ZUR DARSTELLUNG UND STRUKTUR NEUER VERBINDUNGEN $Ln_3MO_5XCl_3$ ($Ln \equiv La$, Ce, Pr, Nd, Th; $M \equiv Ta$, Nb; $X \equiv O$, OH, F)*

U. SCHAFFRATH und R. GRUEHN

Institut für Anorganische und Analytische Chemie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-6300 Giessen (B.R.D.)

(Eingegangen am 24. Juni, 1987)

Zusammenfassung

La₂ThTaO₆Cl₃ als Vertreter der Verbindungsklasse Ln₃MO₅XCl₃ mit Ln = La - Nd, Th; X = O, OH, F sowie M = Ta, Nb kristallisiert in der hexagonalen Raumgruppe P6₃/m mit den Gitterkonstanten a = 9,3744(6) Å, c = 5,4477(5) Å. Die Verfeinerung führte zu R = 2,51%; $R_w = 2,17\%$. Pulverförmige Präparate von La₂ThTaO₆Cl₃ wurden durch Umsetzung von ThO₂, LaTaO₄ und LaCl₃ erhalten, während Einkristalle durch chemischen Transport mit Chlor (1080 \rightarrow 940 °C) gewonnen wurden. Die Struktur enthält TaO₆ Polyeder mit einer für Ta ungewöhnlichen trigonal-prismatischen Koordination. La und Th sind auf der gemeinsamen 6(h)-Lage statistisch verteilt; sie haben die Koordinationszahl CN = 10. Die Strukturverfeinerung an Ce₃TaO₆Cl₃ führte zu den Gitterkonstanten a = 9,317(4) Å, c = 5,356(3) Å und R = 3,47%; $R_w = 2,37\%$. Die Auswertung der Pulveraufnahmen ist ebenfalls wiedergegeben.

Summary

La₂ThTaO₆Cl₃, a representative of a group of isostructural Ln₃MO₅XCl₃type compounds with Ln = La - Nd, Th, X = O, OH, F and M = Ta, Nb, crystallizes in the hexagonal space group $P6_3/m$ with a = 9.3744(6) Å and c = 5.4477(5) Å. The structure was refined to give R = 2.51% and $R_w =$ 2.17%. The compound was prepared by the interaction of ThO₂, LaTaO₄ and LaCl₃. Single crystals were obtained by chemical transport reactions (1080 \rightarrow 940 °C) using chlorine as the transport agent. The structure consists of TaO₆ polyhedra with an unusual trigonally prismatic environment for the Ta. La and Th are randomly distributed over the 6(h) sites with a coordination number CN = 10. A structure refinement for the isostructural Ce₃TaO₆-Cl₃ led to a = 9.317(4) Å, c = 5.356(3) Å, R = 3.47% and $R_w = 2.73\%$. X-ray powder diffraction data are also reported.

^{*}Professor Harald Schäfer zum 75. Geburtstag gewidmet.

1. Einleitung

Während die meisten Oxidhalogenide der Seltenen Erden in Struktur und Eigenschaften wohl charakterisiert sind, wurden bisher nur wenige quaternäre Verbindungen $\operatorname{Ln}_{x}\operatorname{M}_{y}\operatorname{X}_{m}\operatorname{Cl}_{y}$ (Ln \equiv La-Gd; M \equiv Nb, W; X \equiv O) dargestellt und untersucht. Brixner et al. fanden La₃WO₆Cl₃ [1], LaWO₄Cl [2], LaNb₂O₆Cl [3] und Pr₃NbO₄Cl₆ [4]. Über die ersten Oxochlorotantalate (M \equiv Ta; X \equiv O, OH, F) berichteten Schaffrath und Gruehn [5]; anstelle des chemischen Transports eines La-reichen ternären Oxids (La₂O₃/Ta₂O₅ > 1) wurde die Abscheidung von Oxochlorotantalaten in der weniger heissen Zone bei T₁ beobachtet.

So entstand bei Transportexperimenten mit La₃TaO₇ als Startbodenkörper bei T_2 , Chlor als Transportmittel und unter Beteiligung von Wasser (aus der Wand der Quarzglasampulle [6] oder besonders zugesetzt) Guinierreines La₃TaO₅(OH)Cl₃ bei T_1 [5]. Wie die röntgenographische Strukturuntersuchung an Einkristallen zeigt, kristallisiert diese Verbindung hexagonal in der Raumgruppe $P6_3/m$ mit den Gitterkonstanten a = 9,502(1) Å und c = 5,474(1) Å [5].

