CrystEngComm

RSCPublishing

View Article Online

PAPER

Cite this: CrystEngComm, 2013, 15, 5283

Received 29th January 2013, Accepted 26th April 2013

DOI: 10.1039/c3ce40192h

www.rsc.org/crystengcomm

Introduction

Crystal engineering deals with the understanding and exploitation of intermolecular interactions in order to design functional organic solids which can find applications in material chemistry.1 Among the various strong and weak non-covalent interactions such as conventional hydrogen bonds (X-H···Y; X/Y = O, N, F), weak hydrogen bonds C-H···X (X = O, N, S, halogens, π), π ··· π interactions and van der Waal's interactions that govern the process of nucleation and crystal growth, "halogen bonding" (C-X-Y, X = halogens; Y = N, O, S, halogens; except X…Y halogen bond of Type II; X/Y = halogens; see ESI,[†] Fig. S1) interactions have gained importance in recent years because of their selective and directional nature for the construction of the desired crystal lattice.² Halogen bonding interactions are non-covalent interactions having properties parallel to classical hydrogen bonding interactions in terms of directionality and strength.³ Although, Hassel⁴ was the first to

Evaluation of viability of halogen…O₂N interactions: Insight from crystal packing in a series of isomeric halo and nitro substituted triaryl compounds with modular positioning of halogen and NO₂ groups[†]

C. V. Ramana,*^a Yogesh Goriya,^a Kulbhushan A. Durugkar,^a Soumitra Chatterjee,^a Shobhana Krishnaswamy^b and Rajesh G. Gonnade*^b

A series of isomeric triaryl compounds with a modular positioning of the halogen and NO₂ groups have been synthesized by the azide–alkyne "click reaction" and have been characterized by single crystal X-ray structure analysis. This isomeric series has provided an opportunity for understanding the efficiency of the bifurcated halogen…NO₂ synthon in the organization of the molecules in the crystalline lattice. The changes in molecular conformation, crystal packing and supramolecular aggregation due to the change in the relative positioning of the complementary groups, halogen atom and the NO₂ group on ring A and ring C respectively, have been discussed. All the isomers synthesized are crystalline and establish the triazole as a reliable linker for crystal engineering oriented molecular synthesis. The 2-NO₂ derivatives display in general, a helical architecture and 3-NO₂ derivatives exhibit a centrosymmetric dimeric assembly *via* the complementary C–H…O interactions leading to either a helical or a 2-dimensional sheet pattern. The molecular organization in 4-NO₂ derivatives revealed in general a 2D sheet pattern.

> recognize the remarkable properties of halogen bonding interaction in the self-organization of molecular complexes of Br₂ with several other organic compounds 50-60 years ago, its real scope and potential was successfully explored largely by Metrangolo and Resnati from Politecnico di Milano in recent years.^{2g} The current rejuvenation in the studies of halogen bonding interaction led to the construction of new functional solids,⁵ desired supramolecular assemblies.⁶ The role of halogen bonds has also been identified in ligand binding and molecular folding in biological systems such as protein kinase complexes with halogenated ligands,⁷ in the formation of molecular conductors and supramolecular liquid crystals,8 in enantiomer separation9 and selective binding of small molecules to receptors¹⁰ as well as in polymorphic behavior and stability and promotion of crystal growth.¹¹ This widespread recognition of halogen bonding interaction encouraged the International Union of Pure and Applied Chemistry (IUPAC) in 2010, to set up the task force (IUPAC project 2009-032-1-100, see www.halogenbonding.eu) for framing its modern definition covering all its experimental and theoretical aspects. The task group recently recommended the definition that, 'A halogen bond R-X…Y-Z occurs when there is evidence of a net attractive interaction between an electrophilic region on a halogen atom X belonging to a molecule or a molecular fragment R-X (where R can be another atom, including X, or a group of atoms) and a nucleophilic region of a molecule, or

^aDivision of Organic Chemistry, National Chemical Laboratory (CSIR-NCL), Pune, India. E-mail: vr.chepurix@ncl.res.in; Fax: +91 20 2590 2629; Tel: +91 20 2590 2277 ^bCenter for Materials Characterization, National Chemical Laboratory (CSIR-NCL), Pune, India. E-mail: rg.gonnade@ncl.res.in; Fax: +91 20 2590 2642; Tel: +91 20 2590 2225

