CRYSTALLINE FURANOSE DERIVATIVES OF 3-DEOXY-D-arabino-HEXOSE: CONFORMATIONAL STUDIES BY N.M.R. SPECTROSCOPY

CECILE DU MORTIER AND ROSA M. DE LEDERKREMER*

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Buenos Aires (Argentina)

(Received March 28th, 1984; accepted for publication, June 30th, 1984)

ABSTRACT

Debenzoylation of 2,4,6-tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,5-lactone (1) followed by heating *in vacuo* and rebenzoylation afforded 2,5,6-tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,4-lactone (2). Reduction of 2 with disiamylborane gave 2,5,6-tri-O-benzoyl-3-deoxy-D-arabino-hexofuranose (3), a convenient furanose derivative for the synthesis of glycosides. Acetylation of 3 with acetic anhydride-pyridine afforded 1-O-acetyl-2,5,6-tri-O-benzoyl-3-deoxy- α -D-arabinohexofuranose (4). Compound 4 was converted into methyl 2,4,6-tri-O-benzoyl-3deoxy- α -D-arabino-hexofuranoside (5) through the bromide obtained by treatment of 4 with bromotrimethylsilane, followed by methanol. Debenzoylation of 5 gave methyl 3-deoxy- α -D-arabino-hexofuranoside (6). All compounds mentioned were obtained crystalline. Conformational studies of 4, 5, and 6 were made by ¹H-n.m.r. spectroscopy (DAERM method), and the ¹³C-n.m.r. spectral data are correlated. The structures of compounds 2, 4 and 5 were also confirmed by mass spectrometry.

^{*}Research Member of the Consejo Nacional de Investigaciones Científicas y Técnicas.

0008-6215/85/\$ 03.30 © 1985 Elsevier Science Publishers B.V.

INTRODUCTION

We have used aldonolactones for synthesis of deoxy sugars via β -elimination reactions and stereoselective catalytic hydrogenation¹⁻⁴. Thus, 3-deoxy-D-arabinohexose was obtained in four steps from D-glucono-1,5-lactone⁴ in 70% overall yield. Benzoylation of aldono-1,4-lactones caused multiple elimination^{5,6} and the simple route of β -elimination-hydrogenation would not yield a derivative of 3-deoxy-Dglucono-1,4-lactone useful for the synthesis of furanoid derivatives. An indirect route from D-glucono-1,5-lactone is now described for the synthesis of methyl 3deoxy- α -D-arabino-hexofuranoside (6). Conformational studies of the furanose derivatives by the DAERM method⁷ are also reported. This method has been previously used to study the conformation of 3-deoxy-1,2;5,6-di-O-isopropylidene-D-hexofuranoses⁸ and of derivatives of 3,6-dideoxy- α -L-arabino-hexofuranose⁹.

RESULTS AND DISCUSSION

When 2,4,6-tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,5-lactone (1) was debenzoylated with sodium methoxide and then heated in vacuo in a boiling waterbath, the more-stable 1,4-lactone was obtained as a syrup. The product was rebenzoylated to give crystalline 2,5,6-tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,4-lactone (2), characterized by its spectroscopic data. The i.r. spectrum showed absorption at 1800 cm⁻¹ characteristic of a 1,4-lactone. The ¹³C-n.m.r. spectrum showed C-1 at 171.05 p.p.m., whereas C-1 in compound 1 resonated at 167.2 (see Table II). This is in accord with the previous observation¹⁰ that the carbonyl carbon atom in 1,4-lactones resonates at lower field than C-1 in the corresponding 1,5lactones. Another difference between both types of acylated aldonolactone is that C-6 in the latter resonates at lower field than C-6 in 1,4-lactones. This is not the case with free aldonolactones¹¹. The C-2 signal (δ_c 68.41) of 2 was assigned by comparison with C-2 (δ_c 68.57) in the configurationally related 2,5-di-O-benzoyl-3,6-dideoxy-L-arabino-hexono-1,4-lactone, which was assigned by single-frequency decoupling¹⁰. The most deshielded carbon atom was assigned to C-4 (δ_c 74.46 p.p.m.). The mass spectrum showed the ion at m/z 205 (M - 269, 8% of the base peak), which corresponds to cleavage between C-4 and C-5, characteristic of 1,4ring structures. The loss of benzoic acid (122 m.u.) from the molecular ion accounts for the cation at m/z 352, with the highest mass of the spectrum. The most abundant ions correspond to the aromatic series $105 \rightarrow 77 \rightarrow 51$. Reduction of 2 with disiamylborane12 2,5,6-tri-O-benzoyl-3-deoxy-D-arabinogave crystalline hexofuranose (3) in >90% yield. Its i.r. spectrum showed disappearance of the carbonyl absorption and the anomeric hydroxyl group gave a band at 3300 cm⁻¹. In the ¹H-n.m.r. spectrum (Table I) the hydroxyl resonance appeared as a doublet at δ 2.98 (J 3 Hz), which disappeared on deuteration. The assignment was confirmed by irradiation at the anomeric-proton frequency, which made the doublet collapse to a singlet. Only one anomeric proton was evident and gave a doublet at δ 5.55

