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Preparing P-stereogenic compounds is one of the biggest
challenges of organophosphorus chemistry.[1] Although vari-
ous methods have been reported for the preparation of
specific P-stereogenic building blocks, based on kinetic
resolution, or on chiral auxiliaries, typically these have
severe limitations in the scope of their application.[1] More
than 40 years ago, Mislow and others pioneered the field of P-
stereogenic compounds and the study of their reactivities.[2] A
case in point is menthyl phenyl-H-phosphinate PhP(O)-
(OMen)H (1), which has since been employed in various
reactions such as cross-coupling, substitution, or hydrophos-
phinylation.[3] However, enriched diastereomers of 1 remain
difficult to prepare as their isolation requires low-temper-
ature recrystallization (multiple crystallizations below �30 8C
or at �70 8C), and yields of isolated products were not
reported. Similar chemistry using MenOPCl2 and aryl
Grignard reagents was reported recently.[4] In the final
analysis, these methods still require cumbersome crystalliza-
tion procedures and are limited in terms of the phosphorus
compounds that are accessible and therefore the final
products (usually P-stereogenic phosphines) that can be
derived from them.

Herein, we report an extremely simple and inexpensive
approach to versatile P-stereogenic building blocks, on multi-
gram scales, and without the need for RPCl2 precursors. The
new intermediates also allow much more flexibility for their
functionalization into a broad variety of useful P-stereogenic
compounds. Compound 2 is prepared from hypophosphorous
acid, paraformaldehyde, and (�)-menthol in 9 % yield
(> 6 g), and compound 3 is prepared from phenyl-H-phos-
phinic acid, (�)-menthol, and paraformaldehyde in 26%
yield (> 24 g) (Scheme 1). The two building blocks (RP)-2 and
(SP)-3 are crystallized in high (> 95 %) diastereomeric purities
at �18 8C (in a freezer) or at room temperature, respectively.
While the yields are relatively low, these still compare to the
yields of literature methods, and multigram quantities are
available in a single preparation. The latter reaction was also
scaled up uneventfully to produce 88 g of (SP)-3 (24 % yield,
96% de). The structures of (RP)-2 and (SP)-3 were confirmed
by single X-ray crystallography.[15]

To improve the value of the reaction leading to 2, the
mother liquor was directly cross-coupled with bromobenzene

using our own conditions.[5] Crystallization of the resulting
reaction mixture at room temperature led to 3 in good yield
(23 % yield, 97 % de ; Scheme 1). This diastereomer is
identical to the one obtained directly from PhP(O)(OH)H
(Scheme 1). On the other hand, cross-coupling of crystalline
(RP)-2 with bromobenzene gave (RP)-3 in 68% yield. Thus the
same reaction sequence can be used to make either P confi-
guration simply depending on the starting material: the
mother liquor or the crystalline diastereomer! An overall
yield of 33% of useful P-stereogenic compounds is easily
achieved through the reaction of H3PO2. This yield is much
higher than that of any literature method which employs PCl
intermediates or/and Grignard reagents.

Besides improved crystallization properties (all com-
pounds were obtained after a single crystallization!), these
P-stereogenic building blocks have the advantage of contain-
ing a hydroxymethyl handle, which offers two major ways to
functionalization (Scheme 2)—either with preservation of the
hydroxymethyl carbon atom or through oxidation to the
corresponding H-phosphinate. We recently reported that the
Corey–Kim oxidation of (hydroxymethyl)phosphinates gives

Scheme 1. Preparation of 2 and 3.
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the corresponding H-phosphinates in a highly stereoselective
way.[6]

Diastereomer (RP)-2 is clearly the most versatile P-
stereogenic building block to date (Scheme 3). Cross-cou-
pling of (RP)-2 with bromobenzene gives (RP)-5 a (= (RP)-3) in

68% yield, and subsequent oxidative cleavage delivers (SP)-
1 in 81% yield. Compound (SP)-3 can also be oxidized to form
stereospecifically (RP)-1 in 91 % yield (Scheme 3). Therefore,
cross-coupling of 2 followed by oxidation of 3 also leads to
either P configuration of 1 using inexpensive (�)-menthol in
all cases. Previous methods by Mislow and Han to prepare
either P stereoisomer of 1 relied on (�)-menthol and
(+)-menthol, respectively.[3c] (+)-Menthol is fifty times
more expensive than (�)-menthol. Because of the ease of

obtaining 2 and 3, and then 1, this approach is clearly
competitive with the synthesis of 1 from PhPCl2 or Men-
OPCl2.