[†] Electronic supplementary information (ESI) available: ¹H and ¹³C NMR for all new compounds. ORTEPS with labelling scheme of all the compounds. CCDC 731506–731514 and 914828–914836. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3ce40192h

molecular fragment, Y–Z'.¹² Thus, the term "halogen bonding" encompasses any non-covalent interaction between polarizable halogen atoms (Cl, Br and I) as electrophilic species and atoms possessing electron lone pairs like N, O and S.¹³ This interaction is due to the anisotropic electron density distribution around the halogen atom nucleus exhibiting electrophilic (δ^+) character along the axis of the C–X bond and nucleophilic (δ^-) character perpendicular to the C–X bond (see ESI,† Fig. S2). Therefore, electrophiles in general tend to approach halogens at angles of 90° and nucleophiles at 180°.¹⁴ Recent experimental X-ray charge density analysis in combination with periodic quantum calculations using the B3LYP 6-31G(d,p) level of theory confirmed the attractive nature of halogen bonding interactions.¹⁵

Among the various halogen bonding interactions known so far, we were interested in the assessment of the occurrence of the three centered bifurcated $NO_2 \cdots X$ (X = Cl, Br, I) halogen bond, earlier identified by Desiraju and co-workers¹⁶ by designing the molecules comprising both interacting groups. The three centered bifurcated NO2 ··· X synthon was categorized by Allen et al. into three types in accordance with their geometries.¹⁷ The three different motifs obtained by the close approach of X atom to the NO₂ are: (I) symmetric bifurcated motif, (II) the asymmetric bifurcated motif and the (III) motif in which halogen (X) forms mono-coordinate interactions with one nitro O atom. In the first two categories, the X atom approaches both nitro O atoms in a bifurcated manner and has a trans relationship to the C-N bond. The tendency to form such bifurcated motifs increases in the order Cl < Br < I. In the last category the X···O is in a *cis* relationship to the nitro C substituent about the N-O bond. The results obtained from the ab initio calculations using intermolecular perturbation theory (IMPT at 6-31G* level) were in agreement with crystal structure geometries.^{17,18}

Earlier studies on the evaluation of the occurrence of these interaction motifs revealed that iodo…nitro and bromo…nitro interactions, in general, tend to form the bifurcated threecentered NO₂…X synthon (Type I or II), however NO₂…Cl association, was in general, found to be mono-coordinated

Fig. 1 Schematic diagram representing the geometric features of halo \cdots nitro interactions.

(Type III), with the Cl···O-N angle approaching linearity (145- 172°). This may be a reason why the reports dealing with the NO₂...Cl interactions are limited, especially for cases probing its occurrence and nature across a set of isomers.¹⁹ In contrast, more systematic studies are available with the other two halogen -(Br and I)···O2N interactions, which indeed have been identified as "discriminatory synthons".^{20,21} However, its predictability, when examined over a range of isomeric compounds, revealed certain reservations. Glidewell and coworkers have examined the occurrence of the I---NO2 synthon employing diaryl compounds connected through a variety of polar functional groups and by varying the I and NO₂ group positions systematically.²¹ It led to the conclusion that this three center iodo-nitro interaction appears to behave predictably for certain isomers and in remaining isomers it is not seen.

With this background we reasoned that such X···NO₂ interactions could be ideally examined in the family of crystal structures bearing both halogen atom (X) and NO₂ groups by