)	
FABLE	

۴
~
S
Z
õ
ŝ
ĝ
FOR
ATA
à
×
Σ
Z-T

Compound	Chemi	cal shifts in	i ð values									Coul	oling c	onstar	us in l	zΗ			
	І-Н	Н-2	Н-3	Н-3'	Н-4	Н-5	9-H	,9-Н	OBz	CH ₃	J _{2,3}	J _{2,3'}	J _{3,3'}	J _{3,4}	J _{3',4}	J _{4,5}	J _{5,6}	J _{5,6'}	J _{6,6} ′
3		5.80m	3.06m	3.54m	4.92m	5.80m	4.88dd	4.64dd	7.50m		a	a	13	4	a	8	4	6	12
ŧ	5.568	5.32dd	2.0 9 m	2.74m	4.68m	5.62m	4.78dd	4.54dd	7.35m		5	9	15	4	œ	4	ŝ	S	12
4	6.38s	5.42dd	2.30m	2.75m	4.68m	5.76m	4.82dd	4.54dd	7.35m	2.10s	6	9	14	9	٢	10	ŝ	9	12
ŝ	5.13s	5.35dd	2.19m	2.70m	4.60m	5.72m	4.85dd	4.62dd	7.42m	3.40s	ŝ	9	13	9	×	10	3	4	11
9	4.94s	4.28dd	1.88m	2.40m	3.72m	4.26m	3.86m	3.60m	0.2011	3.34s	5	6	13	5	7	u	8	ø	e
"Unresolved																			

49

Compound	C-1	C-2	С-3	C-4	C-5	С-б	C=O benzoate	C=O acetate	СН₃
1 <i>a</i>	167.20	64 73	30.95	66.78	77 70	63.46	165.72		
							165.09		
2	171.05	68.41	31.28	74.46	71.79	62.31	165.83		
							161.21		
3	101.11	76.78	31.78	78.38	72.82	63.45	166.01		
							165.80		
							165.40		
4	99.94	77.32	32.08	78.41	72.56	63.34	165.57	169.04	21.17
5	107.20	76.42	32.24	77.70	72.85	63.63	165.47		54.78
							165.68		
							165.99		
6	109.73	75.04	33.43	79.31	73.51	63.68			55.45
7 ª	102.89	76.14	33.12	79.00	73.70	63.70			

TABLE II

¹³C-N M R CHEMICAL SHIFTS FOR COMPOUNDS **1–7**

"The data for compound 1 and for 3-deoxy- α -D-arabino-hexofuranose (7) are taken from ref. 4.

 $(J_{1,OH} 3 \text{ Hz})$. No coupling with H-2 could be observed, which is indicative of the α -anomeric configuration¹³. As expected the ¹³C-n.m.r. spectrum (see Table II) shows the α -anomeric carbon resonance at lower field (δ_c 101.1) than in the corresponding pyranose derivative (δ_c 90.9). A small signal at δ_c 95.1 was assigned to the β anomer. A ratio of 8:1 for the α_F/β_F tautomers was estimated from the integrated intensities of the resonances of C-1. The C-4 atom (δ_c 78.4) was more deshielded than the other ring carbon atoms, followed⁴ by C-2. Compound **3** is a convenient furanose derivative for the synthesis of disaccharides and glycosides. By acetylation with acetic anhydride–pyridine, crystalline 1-*O*-acetyl-2,5,6-tri-*O*-benzoyl-3-deoxy- α -D-arabino-hexofuranose (**4**) was obtained in 82% yield. The ¹H-n.m.r. spectrum (Table I) showed a singlet at δ 6.38, indicating no change in the anomeric configuration. The ¹³C-n.m.r. spectrum (Table II) showed C-1 at δ_c 99.9, shifted upfield (+1.2) with respect to C-1 in compound **3** with a free 1-OH group. The other carbon signals showed only slight variation.

