Azaleatin aus Quercetin 535

Einfache Synthese von Azaleatin aus Quercetin

Simple Synthesis of Azaleatine from Quercetin

Peter Pachaly and H.-L. Tan

Pharmazeutisches Institut der Universität Bonn, Kreuzbergweg 26, D-53115 Bonn

Eingegangen am 7. März 1994

Im Rahmen unserer Untersuchungen zur selektiven O-Alkylierung mehrwertiger Phenole haben wir Quercetin (1), das nach DAB 8 durch quantitative schwefelsaure Hydrolyse aus Rutin erhalten wurde, selektiv mit Pivaloylchlorid in das Tetrapivaloylderivat 2 umgesetzt. Während mit großem Reagenzüberschuß im Wesentlichen das Pentapivaloylderivat 2a und wenig 2 entstehen, ist das Ergebnis genau umgekehrt, wenn man Pivaloylchlorid nur im zweifachen Überschuß anwendet. Nach sc und schichtchromatographischer Reinigung erhält man 65% reines kristallines 2. Für die freie OH-Gruppe in 2 spricht das UV-Spektrum in Methanol: λ max 264 und 332 nm mit bathochromer Verschiebung nach Zugabe von Na-Methylat nach 386 nm und durch Komplexbildung mit AlCl₃ nach 392 nm, was beides für das Vorliegen der freien 5-OH-Gruppe spricht. Durch Umsetzung mit Diazomethan erhält man aus 2 zu 97% das 5-O-Methyl-derivat 3, das nach Abspaltung der Pivaloyl-Schutzgruppen mit methanolischer HCl mit 97% Azaleatin (4) gibt. Die Strukturen 2, 3 und 4 wurden mit Hilfe der NMR-Spektren (Tab. 1 und 2) und durch 2D-NMR-Messungen (H/H-COSY und COLOC Spektren) sowie durch Massenspektren bewiesen. Azaleatin wurde als Naturstoff

Quercetin (1) R, R' = H

(2) $R = H ; R' = CO-C(CH_3)_3$

(2a) R , R' = $CO-C(CH_3)_3$

(3) $R = CH_3$; $R' = CO-C(CH_3)_3$

Azaleatin (4) $R = CH_3$; R' = H

Tab. 1: ¹H-NMR-Signallagen der Verbindungen 2, 2a, 3 und 4 (300 MHz, CDCl₃, δ ppm, J = Hz)

Proton \ Verbdg.	2	20	3	4
6	6.55 d, J=2	6.79 d, J=2	6.54 d, J=2	6.33 d, J=2,1
8	6.83 d, J=2	7.30 d, J=2	6.93 d, J=2	6.48 d, J=2,1
2'	7.64 d, J=2	7.62 d, J=2	7.63 d, J=2	7.58 d, J=2,1
5'	7.31 d, J=8,6	7.29 d, J=8,6	7.28 d, J=8,6	6.87 d, J=8,4
6'	7.62 dd, J=8,6/2	7.72 dd, J=8,6/2	7.72 dd, J=8,6/2	7.47 dd, J=2,1/8,4
3-COC(CH ₃) ₃	1.36 s	1.35 s	1.35 s	-
5-COC(CH ₃) ₃	-	1.35 s	-	-
7-COC(CH ₃) ₈	1.36 s	1.36 s	1.38 s	-
3'-COC(CH ₃) ₃	1.36 s	1.36 s	1.36 s	-
4'-COC(CH ₃) ₃	1.36 s	1,38 s	1.38 s	-
5-OH	12.10 s	-	-	10. 6 0 s
7-OH	-	- .	-	9.36 s
3'-OH	-	-		9.17 s
4'-OH	-	-	-	8.48 s
5-O-CH ₃	-	-	3.97 s	3.82 s

536 Pachaly und Tan

Tab. 2: 13 C-NMR-Signallagen der Verbindungen 2, 2a, 3 und 4 und Azaleatin⁵⁾ (75 MHz, CDCl₃, δ = ppm)

