6313-6316 (1990); e) Hosoya T., Takashiro E., Matsumoto T., Suzuki K., Tetrahedron Lett., 35, 4591-4594 (1994).
- 7) Ohrai K., Kondo K., Sodeoka M., Shibasaki M., J. Am. Chem. Soc., 116, 11737-11747 (1994).
- 8) Dyke S. F., Tiley E. P., *Tetrahedron*, **31**, 561-568 (1975).
- 9) Auerbach J., Weisman S. A., Blacklock T. J., Angeles M. R., Hoogsteen K., Tetrahedron Lett., 34, 931-934 (1993).
- 10) Naphthylamine (6) was prepared from 2,3-dimethanesulfonoxy-5-nitro-naphthalene¹¹⁾ via three steps in a total yield of 35%; i) hydrolysis with 2% NaOH, ii) methylenation with CH₂Br₂ in the presence of CsF in DMF, iii) catalytic reduction with Pd-C/H₂ in THF.
- 11) Stermitz F. R., Gillespie J. P., Amoros L. G., Romero R., Stermitz T. A., J. Med. Chem., 18, 708-713 (1975).

(Received June 13, 1996; accepted July 15, 1996)