The furancic structure of **4** was confirmed by mass spectroscopy as shown in Scheme I. Compound **4** was converted into the methyl glycoside through the corresponding bromide. Bromotrimethylsilane was used as the anomeric brominating agent¹⁴. After 2 h, the volatile excess reagent and trimethylsilyl acetate were removed and treatment with methanol afforded crystalline methyl 2,4,6-tri-*O*-benzoyl-3-deoxy- α -D-arabino-hexofuranoside (**5**) in 85% yield.

The ¹H-n.m.r. spectrum (Table I) showed only one singlet (δ 5.13) in the anomeric region, which is consistent with the α configuration. The ¹³C-signal for C-1 appeared at δ_c 107.20. The downfield shift (6.09 p.p.m.) caused by methyl glycosidation is similar to the value encountered for other monosaccharides¹⁵. The other resonances were only slightly modified by glycosidation. In the mass spectrum

(Scheme II), the ion at m/z 221 formed by cleavage between C-4 and C-5, characteristic of furanose structures, is present with an abundance of 99% from the base peak. Further elimination of benzoic acid gave the ion at m/z 99 (98%). The loss of OCH₃ from the molecular ion gave the peak with the highest mass $(M - OCH_3, M)$ 459, 6%). Debenzoylation of **5** afforded crystalline methyl 3-deoxy- α -D-arabinohexofuranoside (6). Only the α anomer was evident from examination of the ¹Hand ¹³C-n.m.r. spectra. The C-1 signal appeared at δ_{0} , 109.73, which is in accord with the shift observed for other 1,2-trans methyl aldofuranosides¹⁶. Conformational studies on 3-deoxy derivatives may be made by the DAERM method⁷ (dihedral angle estimation by the ratio method). Analysis of the 3-deoxy- α -D-arabino hexofuranoside derivatives 4, 5, and 6 was achieved from the ¹H-n.m.r. data (Table I) and the diehedral angles between H-2, H-3, H-3', and H-4 were estimated by DAERM. The results are listed in Table III. Only calculations with a logical value for the Karplus constants are included. For compounds 4 and 5, the solution a/c, which indicates a ${}^{\circ}T_{1}$ conformation that minimizes interaction between the benzoyl substituents is the most probable. Stevens and Fletcher¹³ reported a ${}^{\circ}T_1$ conformation for benzoylated derivatives of α -D-arabinofuranoses. In this conformation the H-1-H-2 dihedral angle would be close to 90°, which explains that no coupling was observable for the anomeric proton. For compound 6, in which there is no interaction between substituents, the DAERM solutions would favor a ${}^{\circ}T_1 \rightleftharpoons {}^{\circ}E$ equilibrium.

TABLE III

Compound	Protons coupled	Case	J	J ₂	Ø ₁	Ø ₂	k ₁	k ₂
4	H-2;H-3;H-3'	а	2	6	51	176	5.7	6.3
		b	6	2	1	126	6.3	6.9
	H-4;H-3;H-3'	с	3	7	46	171	6.8	7.5
		d	7	3	5	130	7.3	8.2
5	H-2;H-3;H-3'	а	3	6	44	169	6.0	6.7
		b	6	3	7	132	6.5	7.2
	H-4;H-3;H-3'	С	6	8	34	159	8.9	9.9
		d	8	6	17	142	9.3	10.3
6	H-2;H-3;H-3'	а	2	6	51	176	5.7	6.3
		b	6	2	1	126	6.3	6.9
	H-4;H-3;H-3'	с	5	7	34	159	7.6	8.5
	, .	d	7	5	17	142	7.9	88

DAERM ANALYSIS^a OF COUPLINGS IN COMPOUNDS 4-6

^{*a*}w = 124°; $k_1/k_2 = 0.9$, typical values for furanoid systems⁸.

EXPERIMENTAL

General methods. — The instrumentation used has been described previously⁶. N.m.r. spectra were recorded at ~30° with a Varian XL-100 spectrometer operating in the f.t. mode with a 620 L-100 computer interfaced to a Sykes 7000 dual disk-drive. Solutions were made in chloroform-*d* with tetramethylsilane as internal standard, except for compound **6** which was recorded in D₂O with 1,4dioxane as the external standard (δ_c 67.4 p.p.m. downfield from tetramethylsilane). Mass spectra were performed with a Varian MAT Ch-7A mass spectrometer at 70 eV, coupled to a Varian MAT data system 166. T.l.c. was performed on Silica Gel G (Merck) with 19:1 benzene–ethyl acetate. Detection was effected with iodine vapor. Paper chromatography was conducted by the descending method on Whatman No. 1 paper with 6:4:3 1-butanol-pyridine-water. G.l.c. was performed with glass columns (180 × 0.2 cm) packed with 3% ECNSS-M on Gas-chrom Q with nitrogen at a flow rate of 29 mL/min, T, 210°, T_d 210°, T_c 170°.