			_		
C-Atom / Verbindung: 2		2a	3	4	Azaleatin
2	155.3	152.9	152.2	141.6	142.1
3	132.3	134.3	134.6	136.7	137.1
4	173.2	169.3	170.7	170.6	171.1
5	161.6	150.9	161.0	160.3	160.6
6	101.1	108.7	100.9	95.7	96.0
7	155.9	154.5	155.5	162.1	162.6
8	105.4	113.5	103.1	94.5	94.8
9	156.8	156.8	157.8	157.7	158.1
10	108.6	114.8	111.9	104.9	105.2
1'	127.3	127.7	127.8	122.1	122.4
2'	123.9 **	123.6	123.6	114.3	114.6
3'	142.6	142.5	142.5	144.8	145.1
4'	145.4	144.9	144.8	146.7	147.1
5'	123.8 **	123.7	123.6	115.4	115.7
6'	126.4	126.2	126.1	118.9	119.3
5-OCH,	•	•	58.6	56.9	56.0
3 (Piv- <u>C</u> O)	176.1 *	176.6 •	17.1 •	•	•
5 (Piv- <u>C</u> O)	•	175.7 •	-	-	•
7 (Piv- <u>C</u> O)	173.4 *	175.4 •	175.4 •	•	•
3' (Piv- <u>C</u> O)	173.4 *	175.4 •	175.4 •	•	-
4' (Piv- <u>C</u> O)	176.0 *	175.2 *	175.3 •	•	-
Piv C(quart)	39.3 #	39.3 #	39.3 #	•	-
Piv C(quart)	39.3 #	39.2 #	39.3 #	•	-
Piv C(quart)	39.1 #	39.1 #	39.1 #	-	•
Piv C(quart)	39.1 #	39.1 #	39.0 #	-	-
Piv C(quart)	-	39.0 #	•	-	-
Piv-(CH ₃) ₃	27.2 ***	27.2 **	27.2 **	•	•
Piv-(CH ₃) ₃	27.1 ***	27.1 **	27.1 **	•	-
Piv-(CH ₃) ₃	27.1 ***	27.1 **	27.1 **	•	•
Piv-(CH ₃) ₃	27.0 ***	26.9 **	27.0 **	•	•
Piv-(CH ₃) ₃	-	27.2 **	-	•	•

^{*, **, ***, # =} Zuordnung austauschbar; Piv = Pivaloyl

aus Rhododendron murconatum¹⁾ und anderen Pflanzen^{2,3,4)} beschrieben. Mit dieser dreistufigen Synthese ist Azaleatin ohne Schwierigkeiten in guten Ausb. zugänglich. Als Ursache für die selektive Acylierung zu 2 ist die die Wasserstoffbrückenbindung von C-5-OH zur benachbarten Carbonylgruppe in Position 4 anzusehen.

Experimenteller Teil

Allgem. Angaben: Schmelzpunktmikroskop nach Opfer-Schaum (nicht korrigiert).- IR-UV: Perkin-Elmer 550.- NMR: (300 MHz) Varian XL-300.- MS: Kratos (70 eV, Direkteinlaß).- Elementaranalysen: Mikroanalytisches Laboratorium der Chemischen Institute der Universität Bonn.

Azaleatin aus Quercetin 537

3,3',4',7-Tetrapivaloyl-Quercetin (2)

500 mg (1.66 mM) Quercetin wurden in 5 ml Pyridin gelöst und mit 2 g (16.6 mM) Pivaloylchlorid 20 h bei 5°C gerührt; das Lösungsmittel wurde abdestilliert und der hellgelbe Rückstand (1.6 g) sc (90 x 2 cm², Kieselgel Merck, Korngröße 0.04 bis 0.063 mm) mit CHCl₃ gereinigt. Mit einem Elutionsvolumen von Ve = 201-280 ml wurden 730 mg 2 erhalten, das präp. schichtchromatographisch auf Kieselgel 60 F_{254} mit Cyclohexan/CHCl₃ (1:1) weiter gereinigt wurde. 2 ($R_f = 0.17$) wurde mit CHCl₃ aus der Kieselgelmatrix eluiert und lieferte insgesamt 686 mg (65%) reines 2.- $C_{35}H_{42}O_{11}$ (638.3) weiße Kristalle, Schmp. 203 bis 204°C (unkorr.).- Ber. C 65.8 H 6.63 Gef. C 65.8 H 6.56.- ¹H-NMR s. Tab. 1; ¹³C-NMR s. Tab. 2.- EIMS (m/z (%)): 638 (20, M⁺⁺); 554 (38); 470 (20); 386 (7); 302 (3); 85 (33); 57 (100).

