Preliminary Communications

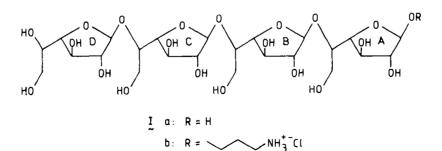
Recl. Trav. Chim. Pays-Bas 106, 129-131 (1987)

0165-0513/87/04129-03\$1.25

SYNTHESIS OF A CELL-WALL COMPONENT OF ASPERGILLUS NIGER CONTAINING FOUR β(1-5)-interlinked D-GALACTOFURANOSYL RESIDUES[†]

G.H. Veeneman^a, P. Hoogerhout^a, P. Westerduin^a, S. Notermans^b and J.H. van Boom^{a*} ^aGorlaeus Laboratory, P.O. Box 9502, 2300 RA Leiden, The Netherlands. ^bRIVM (National Institute of Public Health and Environmental Hygiene), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.

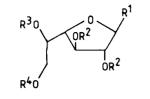
(Received March 12th, 1987)

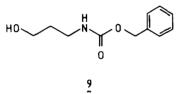

ABSTRACT: The derivative 2,3-di-O-benzoy1-5-O-chloroacety1-6-O-pivaloy1- β -D-galactofuranosyl chloride proved to be very suitable for the introduction, via the Helferich procedure, of three $\beta(1-5)$ interlinked D-galactofuranosyl residues and a β -orientated spacer.

The cell-walls of fungi consist mainly of polysaccharides, some of which are immunologically active^{1,2}. Structure analysis of the D-galacto-D-mannan component of Aspergillus niger and other Aspergillus spp. revealed the presence of side-chains consisting of (1-5)-interlinked β -D-galactofuranosyl residues and having average lengths of four³ (Ia) to ten⁴ units. It was further advocated that the galactofuranosyl side-chains of the galactomannan polysaccharide are immunodominant^{5,6}.

As part of a programme^{2,6} to study the immunological properties of the galactomannan side-chains of fungi, we needed a well-defined fragment containing at least four $\beta(1-5)$ -interlinked galactofuranosyl units, and having at the reducing end a spacer suitable for further conjugation with macromolecular carriers. α -D-galactofuranose 1,2-(methylorthoacetate)⁸ as the glycosyl donor. Recently, Sugawara et al.⁹ achieved the same goal by coupling 2,3,5,6-tetra-O-acetyl- β -D-galactofuranosyl chloride, under Helferich¹⁰ conditions, with allyl 2,3,6-tri-O-benzyl- β -D-galactofuranoside.

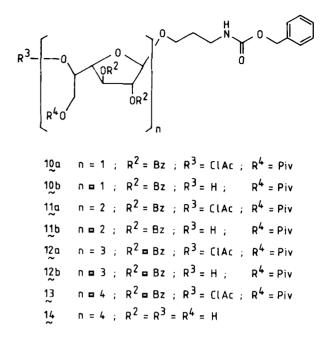
We report that 2,3-di-O-benzoyl-5-O-chloroacetyl-6-O-pivaloyl- β -D-galactofuranosyl chloride (8) is a convenient glycosyl donor for the preparation of the spacer containing tetramer Ib.


Intermediate $\frac{4}{2}$ suitable for the preparation of the key derivative $\frac{8}{2}$ was obtained by acidic hydrolysis¹¹ of the acetonide function in $\frac{3}{2}$. The latter was easily accessible from the known galactofuranoside derivatives $\frac{1}{2}^{12}$ and $\frac{2}{2}^{13}$. Treatment of $\frac{4}{2}$ with a slight excess of pivaloyl chloride in pyridine at -20°C afforded, after purification by silica


The first synthesis of a dimer containing $\beta(1-5)$ -linked D-galactofuranosyl units was performed by Heeswijk et al.⁷ using 3,5,6-tri-O-acetyl-

gel chromatography, homogeneous 5 in 75% yield. Acylation of 5 with chloroacetic anhydride in DMF and in the presence of sodium hydrogen carbonate 14

^TThis paper commemorates the 100th birthday of Burckhardt Helferich.



1	R ¹ = OMe;	$R^2 = R^3 =$	$R^4 = H$
2	R ¹ = OMe;	$R^2 = H;$	$R^{3}R^{4} = Me_{2}C$
3	R ¹ = OMe;	$R^2 = Bz;$	$R^3R^4 = Me_2C$
4	R ¹ = OMe ;	R ² = Bz;	$R^3 = R^4 = H$
5	R ¹ = OMe;	$R^2 = Bz;$	$R^3 = H; R^4 = Piv$
6	R ¹ = OMe;	$R^2 = Bz;$	$R^3 = CLAC; R^4 = Piv$
7	$R^1 = OAc;$	$R^2 = Bz;$	$R^3 = ClAc; R^4 = Piv$
			$R^3 = ClAc; R^4 = Piv$

gave, after work-up and purification, pure 6 in 92% yield. Acetolysis¹⁵ of 6 led to χ in a yield of 80%. Finally, conversion of χ with aluminium chloride¹⁶ yielded 8 (98% yield) as a colourless oil. The homogeneity of compounds 3-8 obtained above was, apart from TLC-analysis, confirmed by satisfactory elemental analyses. Their identity was further corroborated by ¹H- and ¹³C-NMR spectroscopy¹⁷.

