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Abstract: The synthesis of 4-amino-7-(g-D-ribofuranosyl)-furol3,2-dlpyrimidine, a new C-
nucleoside analog of adenosine, is described. It involves base-catalyzed cyclization of the 2-
(ribofuranosyl)-2-cyano ethers 3 to afford the ribosyl-3-amino-2-cyanofurans 4a and 48,
followed by a two step conversion into the desired furol3,2-dlpyrimidine system.

Previous studies in this laboratory have led to the synthesis of a number of purine-like C-
nucleosides in which modifications are restricted to the site of the original purine imidazole
ringz. Many of these compounds, for example the 7-(B-D-ribofuranosyl)-pyrrolol3,2-dlpyrimidine
nucleosides?@:+€, are close analogs of naturally-occurring purines, and it is perhaps not too
surprising that they show a variety of biological activities. For example, 9-deazaadenosine is
extremely cytotoxic towards several lines of mouse and human tumor cel 153 and 9-deazainosine is
an effective inhibitor of the growth of certain pathogenic protozoa4. What is surprising,
however, is the fact that the more highly modified thienol3,2-dlpyrimidine C-nucleosides show a
similar spectrum of activities32:42, 1In fact, the thienol3,2-dlpyrimidine isostere of
adenosine behaves as a purine antimetabolite3?, and it ranks amongst the most highly cytotoxic
purine-like compounds known, with IDg, values in the nanomolar ‘rangesd. In view of these
results, it is clearly of interest to determine the extent to which these C-nucleosides can be
modified before they are no longer recognized biochemically as purines. To this end, we
describe here the synthesis of 4-amino-7-(B-D-ribofuranosyl)furol3,2-dlpyrimidine (6, fig 1).

The furol3,2-dlpyrimidine ring system has not been studied extensively, and the few
examples that have been reported are all 6-substituted compounds. Moreover, the known
synthetic approaches, namely the Hofmann reaction of furan-2,3-dicarboxamides® and thermal
rearrangements of S—propynyloxy pyrimidiness. were not suitable for our present needs. We have
therefore developed a new approach to furol3,2-dlpyrimidines that starts with the 3-dimethyl-
aminoacrylonitrile 1, a versatile intermediate that has been used in the synthesis of oxazino-
rnycin8 and a variety of purine-like C-nucleosides?. The controlled hydrolysis of enamine 1
under mild conditions in a two-phase system (CF3;COOH/H,0/CH5Cl,, 20 ° for 5 hr.) affords the
blocked 2-(D-ribofuranosy)-2-formylacetonitrile 2 in excellent yield. Conversion of 2 into the
cyano ether 3 was achieved by treating the mixed isomers with chloroacetonitrile (2.5 eq.) in
dry DMF in the presence of potassium fluoride and 18-crown—-6 (20°, 20 hr)?. The e.B/cis-trans
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isomers of 3 are separable by silica gel flash chromatography (benzene-EtOH, 9:1), but the
mixed isomers were used for the subsequent steps.

Based on our earlier studies on the synthesis of pyrroles and thiophenes, we envisaged that
3 would readily undergo base-catalyzed cyclization to 4. In practice, the cyclization proved
to be difficult, and conditions that were satisfactory in the earlier cases (such as NaOEt /
EtOH, 20° or DBN/THF, 80°) were ineffective with 3, as were the bases KOtBu/THF 20°, and n-
BuLi/THF, -70°. However, using a large excess of the strong base LDA (5 eq. in THF, 2hr, -70°)
does promote cyclization of 3, and the 3-amino-2-cyanofuran C-nucleosides 4 was obtained as an
a,p mixture, albeit in moderate (35%) yield. Separation of the anomers (B/e = 1.3) by silica
gel column chromatography, and treatment of each with formamidine acetate (8 eq.) in boiling
EtOH for 48hr. then affords the 4-aminofurol3,2-dlpyrimidine-C-nucleoside 5« and 5B, each in
80% yield.

A number of NMR criteria were used to determine the anomeric configurations of the C-
nucleosides 4 and 59:10,  Thus the relative chemical shifts of the anomeric protons, the
multiplicities of the H-4' signals, and the A5 values of the isopropylidene groups were all
consistent with the empirical rules derived from studies with both C- and N-nucleosides8:11:12,
Further, the chemical shifts of the isopropylidene methyl carbon atoms in each anomer of 4 and
5 are in excellent agreement with previous reports 11,13 that the methyl signals of 2',3'-O-
isopropylidene-f-C-nucleosides appear at 25.5 + 0.2 and 27.5 + 0.2ppm, whereas they appear at
24.9 + 0.3 and 26.3 + 0.2 ppm in the o series. These observations further confirm that no
epimerization occurred during the conversion of 4e into 5a, or of 4B into 5B.

Treatment of 5B with 6% HC1/MeOH at 25 for 1 hr, followed by precipitation with ether,
affords the unblocked furol[3,2-dlpyrimidine C-nucleoside (68), as its hydrochloride salt in
80% yield. An analytically-pure sample was obtained after recrystallization from MeOH/CCl 4 T
150-152°C; 1H-NMR (DMSO—dG), 83.64 (m, H-5'a,b); 3.91-4.07 (m, H-2',3* and 4'); 4.91 (m, H-1',
broadened by virtual coupling); 8.57(s, H-6); 8.68 (s, H-2); 9.26(bs, NH,, ex D,0). Similar
unblocking of Sa affords 6z as a hygroscopic solid; 1g-NMR (DMSO-dg), 83.4-3.7 (8-1line m, H-
5'a,b); 4.26-4.05(m, H-2',3’ and 4'); 5.19 (d, J1',2 = 2.5Hz.); 8.44 (s, H-6); 8.64 (s, H-2)
and 9.22 (bs, NH, ex D,0). The final product 6B was obtained from 1 in 10% overall yield.

Preliminary studies indicate that 6B is only ten fold less active than its pyrrolo- and
thienol3,2-dlpyrimidine congeners, with IDgq values of 1.7 and 0.68 X 1078y against mouse L1210
and P815 cells jn vitro, respectively. Further studies with this ring system are in progress.

Acknowledgements: We are indebted to Ms. I. Wempen for the preparation of 1, Mr. M. Olsen for
recording the NMR spectra, and Dr J. H. Burchenal for the in vitro cytotoxicity assays.
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