[2–4]

The usefulness of compound 1 in asymmetric organo-
phosphorus synthesis is well-established. However, it can only
be used for the synthesis of phenyl-containing products. To
obtain other substitution patterns, crystallization must be
optimized for each case.[4] Therefore the novel building block
(RP)-2 offers much flexibility previously unavailable. Com-
pound (RP)-2 can be viewed as a protected chiral equivalent
of alkyl phosphinates ROP(O)H2, since it can be stereospe-
cifically alkylated to form 4, or cross-coupled to form 5, and
the hydroxymethyl moiety can subsequently be cleaved to
form H-phosphinates like 1 and 6. Also, the presence of the
hydroxymethyl group in both 2 and 3 provides further
opportunities for functionalization since the carbon atom
can be preserved if desired. For example, Mitsunobu reaction
of 3 with phthalimide gives 9 in 70% yield (Scheme 3).

Our method is not limited to compounds 2 and 3. For
example, cinnamyl-H-phosphinic acid[7] can be esterified and
hydroxymethylated in one pot to form (RP)-10 in 32 % yield
and > 99% de (Scheme 4) after a single crystallization at
room temperature.[8] Oxidation of (RP)-10 provides menthyl
cinnamyl-H-phosphinate (SP)-11 in 82% yield and > 99% de.

Table 1 summarizes the oxidation of various (hydroxyme-
thyl)phosphinates. As can be seen the reaction is general and
proceeds in good yields and excellent stereoselectivities. Thus,
the present work also provides a general route to P-
stereogenic H-phosphinates that is much simpler and cheaper
than the desymmetrization of alkyl phosphinates.[9]

An example of the exploitation of the CH2OH moiety is
the Wittig rearrangement[10] (Scheme 5). Allylation of 3 gives

Scheme 2. Functionalization of P-stereogenic (hydroxymethyl)phosphi-
nates.

Scheme 3. Functionalization of 2 and 3, and stereodivergent synthesis
of PhP(O)(OMen)H (1). a) 1) Me3SiN=C(OSiMe3)Me (2 equiv),
CH2Cl2; 2) MeI (1 equiv), 0 8C to RT, 20 h; or allylBr (2 equiv), 0 8C to
RT, 36 h. b) ArBr (1 equiv), Pd(OAc)2 (2 mol%), xantphos (2.2 mol%),
iPr2NEt (1.3 equiv), DMF/DME or toluene/ethylene glycol (9:1, v/v),
115 8C, 24 h. c) 1) N-chlorosuccinimide (3 equiv), Me2S (3 equiv),
CH2Cl2, �78 8C, 10 min. 2) 3 or 5a or 5c (1 equiv), �78 8C, 3 h.
3) Et3N (5 equiv), �78 8C to RT, 1 h. d) 1) Me3SiN=C(OSiMe3)Me
(2 equiv), CH2Cl2; 2) MeI (2 equiv), 0 8C, 2 h; or allylBr (2 equiv), RT,
4 days. e) 1-octene (1 equiv), Et3B (1 equiv), hexane, RT, air, 20 h.
f) phthalimide (1.3 equiv), PyPPh2 (1.3 equiv), DIAD (1.3 equiv),
CH2Cl2, RT, 24 h. DIAD: diisopropyl azodicarboxylate.

Scheme 4. Synthesis of P-stereogenic cinnamyl derivatives. Step
(a) Corey–Kim: 1) N-chlorosuccinimide (3 equiv), Me2S (3 equiv),
CH2Cl2, �78 8C, 1 h. 2) 10 (1 equiv), �78 8C, 30 min. 3) Et3N (5 equiv),
�78 8C to RT, 1 h.

Table 1: Summary of the oxidative cleavage reactions.[a]

R A B
de [%] config. yield [%] de [%] config.