Coupling of 8 with N-benzyloxycarbonyl-3-amino- $1-propanol^{18}$ (9) could be realized with a high degree of stereoselectivity (no trace of the α -isomer could be detected) by applying the Helferich¹⁰ approach (mercuric cyanide/mercuric bromide). Thus, to a stirred solution of 9 in acetonitrile containing the Helferich salts was added dropwise 8 in the same solvent. Work-up and purification (Sephadex LH 20), after 1 h at 20°C, afforded 10a in a yield of 95%. Removal of the 5-0-chloroacetyl group from 10a could be accomplished, with a high degree of selectivity, by treating it (30 min at 20°C) with the reagent ¹⁹ hydrazine dithiocarbonate (HDTC). According to this procedure, the aglycon 10b could be isolated in a yield of 95%. Dimer llb and trimer 12b were obtained in excellent yields after performing the same two-step procedure described for the preparation of 8. Thus condensation of 10b with 8 gave lla which, after HDTC treatment, led to llb (overall yield 91%). Similarly, trimer 12b was obtained (overall yield 92%) by coupling 11b with 8

to give 12a, and subsequently deblocking of the 5-0-ClAc group. Finally, the formation of the $\beta(1-5)$ -linkage between trimer 12b and the glycosyl donor 8 also led to a high recovery (92%) of te-tramer 13. The presence of solely β -anomeric carbons in the products 10-13 was confirmed by the conformity of the ¹H- and ¹³C-NMR data²⁰ with those published^{7,9}.

Deacylation of the base-labile groups from fully-protected tetramer 13 (106 mg) was effected by sodium hydroxide in methanol-dioxane²¹ for 15 h at 50°C. Neutralization (Dowex 50W, $\rm NH_4^+$ -salt) and purification (Sephadex LH 20) gave homogeneous 14 (42 mg; 97% yield). Removal of the N-carbobenzyloxy group by hydrogenolysis (15 h) over palladium on charcoal, followed by purification, gave Ib (32 mg; 87% yield) as a colourless oil. Purity and identity of Ib thus obtained was unambiguously ascertained by elemental analysis, FAB-mass and ¹H-, ¹³C-NMR spectroscopy²².

In conclusion, the data presented in this paper show that a judicious choice of base-labile protective groups combined with the Helferich procedure gives an easy access to relatively small fragments containing $\beta(1-5)$ -interlinked D-galactofuranosyl units. Further, the high overall efficacy of the two-step procedure (i.e., formation of the β linkage and removal of the secondary ClAc group) may be applied to assemble larger fragments (8-10 units) by a solid-phase approach.

RERENCES AND NOTES

- 1. S.Suzuki and N.Takeda, Carbohydr. Res. <u>40</u>, 193 (1975).
- S.Notermans and P.S.S. Soentoro, Antonie van Leeuwenhoek, 52, 393 (1986).
- E.M. Barreto-Bergter, P.A.J. Gorin and L.R. Tra vassos, Carbohydr. Res. <u>95</u>, 205 (1981).