Bemerkenswert ist das Koordinationspolyeder um Tantal, ein regelmässiges trigonales Prisma mit sechs identischen Ta-O-Abständen. Die Cl⁻-Anionen bilden Cl₆-Oktaeder an den Ecken der hexagonalen Zelle. Über Flächen sind die Cl₆-Oktaeder in der c-Richtung zu Strängen miteinander verbunden, wie man es auch in der einfacheren Struktur des entsprechenden binären Halogenids LaCl₃ (UCl₃-Typ) findet. Die Bildung der Tantalverbindung Ln₃MX₆Cl₃ (Ln \equiv La, M \equiv Ta⁵⁺!) ist möglich, weil X²⁻ (O²⁻) hier teilweise durch X¹⁻ (OH⁻) ersetzt werden kann. Dadurch wird verständlich, dass unter den Bedingungen des chemischen Transports ternärer Oxide (La₃TaO₇) mit Cl₂ bevorzugt die kompliziert zusammengesetzte Verbindung La₃TaO₅-(OH)Cl₃ auftritt. Am vorliegenden Verbindungstyp liess sich auch ein partieller Austausch von Ln³⁺ durch Ln⁴⁺ (Ce⁴⁺; auch Th⁴⁺) oder von O²⁻ durch F⁻ vornehmen, so dass unterschiedliche, jedoch isostrukturelle Verbindungen entstehen, über die hier berichtet wird.

2. Präparation

2.1. Darstellung von $Ln_3(Ta, Nb)O_5XCl_3$ ($Ln \equiv La, Pr, Nd; X \equiv OH, F$)

Zur Darstellung der Tantalverbindungen mit $X \equiv OH$ wurden Gemenge (6:1) des jeweils erforderlichen Oxidchlorides LnOCl mit Ta₂O₅ (puriss. 99,9%, Fluka) unter Zusatz von geringen Mengen H₂O (thermische Zersetzung von BaCl₂·2H₂O; Einkondensieren) in geschlossenen Quarzglasampullen (d = 18 mm, l = 100 mm) erhitzt (Röhrenofen; T = 1000 °C; 10 d). Die Umsetzung entspricht der Reaktionsgleichung

 $6LnOCl + Ta_2O_5 + H_2O \approx 2Ln_3TaO_5(OH)Cl_3$

und führt zu einphasigen Präparaten.

. . .

63

Die Oxidchloride der Seltenerdmetalle erhielten wir durch mehrstündiges Erhitzen der Trichloridhydrate (puriss.p.a. 99,99% Fluka) auf etwa 650 °C an Luft; BaCl₂·2H₂O wurde vor der thermischen Zersetzung für kurze Zeit vorgetrocknet (80 °C). Wurde H₂O nicht besonders zugesetzt sowie die verwendeten Quarzglasrohre an der laufenden Pumpe (900 °C; 4 h; 5×10^{-3} Torr) ausgeheizt, so waren die Ausbeuten deutlich schlechter. Die Präparate enthielten in diesem Fall noch erkennbare Anteile von LnOCl und LnTaO₄. Phasenreines feinkristallines Ln₃TaO₅(OH)Cl₃ liess sich bei Zusatz von Cl₂ als Mineralisator erhalten, wobei LnOCl, Ta2O5 und H2O in stöchiometrischen Mengen vorgegeben und Cl₂ (0,5 mmol) durch thermischen Abbau von PtCl₂ erzeugt wurde. Die Präparate von La₃TaO₅(OH)Cl₃ sind farblos, Pr₃TaO₅(OH)Cl₃ besitzt eine grüne und Nd₃TaO₅(OH)Cl₃ eine hellviolette Farbe. Zur Überprüfung der Phasenverhältnisse und zur Identifizierung der dargestellten Verbindungen dienten Guinieraufnahmen (CuK α_1 -Strahlung, Quarzmonochromator, 360 mm Kameraumfang); die so erhaltenen Gitterkonstanten bringt Tabelle 1.

Eine mit La₃TaO₅(OH)Cl₃ isotype, farblose Verbindung La₃TaO₅FCl₃ konnte durch Erhitzung (T = 1100 °C; 14 d) der Gemenge (3:1) von LaOCl/ TaO₂F in zugeschweissten Pt-Ampullen (d = 6 mm; l = 30 mm) dargestellt werden. TaO₂F wurde durch Auflösen von Tantalspänen (purum 99,7%, Fluka) in heisser 48% iger Flusssäure, anschliessendes Einengen bis zur Trockene und dreistündiges Erhitzen auf 260 °C "Guinier-rein" erhalten.

Die Synthese der isostrukturellen, ebenfalls farblosen Niobverbindung $La_3NbO_5(OH)Cl_3$ gelang [7] unter den oben genannten Bedingungen (H₂O-Zusatz; 0,5 mmol Cl₂ als Mineralisator), jedoch genügte eine Reaktionstemperatur von 900 °C (3 d).

2.2. Darstellung von $Ln_2^{3+}Ln^{4+}TaO_6Cl_3$ ($La^{3+} \equiv La, Ce; Ln^{4+} \equiv Ce, Th$) Eine partielle Substitution von O^{2-} durch einfach negative Anionen

Eine partielle Substitution von O^{2-} durch einfach negative Anionen (OH⁻, F⁻) ist "unnötig", wenn z.B. anstelle von Ta⁵⁺ (Nb⁵⁺) ein Kation

