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Abstract – An investigation was undertaken to elucidate substituent effects on the 

photoreactivity of 1,2,4-triazole-substituted -dehydroarylalaninamides [(Z)-1] as 

well as on the selectivity of 2(1H)-quinolinone derivatives (2) from a synthetic 

point of view.  It was found that photoinduced electron transfer-initiated 

cyclization of (Z)-1 bearing a meta-substituted phenyl or a 4-substituted 

naphthalen-1-yl group in methanol proceeds with a moderate to good efficiency 

affording the corresponding product 2 in a selectivity ranging from 33 to 100%. 

 

Excited-state chemistry for organic molecules has continued to contribute to the development of 

convenient methods for synthesizing pharmaceutically useful heterocyclic compounds.
1
  Particularly, 

photoinduced electron transfer (PET) reactions have attracted much recent attention owing to the 

potential that these reactions are able to construct many types of heteroatom-containing ring systems with 

high efficiencies.
1a,c,d

  In the course of a systematic study on the PET reaction of N-acyl- -

dehydroarylalanines, we found that irradiation of (Z)-2-(3,5-dimethyl-1,2,4-triazol-4-yl)-3-(1-naphthyl)-

2-propenamide and related derivatives [hereafter, referred to as 1,2,4-triazole-substituted -dehydro(1-

naphthyl)alaninamides] in methanol-triethylamine (TEA) afforded benzo[f]quinolinones in high 

selectivities, along with minor amounts of dihydrobenzo[f]quinolinones.
2
  In addition, anion radicals 

derived from triazole-substituted -dehydro(1-naphthyl)alaninamides were shown to have a strong 

tendency to dissociate into the corresponding triazole anion and -dehydronaphthylalanyl radicals, which 

readily cyclize to 2(1H)-benzo[f]quinolinones in the presence of the TEA cation radical.  Although there 

are several synthetic studies aiming at the construction of a pharmaceutically useful quinolinone ring,
3
 

convenient photochemical routes to quinolinone and its derivatives are scarcely known.
4
  It is, thus, of 
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significance to develop a novel method for synthesizing 2(1H)-quinolinone derivatives through the PET-

initiated cyclization of triazole-substituted -dehydroarylalaninamides.  In this communication we 

synthesized (Z)-2-(3,5-dimethyl-1,2,4-triazol-4-yl)-3-aryl-2-propenamides [(Z)-1a–i] and (Z)-2-(3-

methyl-5-phenyl-1,2,4-triazol-4-yl)-3-aryl-2-propenamides [(Z)-1j–n] to examine substituent effects on 

the photoreactivity of (Z)-1 as well as on the selectivity of substituted 2(1H)-quinolinone as one of the 

(Z)-1-derived photoproducts (Chart 1). 
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The starting (Z)-isomers [(Z)-1a–n] were prepared in good yields by the ring-opening reactions of (Z)-4- 

arylmethylene-2-methyl-5(4H)-oxazolones with equimolar amounts of the corresponding N-substituted 

hydrazides in acetonitrile, followed by the condensation of the resulting 1,2,4-triazole-substituted 2-

propenoic acids with methyl amine in 1,4-dioxane or dimethyl formamide.
5
  After a nitrogen-saturated 

methanol solution of (Z)-1a (4.0 10
–3

 mol dm
–3

, 500 mL) containing TEA (0.10 mol dm
–3

) was irradiated 

at wavelengths longer than 280 nm from a 400 W high-pressure Hg lamp for 60 min at room temperature 

(Pyrex glass filter, conversion 95%), the reaction mixture was subjected to preparative thin layer 

chromatography over silica gel (eluent: EtOAc).  Usual workup allowed us to isolate 1-methyl-6-

methoxy-2(1H)-quinolinone (2a; isolated yield, 20%), the regional isomer of which [1-methyl-8-

methoxy-2(1H)-quinolinone] was not detected.
6
  On the other hand, a comparison of the 

1
H NMR 

spectrum of this reaction mixture with those of 3,4-dihydro-3-(3,5-dimethyl-1,2,4-triazol-4-yl)-1-methyl-

2(1H)-benzo[f]quinolinone (3i) and 3,5-dimethyl-1,2,4-triazole isolated in a previous study showed that 

the corresponding dihydroquinolinone (3a) and triazole derivatives were produced along with (E)-1a and 

4a (Scheme 1).
2
   The arylalaninamide derivative 4a was isolated by repeated preparative thin layer 
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Table 1. Substituent effects on the conversion and composition of each compound 

obtained by the 30 min irradiation of (Z)-1a–h in MeOH–TEA at room temperaturea
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chromatography and the 
1
H NMR spectral data substantiated the structure of this reduction 

product.
7
  The result that the photocyclization reaction of (Z)-1a proceeds without forming any 

byproducts enabled us to monitor this reaction by means of 
1
H NMR spectroscopy (Scheme 1).  