Ph 95 SP 91 95 RP

Ph 95 RP 81 >99 SP

Me >99 RP 61 96 SP

1-naphthyl 94 RP 87 94 SP

cinnamyl >99 RP 82 >99 SP

[a] For details, see the Supporting Information.
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intermediate 12. Subsequent treatment of 12 with sBuLi
delivers the rearranged product 13. In both instances, a single
diastereomer is obtained. Stereochemical assignment was
established on 13 b through X-ray crystallography.[15]

H-Phosphinate (RP)-2 was converted into menthyl thio-
phosphonic monoester 14 in quantitative yield [Eq. (1)]. In
the past, P-stereogenic compounds have been prepared by
resolving thiophosphonic acid monoesters with chiral bases
(quinine, brucine),[11] which requires optimization for each
case.

The preparation of a variety of P-stereogenic organo-
phosphorus compounds from 1 and from other menthyl
phosphinic esters is well-known (Scheme 6).[1] For example,
treatment of menthyl H-phosphinates 15 with organometallic
reagents gives the corresponding secondary phosphine oxides
with high stereoselectivity (inversion). Similarly, disubstituted
menthyl phosphinates 16 are alkylated after LDBB (lithium

para,para’-di-tert-butylbiphenylide) reduction[12] or substi-
tuted with organometallic entities. The latter method was
used in the historic synthesis of the P-stereogenic bidentate
phosphine ligand DiPAMP.[2a] The groups of Pietrusiewicz[13a]

and Buono[13b, 4] have developed a very nice method to convert
H-phosphinates into secondary phosphine–borane com-
plexes. Finally, many methods are established to convert
tertiary phosphine oxides into the corresponding P-stereo-
genic phosphines through either retention or inversion of
configuration.[1] To date, the major limitation in using the
reactions shown in Scheme 6 has been the preparation of the
required starting materials 15 and 16. This fact has also
prompted many different methods to access P-stereogenic
compounds.[1] For example, the enzymatic resolution of
(hydroxymethyl)phosphinates requires significant optimiza-
tion and the use of expensive lipases/esterases.[14] In contrast,
our approach employs one of the cheapest chiral alcohols
available: (�)-menthol. With the present strategy, accessing
a wide variety of compounds 15 and 16 is straightforward and
inexpensive; so our method should be applicable to the
synthesis of virtually any P-stereogenic phosphine.

In summary, we have prepared numerous versatile and
inexpensive P-stereogenic phosphinate building blocks. The
reaction of H3PO2 or RP(O)(OH)H with (�)-menthol and
paraformaldehyde is apparently a general method. Menthyl
(hydroxymethyl)phosphinates display favorable crystalliza-
tion properties and synthetic versatility. These are obtained in
multigram quantities through simple and practical crystalli-
zation conditions (most often at room temperature!). The
method does not rely on any chlorophosphine intermediate.
One illustration of the synthetic flexibility is the stereo-
divergent preparation of both (RP)-1 and (SP)-1 from the
same (�)-menthol auxiliary. The presence of the hydroxy-
methyl group not only eases the crystallization process, but
also offers the possibility to maintain the methylene carbon
atom in other P-stereogenic derivatives, or to be cleaved to P-
stereogenic H-phosphinates. Compound (RP)-2 represents
a novel chiral version of hypophosphorous esters, from which
virtually any organophosphorus compound can be synthe-
sized. We believe that our method represents a great leap
forward toward the general synthesis of P-stereogenic com-
pounds. This should provide a revival of older menthol-based
methods and promote the development of novel phosphine
ligands for asymmetric synthesis. Further work to improve the
yields of (RP)-2 and related compounds through additional
reactions of the mother liquor, and to develop, expand, and
apply this method, is currently underway.
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A General Strategy for the Synthesis of
P-Stereogenic Compounds

A great leap forward toward the general
synthesis of P-stereogenic compounds:
Heating H3PO2 with (�)-menthol and
paraformaldehyde gives easily crystal-
lized menthyl hydroxymethyl-H-phosphi-
nate (1). From this product, virtually any
P-stereogenic compound can be synthe-
sized (see picture).
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