TABELLE 1

 $Ln_3MO_5XCl_3$ ($Ln \equiv La$, Ce, Pr, Nd, Th; $M \equiv Nb$, Ta; $X \equiv O$, OH, F): Vergleich der Gitterkonstanten

a (8)	c (8)	<u>c</u>	V (83)
(A)	(A)	а	(A)
9,502(1)	5,474(1)	0,576	428,0(2)
9,474(2)	5,481(2)	0,579	426,1(2)
9,317(4)	5,356(3)	0,575	402,6(4)
9,3744(6)	5,4477(5)	0,581	414,60(7)
9,385(4)	5,407(4)	0,576	412,4(5)
9,334(3)	5,375(3)	0,576	405,5(3)
9,516(3)	5,462(3)	0,574	428,4(4)
	a (Å) 9,502(1) 9,474(2) 9,317(4) 9,3744(6) 9,385(4) 9,385(4) 9,334(3) 9,516(3)	$\begin{array}{c} a & c \\ (\text{\AA}) & (\text{\AA}) \\ \hline \\ 9,502(1) & 5,474(1) \\ 9,474(2) & 5,481(2) \\ 9,317(4) & 5,356(3) \\ 9,3744(6) & 5,4477(5) \\ 9,385(4) & 5,407(4) \\ 9,334(3) & 5,375(3) \\ 9,516(3) & 5,462(3) \\ \hline \end{array}$	$\begin{array}{c} a & c & c \\ (Å) & (Å) & \frac{c}{a} \\ \end{array}$

höherer Ladung (M^{6^+}) wie in Ln₃WO₆Cl₃ (Ln = La-Gd) [1] vorliegt. Eine andere Möglichkeit bietet der Ersatz von einem Drittel der Ln³⁺-Ionen durch Ce⁴⁺ oder Th⁴⁺, wie die Existenz der neuen Verbindungen Ce₂³⁺Ce⁴⁺-TaO₆Cl₃ (a) und La₂ThTaO₆Cl₃ (b) zeigt.

(a) Die Darstellung von Ce₃TaO₆Cl₃ gelingt durch Umsetzung eines Gemenges CeCl₃/CeO₂/CeTaO₄ (1:1:1) in einer zugeschmolzenen Quarzglasampulle (d = 18 mm, l = 100 mm; T = 900 °C; 10 d) bei hinreichendem Chlordruck ($P(Cl_2; 20$ °C) = 1 atm) entsprechend der Reaktiongleichung:

$$CeCl_3 + CeO_2 + CeTaO_4 = Ce_2^{3+}Ce^{4+}TaO_6Cl_3$$

Es wurde von einem innig verriebenen (Achatreibschale) Gemenge 1:1:1 von CeCl₃·6H₂O, CeO₂ (puriss. 99.9%, Fluka) und CeTaO₄ (monoklin) ausgegangen, das nach dem Einfüllen in die Quarzglasampulle zunächst im Vakuum ($P = 5 \times 10^{-3}$ Torr) langsam (mit 1 °C min⁻¹) auf 250 °C aufgeheizt wurde, um CeCl₃·6H₂O zu entwässern. Zur Darstellung von CeTaO₄ wurden Gemenge CeO₂/Ta₂O₅ = 2:1 zunächst an der Luft erhitzt (1500 °C, 3 d). Das hierbei erhaltene grauschwarze Produkt (CeTaO_{4+x} [8]) wurde im Wasserstoffstrom (950 °C, 12 h) zum gelben CeTaO₄ reduziert.

 $Ce_3TaO_6Cl_3$ wurde in kristalliner Form mit tiefschwarzer Farbe erhalten; zu feinem Pulver zerrieben erscheint es grün. Bei der Darstellung muss der Zusatz von Cl_2 ausreichen, um eine thermische Zersetzung gemäss

$$\operatorname{Ce}_{2}^{3+}\operatorname{Ce}^{4+}\operatorname{TaO}_{6}\operatorname{Cl}_{3} = \operatorname{Ce}_{2+x}^{3+}\operatorname{Ce}_{1-x}^{4+}\operatorname{TaO}_{6}\operatorname{Cl}_{3-x} + \frac{x}{2}\operatorname{Cl}_{2}$$

zu vermeiden. Wurde phasenreines schwarzgrünes $Ce_3TaO_6Cl_3$ (hex.) in evakuierten Quarzglasampullen erhitzt, so führte eine bei 900 °C beginnende Abspaltung von Chlor zu gelbgrünen Produkten mit einem neuen, sehr reflexreichen Guinierdiagramm und einer beobachtbaren Phasenbreite (geringe Verschiebungen der Reflexe).

(b) $La_2ThTaO_6Cl_3$ wurde in analoger Weise dargestellt. Stöchiometrische Mengen der Ausgangsstoffe $LaCl_3 \cdot 7H_2O$, ThO₂ (99,99%, Johnson-Matthey) und LaTaO₄ (aus LaOCl/Ta₂O₅ = 2:1; 1500 °C, 4 d an Luft) wurden innigst verrieben. Um einer Reaktion von ThO₂ mit der Ampullenwand (Quarzglas) vorzubeugen, wurde das Gemenge der Ausgangsstoffe in ein halbseitig verschlossenes Pt-Röhrchen gefüllt. LaCl₃ · 7H₂O wurde in der unter (a) beschriebenen Weise langsam im Vakuum entwässert. Die Umsetzung erfolgte nach dem Evakuieren der Quarzglasampulle (d = 15 mm, l = 50mm) durch isothermes Erhitzen (T = 1000 °C, 10 d). Wir erhielten La₂-ThTaO₆Cl₃ als farbloses, mikrokristallines Produkt. Die Gitterkonstanten von Ce₃TaO₆Cl₃ und La₂ThTaO₆Cl₃ sind in Tabelle 1 angegeben.