However, prolonged irradiation (>60 min) resulted in a side reaction to a definitely detectable extent 

depending on the structure of (Z)-1a–h and, hence, the 
1
H NMR composition of each compound was 

determined and compared after 30 min irradiation to analyze substituent effects on the photoreactivity of 

1 and the selectivity of 2 (Table 1). 
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The data collected in Table 1 demonstrate that substituents introduced into the benzene ring of (Z)-1e 

exert great electronic and steric effects (which are beyond our expectations) on both the photoreactivity 

and the product composition.  Replacement of hydrogens at the para- and meta-positions on the ring by 

methoxy or chloro groups increases the conversion of 1 but replacement at the latter position lowers the 

composition ratio of 2 to 3.  In addition. the presence of a bulky methoxy group at the ortho-position 

(1c) or an electron-withdrawing cyano group at the meta-position (1h) resulted in a considerable decrease 

in photoreactivity.  The finding that irradiation of (Z)-1i under the same conditions enables the complete 

conversion into the corresponding photoproducts 2i (isolated yield, 72%; selectivity, 76%) and 3i (R
4
= H, 

R
5
= Me in Scheme 2) confirms that the phenyl moiety in 1e has a much lower ability to accept an 

electron from TEA in its excited state, as compared to the naphthyl in 1i.  As mentioned above, either a 

methoxy or a chloro substituent introduced at the meta-position on the benzene ring of (Z)-1e has a 

tendency to enhance the electron-accepting ability of this ring to exhibit the so-called “meta effect” 

although the selectivity of the quinolinone derivative 2 is decreased by this effect.
8
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In a previous study we found (through analysis of the effects of substituents attached to the triazole ring 

on the product composition) that the phenyl substituent increases the composition ratio of 2 to 3 by a 

factor of about 2 with keeping the conversion of 1 nearly constant.
2
  Additionally, taking into account 
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the fact that methoxy and benzo groups increase both the photoreactivity of 1 and the selectivity of 2, we 

synthesized (Z)-1j–n to explore the meta effect as well as the effect of substituent (attached to the 

naphthalene ring) on the reactivity and selectivity.  In Table 2 are summarized the conversion of 1 and 

the product composition, obtained under the same irradiation conditions as those for (Z)-1a–i.  

Replacement of one of the two methyl groups attached to the triazole ring by the phenyl increased the 

selectivity of 2 from 74% (2i) to 84% (2m), being consistent with our previous results (76% 86%).
2
  

Interestingly, substitution of two methoxy groups for the meta-hydrogens (1j) enhanced not only the 

photoreactivity (conversion) of 1a (24% 79%) but also the selectivity of 2a (33% 71%).  However, 

the presence of the fluoro-substituted naphthalene ring in 1n (R
4
= F, R

5
= Ph in Scheme 2) fairly reduced 

both the selectivity of the benzoquinolinone derivative 2m (84% for 2m and 40% for 2n) and the 

photoreactivity of 1m (R
4
= H, R

5
= Ph).  Furthermore, the introduction of an electron-donating methyl 

group (1l) exerted only a very minor effect on these two parameters but replacement of this methyl group 

by a methoxy (1k) substantially reduced the conversion of 1m (100% for 1m and 13% for 1k) with the 

selective formation of 2k.  As seen from these considerations, the selectivity of the benzoquinolinone 

derivative 2 has a clear tendency to increase with an increase in the electron-donating ability of the 

substituent R
4
 in (Z)-1k–n, whereas this substituent has a complicated influence on the excited-state 

reactivity of the triazole-substituted 1-naphthylalaninamide derivative 1. 
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We previously proposed (through a detailed analysis of solvent and substituent effects on the composition 

ratio of 2i to 3i) that the relative stability of the (E)-1i-derived anion radical intermediates (E)-IA and (E)-

IB (which are in equilibrium with each other) determines the magnitude of this ratio (Scheme 3).
2
  Since 

electron-donating substituents such as methoxy and methyl is considered to shift the equilibrium to the  
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(E)-IB side by destabilizing the former intermediate, the finding that these substituents tend to enhance 

the selectivity of 2 provides additional evidence in support of our proposal.  Taking into account that the 

photocyclization eventually yielding 2 and 3 is initiated by ET from TEA to the excited-state (E)-1, we 

propose that the photoreactivity of this (E)-isomer may be determined by the relative rate for ET to the 

(E)-isomer as well as by the relative rate for back ET from (E)-IA and (E)-IB to the TEA cation radical.  

It is thus likely that substituents introduced into the benzene or naphthalene ring of 1 exert their electronic 

and steric effects on these ET and back ET processes in a complicated manner.  Negligible formation of 

the cyano-substituted products 2h and 3h may be due to either the exclusive deactivation of the excited-

state (E)-1h or the exclusive back ET in (E)-IA.  On the other hand, it seems strange that 1a and 1j 

underwent PET-initiated reduction to give 4a and 4j as minor products (Schemes 1 and 3).  The meta 

effect of electron-donating methoxy groups in these two -dehydroarylalanines might be responsible for 

the increased reactivity of the anion radical intermediate (E)-IA toward hydrogen abstraction 

from methanol. 

As described above, the PET-initiated cyclization reactions of (Z)-1 bearing a methoxy group attached at 

the meta- or the para-position on the benzene ring (as well as an electron-donating or an electron-

attracting group introduced into the naphthalene ring) were found to proceed with moderate to good 

efficiencies affording the corresponding quinolinone derivatives 2 in 33–100% selectivities.  Taking the 

relatively high photostability of these derivatives into account, we may conclude that the photocyclization 

reactions provide a novel synthetic method for the construction of several substituted 2(1H)-quinolinone 

rings although the introduction of an electron-attracting group into the benzene or the naphthalene ring 

renders this method less attractive. 
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