2,5,6-Tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,4-lactone (2). — 2,4,6-Tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,5-lactone (1; 2 g) was debenzoylated by treatment with 0.1M sodium methoxide in methanol (40 mL), for 2 h at room temperature. The solution was decationized with Amberlite IR-120 (H⁺) resin and evaporated to a syrup that was dissolved in water and extracted with benzene in order to remove methyl benzoate.

The water phase was evaporated and the resulting syrup heated under diminished pressure for 4 h in a boiling water-bath. The lactone was dissolved in anhydrous pyridine (5 mL) and benzoyl chloride added with stirring. After shaking for 2 h at room temperature, the mixture was poured into ice-water. The syrup that was separated by decantation crystallized on addition of ethanol; yield 1.65 g (82.5%).

Recrystallization from the same solvent gave pure **2**; m.p. 113–115°, $[\alpha]_D^{20}$ –26.2° (c 0.7, chloroform); $R_F 0.46$; ν_{max}^{Nujol} 1800 (1,4-lactone C=O); 1720 cm⁻¹ (benzoate C=O); ¹H-n.m.r. see Table I, ¹³C-n.m.r. see Table II; m/z 352 (9%), 268 (9%), 229 (21%), 205 (8%), 135 (6%), 122 (6%), 105 (100%), 96 (6%), 77 (45%), 71 (7%), 54 (13%), 51 (5%), and 43 (14%).

Anal. Calc. for C₂₇H₂₂O₈: C, 68.36; H, 4.64. Found: C, 68.39; H, 4.81.

2,5,6-Tri-O-benzoyl-3-deoxy-D-arabino-hexofuranose (3). — A solution of compound 2 (500 mg) was reduced with disiamylborane as previously described². Compound 3 (R_F 0.30) crystallized spontaneously and was recrystallized from ethanol-water; yield 445 mg (89%), m.p. 132–134°, [α]_D²⁰ -53.2° (c 0.5, chloroform); ν_{max}^{Nujol} 3.300 (OH) and 1700 cm⁻¹ (benzoate C=O); ¹H-n.m.r. see Table I, ¹³C-n.m.r. see Table II. For estimation of the $\alpha F/\beta F$ ratio, a 2.5% solution of 3 in chloroform-d was used, number of scans 15000, acquisition time 0.8 s, pulse width 31 μ s, pulse delay 1.3 s.

Anal. Calc. for C₂₇H₂₄O₈: C, 68.05; H, 5.09. Found: C, 67.84; H, 5.01.

Debenzoylation of **3** as previously reported for the pyranose derivative⁴ gave 3-deoxy-D-*arabino*-hexose having the same m.p., m.m.p. (140–142°), and chromatographic properties as an authentic sample. Gas-liquid chromatography of the alditol acetate gave T 0.57 (relative to glucitol hexaacetate).

1-O-Acetyl-2,5,6-tri-O-benzoyl-3-deoxy-α-D-arabino-hexofuranose (4). — Compound 3 (120 mg) was acetylated according to Wolfrom and Wood¹⁷ to give crystalline 1-O-acetyl-2,5,6-tri-O-benzoyl-3-deoxy-α-D-arabino-hexofuranose (4); yield 98.5 mg (75%). Upon recrystallization from 3:2 ethanol-water it had m.p. 74-76°, $R_{\rm F}$ 0.5, $[\alpha]_{\rm D}^{20}$ -14.7 (c 0.5, chloroform); $\nu_{\rm max}^{\rm Nujol}$ 1740 (acetate C=O) and 1720 cm⁻¹ (benzoate C=O); m/z 475 (0.3%), 249 (24%), 127 (6.5%), 105 (100%), 77 (16%), 43 (18%); ¹H-n.m.r. see Table I, and ¹³C-n.m.r. see Table II.

Anal. Calc. for C₂₉H₂₆O₉: C, 67.18; H, 5.02. Found: C, 67.46; H, 5.27.