3. Chemische Transportexperimente

3.1. $La_3TaO_5(OH)Cl_3$

Zur Gewinnung von Einkristallen dieser Verbindung wurden Experimente im Temperaturgefälle $(T_2 > T_1)$ durchgeführt. Als Ausgangsbodenkörper im Quellenraum (bei T_2) der verwendeten Quarzglasampullen (d =19 mm, l = 110 mm) dienten nahezu phasenreine Präparate von La₃TaO₇ (orh.). Das Ausgangsmaterial wurde durch Tempern (T = 1500 °C, 4 d; an der Luft) von Gemengen La_2O_3/Ta_2O_5 (3:1) gewonnen; ausser La_3TaO_7 enthielten die Präparate noch geringe Mengen an unumgesetztem La_2O_3 und LaTaO₄.

Die nach dem Einfüllen des Transportmittels Chlor (1 atm, 20 °C) zugeschmolzenen Ampullen wurden im Temperaturgradienten ($T_2 = 1100$ °C, $T_1 = 1000$ °C) erhitzt (10 d). Unter Beteiligung von Chlor und dem vom Ampullenmaterial (SiO₂) abgegebenen Wasser [6] hatte sich während des Versuchs La₃TaO₅(OH)Cl₃ in farblosen klaren Einkristallen $(0.5 \times 0.7 \text{ mm})$ in der Senke (bei T_1) abgeschieden (Abb. 1a.). Die Ausbeute an transportierter Substanz war mit 40 mg gering. Hervorzuheben ist, dass die ternäre Phase La_3TaO_7 in keinem Fall transportiert, aber mit Chlor vollständig umgesetzt wurde; der Rückstand bei T_2 enthielt neben La₃TaO₅- $(OH)Cl_3$ noch LaTaO₄ und LaCl₃.

Transportexperimente mit La₃TaO₅(OH)Cl₃ als einphasigem Startbodenkörper bei T_2 führten unter sonst gleichen Bedingungen zur Abscheidung von wenig La₃TaO₅(OH)Cl₃ neben der neuen Verbindung La₂TaO₄Cl₃ [5] (Abb 1b.), deren Strukturuntersuchung im Gange ist [9].

3.2. $Ce_3TaO_6Cl_3$

Der chemische Transport von Ce₃TaO₆Cl₃ verläuft glatt, wenn die reine Phase als Ausgangsbodenkörper vorgegeben wird. Bei Experimenten in

(a)

Abb. 1. Rasterelektronenmikroskopische Aufnahmen von Kristallen aus Transportexperimenten. (a) La₃TaO₅(OH)Cl₃ (Länge l = 1,5 mm), Die hier nicht abgebildeten Kristalle von Ce₃TaO₆Cl₃ und La₃ThTaO₆Cl₃ zeigen einen entsprechenden Habitus. (b) La₂TaO₄- $Cl_3 (l = 8 mm).$

Quarzglasampullen (d = 15 mm, l = 80 mm) mit einem Temperaturgradienten ($T_2 = 1000$ °C, $T_1 = 900$ °C) unter Zusatz des Transportmittels Chlor (1 atm, 20 °C) schied sich in der Senke (bei T_1) einphasiges Ce₃TaO₆Cl₃ (240 mg in 16 d) in schwarzen bis zu 2 mm grossen kompakten Kristallen mit gut ausgebildeten Flächen ab.

3.3. La₂ThTaO₆Cl₃

Auch von dieser Verbindung waren Einkristalle durch chemischen Transport (Reine Phase als Ausgangsbodenkörper; $1080 \rightarrow 940$ °C, $P(Cl_2; 298 \text{ K}) = 1 \text{ atm})$ zu erhalten. Die Ausbeute betrug etwa 160 mg (in 12 d) an farblosen mm-grossen Kristallen von La₂ThTaO₆Cl₃. Dies ist bemerkenswert, da ein chemischer Transport der binären Komponente ThO₂ aufgrund ihrer thermodynamischen Stabilität nur mit äusserst niedrigen Transportraten abläuft. Entsprechendes ist auch hinsichtlich der Ln₂O₃-Komponenten festzustellen, die für sich praktisch nicht transportierbar sind. Wie in den hier beschriebenen Verbindungen (z.B. La₂ThTaO₆Cl₃) wandert La₂O₃ als binäre Komponente der mit guten Ausbeuten (mit Cl₂) transportierbaren ternären Oxide La_{1/3}TaO₃ (LaTa₃O₉) [10] und LaTa₇O₁₉ [11] im Temperaturgefälle, obwohl ein chemischer Transport von "freiem" La₂O₃ unter gleichen Bedingungen nicht stattfindet. Bei Vergleichsexperimenten mit La₂O₃ und Cl₂ bildete sich stabiles, nicht flüchtiges LaOCl als neuer Bodenkörper auf der heisseren Seite der Ampulle (bei T₂) [12].