- J.E. Ganden, N.H. Jentoft, L.R. Drewes and P.D. Rick, J. Biol. Chem. 249, 2063 (1974).
- J.E. Bennet, A.K. Bhattacharjee and C.P.J. Glaudemans, Molecular Immunology, <u>22</u>, 251 (19 85).
- S. Notermans, G. Wieten, H.W.B. Engel, F.M. Rombouts, P. Hoogerhout and J.H. van Boom, J. Appl. Bactriology, in press.
- W.A.R. van Heeswijk, H.G.J. Visser and J.F.G. Vliegenthart, Carbohydr. Res. 59, 81 (1977).
- J. Jacquinet and P. Sinay, Carbohydr. Res. <u>34</u>, 343 (1974).
- 9. F. Sugawara, H. Nakayama and T. Ogawa, Agric. Biol. Chem. <u>50</u>, 1557 (1986).
- B. Helferich and K. Weis, Chem. Ber. <u>89</u>, 314 (1956).
- 11. A.S. Rao and N. Roy, Carbohydr. Res. <u>59</u>, 393 (1977).
- 12. I. Augestad and E. Berner, Acta Chem. Scand. 8, 251 (1954).
- M. Kiso and A. Hasegawa, Carbohydr. Res. <u>52</u>, 87 (1976).
- G.J.F. Chittenden and H. Regeling, Recl. Trav. Chim, Pays-Bas, <u>106</u>, 44 (1987).
- H. Paulsen and H. Bünsch, Chem. Ber. <u>114</u>, 3126 (1981).
- 16. W. Korytnyk and J.A. Mills, J. Chem. Soc. 636 (1959).
- 17. Relevant ¹H and ¹³C-NMR data of compounds 4-8. ¹H-NMR data (δ-values): 4, 5.15 (s, H₁), 3.42 (s, OCH₃); 5, 5.17 (s, H₁), 3.31 (c, H₅,H_{6A}, H_{6B}), 1.20 (br s, 3×CH₃-pivaloy1); 6, 5.17 (s, H₁), 5.72 (qui, H₅, J₅₋₄=J_{5-6B}= 3.7 Hz, J_{5-6A}= 7.4 Hz), 4.33 (dd, H_{6A}, J_{6A-5}= 7.4 Hz, J_{6A-6B}= 12.0 Hz), 4.56 (dd, H_{6B}, J_{6B-5}= 3.7 Hz, J_{6B-6A}= 12.0 Hz), 4.07 (s, 2H-C1Ac); 7, 6.45 (s, H₁), 5.68 (m, H₅), 4.29 (dd, H_{6A}, J_{6A-5}= 7.3 Hz, J_{6A-6B}= 12.1 Hz), 4.57 (dd, H_{6B}, J_{6B-5}= 3.65, J_{6B-6A}= 12.1 Hz), 2.18 (s, CH₃-Ac); 8, 6.31 (s, H₁), 5.77 (m, H₅), 4.30 (dd,

H_{6A}, J_{6A-5}= 7.3 Hz, J_{6A-6B}= 12.1 Hz), 4.51 (dd, H_{6B}, J_{6B-5}= 3.65 Hz, J_{6B-6A}=12.1 Hz). ¹³C-NMR data (δ -values): 4, 106.6 C₁, 70.8 C₅, 63.8 C₆, 54.3 (OCH₃), 165.2, 165.8 (2× C=0); 5, 106.7 C₁, 68.5 C₅, 65.1 C₆, 27.0 (3× CH₃pivaloy1), 178.1 (C=0, pivaloy1); 6, 106.6 C₁, 71.6 C₅, 62.2 C₆, 40.4 (CH₂-ClAc), 166.3 (C=0, ClAc); 7, 99.1 C₁, 71.4 C₅, 62.4 C₆, 20.9 (CH₃ Ac), 168.9 (C=0, Ac); 8, 94.8 C₁, 71.4 C₅, 62.2 C₆.

- P. Berntsson, A. Brändström, H. Junggren, L. Palme, S.E. Sjöstrand and G. Sundell, Acta Pharm. Suec. <u>14</u>, 229 (1977).
- C.A.A. van Boeckel and T. Beetz, Tetrahedron Lett. 3775 (1983).
- Satisfactory microanalytical data were obtained for compounds 10a-13. Relevant ¹H- and ¹3C-NMR data of 10a-13. ¹H-NMR data (δ-values): 10a, 5.24 (s, H₁), 5.65 (qui, J₅₋₄=J₅₋₆B= 3.7 Hz, J₅₋₆A= 7.4 Hz), 3.58 (dt, H₁A, spacer, J₁A-2= 5.7 Hz, J₁A-1B= 11.4 Hz), 3.83 (dt, H₁B, spacer, J₁B-2= 5.7 Hz, J₁B-1A= 11.4 Hz); 10b, 4.28 (c, H₅); 11a, 5.16 (s, H₁^A), 5.39 (s, H₁^B); 12a, 5.16 (s, H₁^A), 5.58, 5.59, 5.63 (3×s, H₁^B, H₁^C, H₁^D).
 ¹³C-NMR data: 10a, 105.8 C₁, 71.8 C₅, 62.3 C₆, 65.5 (C₁, spacer), 29.4 (C₂, spacer), 38.3 C₃, spacer); 10b, 68.8 C₅, 65.2 C₆; 11a, 105.5 C₁^B, 105.7 C₁^A, 62.8 C₆^B, 63.9 C₆^A, 72.1 C₅^B, 73.2 C₅^A; 12a, 105.56, 105.50, 105.06 (anometic carbons); 13, 105.59, 105.44, 104.97, 104.68 (anometic carbons).
- G.I. Tesser and I.C. Balvert-Geers, Int. J. Peptide and Protein Res. 7, 295 (1975).
- 22. Relevant ¹H- and ¹³C-NMR data for compound Ib. ¹H-NMR data (δ -values): 5.15 (d, H₁^A, J₁₋₂= 1.5 Hz), 5.36 (d, double intensity, H₁^B, H₁^C, J₁₋₂= 1.5 Hz), 5.39 (d, H₁^D, J₁₋₂= 2.0 Hz). ¹³C-NMR data: 108.95 (br s, two overlapping signals), 108.83, 108.69 (anomeric carbons).