Methyl 2,5,6-tri-O-benzoyl-3-deoxy- α -D-arabino-hexofuranoside (5). — Compound 4 (185 mg) was dissolved in dichloromethane (1.5 mL) and treated with bromotrimethylsilane (0.3 mL) at 0°. The reaction was complete in 1 h as monitored by t.l.c. Only one spot with $R_{\rm F}$ 0.35 was shown. After drying *in vacuo*, the bromide was treated with an excess of anhydrous methanol for 24 h at room temperature. The solution was evaporated and the residue crystallized on addition of 2-propanol. Recrystallization from the same solvent afforded compound 5 (160 mg, 85%). It showed $R_{\rm F}$ 0.62, m.p. 69–71°, $[\alpha]_{\rm D}^{20}$ –29.15 (*c* 0.8, chloroform); *m/z* 459 (6%), 308 (7%), 221 (99%), 205 (18%), 106 (48%), 105 (100%), 99 (98%), 81 (15%), 77 (85%), 71 (15%), 54 (50%), and 51 (10%); ¹H-n.m.r. see Table I and ¹³C-n.m.r. see Table II.

Anal. Calc. for C₂₈H₂₆O₈: C, 68.57; H, 5.33. Found: C, 68.28; H, 5.61.

Methyl 3-deoxy- α -D-arabino-hexofuranoside (6). — The benzoate 5 (160 mg) was debenzoylated by treatment with 0.1M sodium methoxide in methanol (10 mL).

After 2 h at room temperature, the solution was made neutral with Amberlite IR-120 (H⁺) resin and evaporated to a syrup that crystallized from 1:1 acetone–ethyl ether. Recrystallization from the same solvent gave pure **6** (42 mg, 74%); m.p. 81–83°, $[\alpha]_{D}^{20}$ +47.62 (*c* 0.3, water); ¹H-n.m.r. see Table I and ¹³C-n.m.r. see Table II.

Anal. Calc. for C₇H₁₄O₅: C, 47.19; H, 7.87. Found: C, 47.38; H, 7.96.

ACKNOWLEDGMENTS

We thank UMYMFOR-CONICET-FCEN (Unidad de Microanálisis y Métodos Físicos Orgánicos, Consejo Nacional de Investigaciones Científicas y Técnicas Facultad de Ciencias Exactas y Naturales) for the microanalyses and spectra and SUBCYT (Subsecretaría de Estado de Ciencia y Tecnología) for financial support.

REFERENCES

- 1 R. M. DE LEDERKREMER AND L. F. SALA, Carbohydr. Res., 40 (1975) 385-386.
- 2 O. J. VARELA, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 70 (1979) 27-35.
- 3 L. F. SALA, A. FERNÁNDEZ CIRELLI AND R. M. DE LEDERKREMER, Carbohydr. Res., 78 (1980) 61-66.
- 4 C. DU MORTIER AND R. M. DE LEDERKREMER, J. Carbohydr. Chem., 3 (1984) 219-228.
- 5 R. M. DE LEDERKREMER AND M. I. LITTER, Carbohydr. Res., 20 (1971) 442-444.
- 6 O. J. VARELA, A. FERNÁNDEZ CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 100 (1982) 424-430.
- 7 K. N. SLESSOR AND A. S. TRACEY, Can. J. Chem., 49 (1971) 2874-2884.
- 8 L. D. HALL, S. A. BLACK, K. N. SLESSOR, AND A. S. TRACEY, Can. J. Chem., 50 (1972) 1912-1924.
- 9 O J. VARELA, A. F. CIRELLI, AND R. M. DE LEDERKREMER, Carbohydr. Res., 85 (1980) 130-135.
- 10 A. F. CIRELLI, M. SZNAIDMAN, O. J VARELA, AND R. M. DE LEDERKREMER, *Tetrahedron*, 39 (1983) 313–316.
- 11 K. BOCK AND C. PEDERSEN, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27-66.
- 12 P. KOHN, R. H. SAMARITANO, AND L. M. LERNER, J. Am. Chem. Soc., 87 (1965) 5475-5480.
- 13 J. D. STEVENS AND H. G. FLETCHER, JR., J. Org. Chem., 33 (1968) 1799-1805.
- 14 J. W. GILLARD AND M. ISRAEL, Tetrahedron Lett., 22 (1981) 513-516.
- 15 P. A. J. GORIN AND M. MAZUREK, Can. J. Chem., 53 (1975) 1212-1223.
- 16 P. A. J. GORIN AND M. MAZUREK, Carbohydr. Res., 48 (1976) 171-186.
- 17 M. L. WOLFROM AND H. B. WOOD, JR., J. Am. Chem. Soc., 71 (1949) 3175-3176.