4. Strukturanalyse an La₂ThTaO₆Cl₃ und Ce₃TaO₆Cl₃

4.1. Einkristalluntersuchungen

Unter dem Lichtmikroskop (Polarisationsfilter) wurde ein Kristall von La₂ThTaO₆Cl₃ $(0,2 \times 0,2 \times 0,3 \text{ mm}^3)$ mit gut ausgebildeten Flächen ausgesucht. Aufnahmen nach der Drehkristall-, Weissenberg- und Präzessionmethode (MoKā-Strahlung) bestätigten die bei der isotypen Verbindung La₃TaO₅(OH)Cl₃ [5] gefunden hexagonale Metrik und liessen die Laue-Symmetrie 6/m erkennen. Die Bestimmung der Gitterkonstanten erfolgte aus Pulveraufnahmen. Die Auswertung der Präzessionsaufnahmen (000l, 110l) ergab als einzige Bedingung für die auftretenden Reflexe 000l: l = 2n. Diesen Bedingungen genügen die Raumgruppen $P6_3$ (Nr. 173) sowie $P6_3/m$ (Nr. 176), von denen sich die letztere im Laufe der Strukturbestimmung als richtig erwies. Die Intensitäten von ingesamt 4868 Reflexen (davon 449 unabhängige) wurden mit Hilfe eines automatischen Vierkreisdiffraktometers (Siemens/Stoe AED-2; MoKā-Strahlung, Graphit-Monochromator) im Bereich $3^{\circ} \leq \theta \leq 30^{\circ}$ gemessen.

Die Strukturbestimmung in der Raumgruppe $P6_3/m$ gelang unter Anwendung direkter Methoden (Schweratommethode); die Verfeinerung nach Differenzfouriermethoden (Tabelle 2). Die Einbeziehung anisotroper Temperaturfaktoren für alle Atome führte zu R = 2,51% bzw. $R_w = 2,17\%$ mit den in Tabelle 3 aufgeführten Parametern. In gleicher Weise liess sich die Strukturverfeinerung an Ce₃TaO₆Cl₃ durchführen (Tabellen 2 und 4).

Kristallographische Daten und ihre Bestimmung (Standardabweichungen in Klammern)

Formel	La ₂ ThTaO ₆ Cl ₃	$Ce_{3}TaO_{6}Cl_{3}$
Raumgruppe	$P6_3/m$ (Nr. 176)	<i>P</i> 6 ₃ / <i>m</i> (Nr. 176)
Gitterkonstanten (A) und	a = 9,3744(6)	a = 9,317(4)
Winkel (°) nach Guinier-	c = 5,4477(5)	c = 5,356(3)
aufnahmen	$\gamma = 120$	$\gamma = 120$
Volumen der Elementar- zelle (Å ³)	414,60(7)	402,6(4)
Dichte (röntg.) (g cm ⁻³)	7,15	6.63
Zahl der Formeleinheiten	2	2
Molvolumen (röntg.) (cm ³)	124.9	121.2
Molvolumen (Σ binär) (cm ³)	141.4	139.3
Kristallform, -farbe	hexagonale Säulen, farblos	hexagonale Säulen. schwarz
$\mu(MoK\bar{\alpha})$ (cm ⁻¹)	401,54	296,44
Diffraktometer	Vierkreis (AED-2)	Vierkreis (AED-2)
Strahlung, Monochromator	MoKa, Graphit	MoKā, Graphit
Korrektur der Intensitäten	Polarisations- und Lorentzfaktor, empirische Absorptionskorrektur	Polarisations- und empirische Ab- sorptionskor- rektur
Messbereich	$3^{\circ} \leq \theta \leq 30^{\circ}$	$3^{\circ} \leqslant heta \leqslant 30^{\circ}$
Abtastung, Abtastbreite	ω -scan, 1,15 - 1,40 $^{\circ}$	ω -scan, 1,5 $^{\circ}$
Abtastgeschwindigkeit	$0,5 - 2,0^{\circ} \text{ s}^{-1}$	$0,5$ - $1,5^\circ$ sec $^{-1}$
Anzahl der symmetrieunabh. Reflexe	449 (von 4868 gemessenen)	432 (von 4686 gemessenen)
Strukturbestimmung, -ver-	Direkte Methoden, Differenz-	Direkte Methoden
feinerung	fourier, (Programm SHEL-	Differenzfourier,
_	X76 [14]), Streufakt. nach	(Programm SHEL-
	Cromer <i>et al.</i> [15, 16], Voll- matrix-Kleinste-Quadrate Ver- feinerung	X76 [14]), Streu fakt. nach Cromer <i>et al.</i> {15, 16], Voll- matrix-Kleinste- Quadrate Ver- feinerung
Anzahl der freien Para- meter	25	24
Nicht berücksichtigte Reflexe	12	16
$R = \Sigma(F_0 - F_c)/\Sigma F_0 $ $R_w = \Sigma w^{1/2}(F_0 - F_c)/\Sigma w^{1/2}$ $ F_0 $ $w = \text{const.}/(\sigma^2 F_0 + gF_0^2)$	R = 2,51% $R_w = 2,17\%$	R = 3,47% $R_w = 2,73\%$