3,3',4',5,7-Pentapivaloyl-Quercetin (2a)

200 mg (0.66 mM) Quercetin wurden in 5 ml Pyridin gelöst und mit 2.4 g (19.9 mM) Pivaloylchlorid 16 h bei Raumtemp. gerührt, zur Trockene eingedampft, und der Rückstand wurde in 20 ml CHCl₃ aufgenommen. Das Filtrat wurde bis auf wenige ml eingeengt und anschließend schichtchromatographisch an Kieselgel mit CHCl₃ als Fließmittel aufgetrennt. Aus der Zone bei $R_f = 0.29$ wurden 360 mg 2a gewonnen, das über eine Lobar (Merck) Fertigsäule (B) mit CHCl₃ als Elutionsmittel nachgereinigt wurde. Mit Ve = 151 bis 500 ml erhielt man 320 mg (67%) reines 2a.-C₄₀H₅₀O₁₂ (722.3), farblose feine Nadeln, Schmp. 225-228°C.- Ber. C 66.5 H 6.97 Gef. C 66.1 H 7.09.- 1 H-NMR s. Tab. 1; 1 3C-NMR s. Tab. 2; EIMS (m/z (%)): 722 (8, M⁺⁺); 638 (25); 554 (39); 470 (12); 386 (4); 302 (2); 85 (24); 57 (100).

5-O-Methyl-3,3',4',7-Tetrapivaloyl-Quercetin (3)

500 mg (0.78 mM) 2 wurden in 10 ml Ether gelöst und mit einem Überschuß von 25 ml frisch bereiteter etherischer Diazomethanlösung (ca.

8 mM) versetzt. Das Reaktionsgemisch wurde 24 h bei Raumtemp. gerührt und danach i.Vak. zur Trockene eingedampft: 550 mg hellgelber Rückstand 3, der über eine Kieselgel-Fertigsäule Lobar B (Merck) (0.04 bis 0.063 mm) mit CHCl₃ sc gereinigt wurde. Man erhielt mit Ve = 1601 bis 2750 ml 496 mg (97%) dc-reines 3.- $C_{36}H_{44}O_{11}$ (652.9), farblose feine Nadeln, Schmp. 120°C (Methanol).- Ber. C 66.2 H 6.79 Gef. C 65.9 H 6.99.- ¹H-NMR s. Tab. 1; ¹³C-NMR Tab. 2.- EIMS (m/z (%)): 652 (25, M⁺⁺): 637 (5); 568 (100); 484 (38); 400 (16); 316 (7); 85 (12); 57 (62).

Azaleatin (4)

100 mg (0.15 mM) 3 wurden mit 8 ml einer Mischung gleicher Volumina konz. HCl und Methanol 2 h bei 85°C gerührt, wobei sich die trübe Lösung klärte und von gelbgrün nach rot verfärbte. Das Gemisch wurde zur Trockene eingedampft und der Rückstand (47 mg, 97%) 4 aus Methanol/Wasser 1:3 umkristallisiert.- $C_{16}H_{12}O_7$ (316.1), gelbes amorphes Pulver, Schmp. ab 274°C Zersetzung.- $C_{16}H_{12}O_7 \cdot 0.25 H_2O$.- Ber. C 59.9 H 3.93 Gef. C 60.1 H 4.04.- ¹H-NMR s. Tab. 1; ¹³C-NMR s. Tab. 2.- EIMS (m/z (%)): 316 (100, M**); 298 (9); 287 (14); 270 (71); 167 (4); 137 (35).

Literatur

- 1 E. Wada, J. Am. Chem. Soc. 1956, 78, 4725-4726.
- 2 J.B. Harborne, *Phytochemistry* **1969**, *8*, 419-423.
- 3 R. De Loose, Phytochemistry 1969, 8, 253-259.
- 4 J.B. Harborne, T.J. Mabry, H. Mabry, The Flavonoids, Academic Press, New York, 1975, p. 327.
- 5 J.B. Harborne, T.J. Mabry, The Flavonoids, Advances in Research, Chapman and Hall, London, New York, 1975, p. 70.

[KPh619]