4.2. Indizierung und Verfeinerung der Gitterkonstanten

Für die Verfeinerung der Gitterkonstanten mit Hilfe von Guinieraufnahmen wurden die durch chemischen Transport erhaltenen Kristalle von $La_2ThTaO_6Cl_3$ fein zerrieben und T-Quarz als interner Standard zugesetzt. Eine Ausgleichsrechnung nach der Methode der kleinsten Fehlerquadrate

ŝ
Ę
Ξ
BE
TA

Temperaturfaktoren
anisotrope
Lageparameter und
Punktlagen,
$La_2ThTaO_6Cl_3$:

		v	Ŕž	U(1,1)	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
(2/3) 0.31	74(0)	0 9093(1)	3/4	0.007009)	0.0068/91	0.0085/91	0.0	0.0	0.0095/91
(1/3) 0.31	74(0)	0.9093(1)	3/4	0.0070(2)	0.0068(2)	0,0005(2)			0,0035(2)
1/3		2/3	1/4	0.0034(2)	0.0034(2)	0.0059(3)			0.0017(1)
0,23	194(3)	0,1894(3)	3/4	0.012(1)	0.0098(9)	0.013(1)	0.0	0.0	0.0035(8)
i 0,52	16(5)	0,1587(6)	0,5154(8)	0,008(2)	0,010(2)	0,016(2)	0,001(2)	0,001(2)	0,003(2)
i 0,52	16(5)	0,158	14(3) 87(6)	(4(5) 3/4) (7(6) 0,5154(8))	$(4(5) \ 5/4 \ 0,012(1)$ $(7(6) \ 0,5154(8) \ 0,008(2)$	14(3) 3/4 0,012(1) 0,009(9) 17(6) 0,5154(8) 0,008(2) 0,010(2)	14(5) $5/4$ 0,012(1) 0,0098(9) 0,013(1) 17(6) 0,5154(8) 0,008(2) 0,010(2) 0,016(2)	14(5) $5/4$ 0,012(1) 0,0098(9) 0,013(1) 0,0 17(6) 0,5154(8) 0,008(2) 0,010(2) 0,016(2) 0,001(2)	(4, 4) $5/4$ 0,012(1) 0,0098(9) 0,013(1) 0,0 0,0 (7(6) 0,5154(8) 0,008(2) 0,010(2) 0,016(2) 0,001(2) 0,001(2)

 $Ce_3 TaO_6 Cl_3; \ Punktlagen, \ Lage parameter \ und \ anisotrope \ Temperaturfaktoren$

Atom	Punktlage	x	×	N	U(1,1)	U(2,2)	U(3,3)	U(2,3)	U(1,3)	U(1,2)
Ce	6h	0,3174(1)	0,9098(1)	3/4	0,0107(4)	0,0105(4)	0,0055(3)	0'0	0.0	0,0059(6)
Ta	2c	1/3	2/3	1/4	0.0024(3)	0,0024(3)	0,0039(4)	0.0	0.0	0.0012(1)
CI	6h	0,2412(4)	0.1890(4)	3/4	0,009(1)	0,009(1)	0.012(1)	0.0	0.0	0.002(1)
0	12ì	0,5219(8)	0,1571(8)	0,5122(12)	0,008(3)	0,013(3)	0,011(3)	0,003(2)	0,001(2)	0,006(3)
							والمحمد			

hkl	$\sin^2\theta_0 imes 10^3$	$\sin^2\theta_c \times 10^3$	d _c (Å)	I ₀	I _c
100	9,02	9,00	8,119	7	54
$1 \ 0 \ 1$	28,97	28,99	4,525	1	< 1
$2 \ 0 \ 0$	35,97	36,01	4,059	2	6
111	47,01	47,00	3,553	8	62
$2\ 0\ 1$	56,00	56,00	3,255	8	60
$2\ 1\ 0$	63,03	63,01	3,069	7	43
002	79,97	79,97	2,724	6	33
300	81,08	81,01	2,706	4	13
$2\ 1\ 1$	83,06	83,00	2,674	10	100
$1 \ 0 \ 2$	89,01	88,97	2,582	1	1
301	100,89	101,01	2,424	2	5
$2 \ 0 \ 2$	115,93	115,97	2,262	2	4
$3\ 1\ 0$	116,93	117,02	2,252	3	9
$3\ 1\ 1$	137,00	137,01	2,081	3	8
$2\ 1\ 2$	143,04	142,98	2,037	6	29
$4 \ 0 \ 0$	143,98	144,03	2,030	3	9
302	160,93	160,98	1,920	5	18
401	163,89	164,02	1,902	4	10
320	171,10	171,03	1,863	3	8
410	189,13	189,03	1,772	5	21
$3\ 2\ 1$	191,11	191,02	1,762	6	39
$3\ 1\ 2$	197,00	196,99	1,736	3	9
113	207,00	206,93	1,693	3	9
203	215,92	215,93	1,658	3	10
402	223,93	223,99	1,628	2	7
213	242,90	242,93	1,563	5	24

Auswertung einer Guinieraufnahme von La₂ThTaO₆Cl₃; Intensitätsabstufung 1 - 10; CuK α_1 -Strahlung ($\lambda = 1,54051$ Å)

mit Hilfe des Rechenprogramms SOS [13] lieferte die Gitterkonstanten a = 9,5744(6) Å, c = 5,4477(5) Å bei Z = 2 Formeleinheiten. Die mit T-Quarz korrigierten sowie die berechneten $\sin^2\theta$ -Werte bringt Tabelle 5. Die in entsprechender Weise bestimmten Zellparameter aller im vorliegenden Strukturtyp dargestellten Verbindungen enthält Tabelle 1.

4.3. Beschreibung der Kristallstruktur und Diskussion

Nach der durchgeführten Struktrurbestimmung erkennt man in der Projektion entlang der hexagonalen Achse Stränge von flächenverknüpften Cl₆-Oktaedern, welche um die unbesetzten Positionen (000) und (001/2) koordiniert sind (Abb. 2). Der Abstand aller Cl-Teilchen vom Zentrum der "Lücke" ist gleich. Eine weitere Verzerrung des Oktaeders tritt erst bei Verkürzung der c-Achse auf, wobei der Vergleich mit der symmetrieverwandten Struktur von $Pr_3NbO_4Cl_6$ [4] (RG: $P6_3/m$) mit einer sehr kurzen Achse (c = 3,962 Å) interessant erscheint. Auch hier sind Cl-Teilchen um die unbesetzten Ecken der hexagonalen Zelle koordiniert, jedoch in Form eines

Abb. 2. Die Struktur von La₂ThTaO₆Cl₃ in Projektion längs (001) (z-Parameter angegeben).

Abb. 3. Das Koordinationspolyeder TaO₆ (Abstände d(Ta-O) = 1,984 Å).

trigonalen Antiprisma mit einem sehr viel geringerem Abstand der beiden gegenüber liegenden Flächen. Weitere einfache Vertreter von Strukturen mit hexagonalen Packungen von Cl₆-Polyedersäulen findet man bei LaCl₃ (UCl₃-Typ; Polyederlücken unbesetzt), NaLn₂Cl₆ [18] (Ln \equiv Pr, Nd; \approx UCl₃-Typ; Polyederlücken halbbesetzt) und ALn_{1.67}Cl₆ (A \equiv Na, K; Ln \equiv La, Ce; \approx UCl₃-Typ mit einer Besetzung der Cer-Positionen zu einem Drittel durch A⁺, der Polyederlücken zu zwei Dritteln durch A⁺) [29, 20].

Als weiteres Strukturmerkmal von $La_2ThTaO_6Cl_3$ ist die trigonalprismatische Umgebung der Ta-Atome (in 1/3 2/3 3/4 und 2/3 1/3 1/4) mit sechs identischen Ta-O-Abständen (Abb. 3) hervorzuheben. Einen Vergleich der interatomaren Abstände für $La_3TaO_5(OH)Cl_3$ [5], $La_2ThTaO_6Cl_3$ und $Ce_3TaO_6Cl_3$ bringt Tabelle 6.

Die Th- bzw. La-Atome sind statistisch auf der gemeinsamen kristallographischen Lage verteilt. Thorium vermag somit das Lanthaniden-Element zu einem beträchtlichen Teil zu ersetzen. Das Ausmass der Substitution (1/3 Ln³⁺ durch Ln⁴⁺ bzw. 1/6 O²⁻ durch OH⁻ oder F⁻) ist hier offenbar durch die Stöchiometrie des Verbindungstyps festgelegt. Die Koordination der Atome auf den Ln-Positionen wird von 6 O- auf einer, sowie von 4 Cl-Teilchen auf der anderen Seite gebildet (Abb. 4). Für Ce³⁺ und Ce⁴⁺ bei Ce₃TaO₆Cl₃ nehmen wir ebenfalls eine statistische Verteilung an. Die Darstellung einer isotypen farblosen Verbindung Ce₃TaO₅(OH)Cl₃ gelang bisher nicht, da die gemischtvalente Cerverbindung aufgrund der Lage des Gleichgewichtes

Interatomare Abstände (Å) bei $La_2ThTaO_6Cl_3$ und $Ce_3TaO_6Cl_3$ verglichen mit La_3TaO_5 -(OH)Cl₃ [5]

Abstand	$La_3TaO_5(OH)Cl_3$	$La_2 ThTaO_6 Cl_3$	$Ce_3TaO_6Cl_3$
$Ta - O(6 \times)$	1.984	1,984	1,981
Ln - O(2x)	2,428	2,395	2,353
Ln - O(2x)	2,565	2,508	2,484
Ln - O(2X)	2,683	2,649	2,632
Ln-Cl(1X)	3,019	3,004	2,999
Ln-Cl(1x)	3,086	3,054	3,020
$Ln-Cl(2\times)$	3,078	3,077	3,025

Abb. 4. Das Koordinationspolyeder LaO₆Cl₄ (Abstände in Å).

$$2Ce_{3}TaO_{6}Cl_{3} + H_{2}O = 2Ce_{3}TaO_{5}(OH)Cl_{3} + \frac{1}{2}O_{2}$$

in einer oxidierender Atmosphäre (Cl_2 -Zusatz!) thermodynamisch bevorzugt ist.

Ob eine Darstellung von $\mathrm{Ce_3TaO_5(OH)Cl_3}$ in einer Wasserstoffatmosphäre gemäss

$$Ce_{3}TaO_{6}Cl_{3} + \frac{1}{2}H_{2} = Ce_{3}TaO_{5}(OH)Cl_{3}$$

möglich ist, wird z.Z. geprüft.

Bemerkenswert ist die hohe thermische Stabilität der hier beschriebenen Oxochlorotantalate $Ln_3MX_6Cl_3$, die ebenfalls für die neuen Verbindungen $Ln_2TaO_4Cl_3$ [21] und $Ln_3TaO_4Cl_6$ [5] zutrifft, wie durch ihre Bildung unter gleichgewichtsnahen Bedingungen bei hohen Temperaturen (z.B. 950 °C) belegt wird. Es war zunächst überraschend, dass ein Unterschied gegenüber den entsprechenden Niobverbindungen $La_3NbO_5(OH)Cl_3$, $La_2-NbO_4Cl_3$ und $La_3NbO_4Cl_6$ [7] hierbei nicht zu erkennen ist, denn wir wissen aus Untersuchungen von Schäfer [22], dass z.B. TaOCl_3 und Ta_3O_7Cl nur als metastabile Festkörper existieren, während NbOCl_3 und Nb_3O_7Cl unter Gleichgewichtsbedingungen gut zugänglich sind. Damit vergleichbare Stabilitätsverhältnisse waren bisher nur im Ln_2O_3 -armen Gebiet zu beobachten: $LaNb_2O_6Cl$ entsteht bei 900 °C aus LaOCl und Nb_2O_5 [3], während eine analoge Tantalverbindung noch nicht dargestellt werden konnte [21].

Ist die Einstellung der heterogenen Gleichgewichte hinreichend schnell, wie es mit den hier beschriebenen Verbindungen als Bodenkörper offenbar der Fall war, so existiert bereits eine Voraussetzung für das Eintreten eines chemischen Transports. Die Beteiligung einer durch des Transportmittel (Cl₂; HCl [7]) eingeführten Atomsorte ($X \equiv Cl$) an der Zusammensetzung des Bodenkörpers ist ebenfalls von Vorteil. Entsprechende Voraussetzungen dürften dazu beigetragen haben, dass zahlreiche Oxidhalogenide (z.B. FeOCl [23]) die ersten ternären Verbindungen waren, mit denen H. Schäfer Transportexperimente durchführen konnte.

Dank

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie danken wir für ihre finanzielle Unterstützung. Teil der geplanten Dissertation von U. Schaffrath, Giessen.

Literatur

- 1 L. H. Brixner, H. Y. Chen und C. M. Fories, J. Solid State Chem., 44 (1982) 99.
- 2 L. H. Brixner, H. Y. Chen und C. M. Foris, J. Solid State Chem., 45 (1982) 80.
- 3 J. C. Calabrese, L. H. Brixner und C. M. Foris, J. Solid State Chem., 48 (1983) 142.
- 4 L. H. Brixner, J. C. Calabrese und C. M. Foris, Mater. Res. Bull., 18 (1983) 1493.
- 5 U. Schaffrath und R. Gruehn, Naturwissenschaften, 74 (1987) 342.
- 6 G. Schmidt und R. Gruehn, J. Cryst. Growth, 57 (1982) 585.
- 7 R. Hofmann, Diplomarbeit, Giessen, 1987.
- 8 T. Negas, R. S. Roth, C. L. McDaniel, H. S. Parker und C. D. Olsen, Mater. Res. Bull., 12 (1977) 1161.
- 9 U. Schaffrath und R. Gruehn, Z. Naturforsch., in Vorbereitung.
- B. Langenbach-Kuttert, J. Sturm und R. Gruehn, Z. anorg. allg. Chem., 548 (1987) 33.

- 11 B. Langenbach-Kuttert, J. Sturm und R. Gruehn, Z. anorg. allg. Chem., 543 (1986) 117.
- 12 R. Gruehn und U. Schaffrath, 3rd Eur. Conf. on Solid State Chemistry, May 29 31 1986, Regensburg, Book of Abstracts, Vol. 3, S. 560.
- 13 J. Soose und G. Meyer, Staatsexamensarbeit, Giessen, 1980.
- 14 G. M. Sheldrick, SHEL-X76: Program for Crystal Structure Determination, Cambridge, U.K., 1976.
- 15 D. T. Cromer und J. B. Mann, Acta Crystallogr., Sect. A, 24 (1968) 321.
- 16 D. T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891.
- 17 G. Steinmann, Diplomarbeit, Giessen, 1987.
- 18 G. Meyer und Th. Schleid, Inorg. Chim. Acta, 140 (1987) 113.
- 19 H. J. Seifert, H. Fink und G. Thiel, J. Less-Common Metals, 110 (1985) 139.
- 20 H. J. Seifert, J. Sandrock und G. Thiel, J. Therm. Anal., 31 (1986) 1309.
- 21 U. Schaffrath, Diplomarbeit, Giessen, 1986.
- 22 H. Schäfer, R. Gerken und L. Zylka, Z. anorg. allg. Chem., 534 (1986) 209.
- 23 H. Schäfer, Z. anorg. allg. Chem., 260 (1949) 279.