Chart 1 All possible isomers of halo-nitro-1,4-diaryltriazole

	2N2Cl	2N2I	2N3Cl	2N3I	2N4Cl	2N4I
Chemical formula	$C_{14}H_9N_4O_2Cl$	C ₁₄ H ₉ N ₄ O ₂ I	C ₁₄ H ₉ N ₄ O ₂ Cl	C ₁₄ H ₉ N ₄ O ₂ I	$C_{14}H_9N_4O_2CI$	$C_{14}H_9N_4O_2I$
Crystal size	$0.21 \times 0.11 \times 0.07$	$0.29 \times 0.20 \times 0.09$	$0.33 \times 0.25 \times 0.10$	$0.45 \times 0.27 \times 0.07$	$0.55 \times 0.31 \times 0.15$	$0.58 \times 0.35 \times 0.34$
Temp. (K) Crystal system	297(2) Monoclinic	190(2) Monoclinic	297(2) Monoclinic	190(2) Monoclinic	297(2) Orthorhombic	190(2) Monoclinic
Space group	$P2_1/n$	$P2_1$	$P2_1$	$P2_1/n$	$P2_12_12_1$	$P2_{1}/c$
a/A h/å	12.340(3) 7 8067(15)	5.4744(14) 11 366(2)	7.7065(8) 71864(7)	9.4462(15) 7 2025(11)	10.8467(15) 14 120(2)	5.431(2)
c/Å	14.187(3)	11.235(3)	12.3477(13)	20.875(3)	26.790(4)	12.162(5)
α/∘	06 Č	06 06	<u> </u>	06 06	90)) 06
βl°	100.414(3)	93.816(4)	91.085(2)	96.379(2)	06	101.372(7)
yr Vr/Å ³	90 1359.7(5)	90 697.5(3)	90 683.72(12)	90 1429.1(4)	90 4105.5(10)	90 1409.6(10)
$Z, D_{\text{calc}}/\text{g cm}^{-3}$	4, 1.469	2, 1.867	2, 1.461	4, 1.823	12, 1.459	4, 1.848
μ/mm^{-1}	0.291	2.305	0.289	2.250	0.289	2.282 760
$\theta \max^{\circ}$	010 25.0	25.0	25.0	/ 00 25.0	1040 26.0	25.0
Absor. correction	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan
$T_{ m min}$	0.941	0.556	0.911	0.431	0.857	0.351
T _{max} Dofloations colloated	0.980	0.819 2405	0.972	0.866	0.958	0.511
Unique reflections	12 0/1 2399	2268	2314	2522	2/ 3/4 7975	2478
Observed reflections	1878	2337	1804	2308	5193	2319
h, k, l (min, max)	(-14, 14), (-9, 9), (-14, 16)	(-6, 6), (-13, 13), (-10, 12)	(-9, 9), (-8, 8), (-14, 14)	(-7, 11), (-8, 8), (-24, 24)	(-13, 13), (-17, 17), (-27, 23), (-17, 17), (-29, 23)	(-5, 6), (-25, 25), (-14, 10)
$R_{ m int}$	(0.0299	(-14, 14) 0.0991	(-24, -24) 0.0406	0.0466	(-14, 10) 0.0397
Number of parameters	226	190	190	190	568	190
R ₁ _obs, R ₁ _all wR, obs, wR, all	0.0359, 0.0488 0.0887, 0.0959	0.0293, 0.0296 0.0742, 0.0748	0.0701, 0.0850 0.1769, 0.1863	0.0316, 0.0343 0.0806, 0.0828	0.0449, 0.0859 0.0761, 0.0883	0.0370, 0.0390 0.0934, 0.0952
GoF	1.030	1.044	1.092	1.052	1.026	1.078
$\Delta ho_{ m max}, \Delta ho_{ m min}/e { m \AA}^{-3}$ CCDC No.	0.19, -0.17 731506	0.57, -0.35 914828	0.22, -0.25 731507	0.68, -0.74 914829	0.16, -0.14 731508	1.63, -1.32 914830
	3N2C]	3N2I	3N3Cl	3N3I	3N4Cl	3N4I
Chemical formula	$C_{14}H_9N_4O_2CI$	$C_{14}H_9N_4O_2I$	$C_{14}H_9N_4O_2CI$	$C_{14}H_9N_4O_2I$	$C_{14}H_9N_4O_2Cl$	$C_{14}H_9N_4O_2I$
M _r Crystal size	300.00	392.15 0.31 × 0.16 × 0.14	300.70 0.26 × 0.14 × 0.10	392.15 0.16 × 0.12 × 0.04	300.70 0.32 × 0.07 × 0.03	392.15 CT 392.01
Temp. (K)	297(2)	190(2)	297(2)	190(2)	297(2)	190(2)
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	Monoclinic	Triclinic
Space group	P2 ₁ /c	P21/C 8 0450(14)	P1 7 000(2)	P1 0 566(A)	P2 ₁ /n o 550(5)	P1 7 507(A)
b/Å	12.440(4) 6.999(2)	0.9430(14) 15.147(2)	7.000(2) 8.369(2)	o.300(4) 8.694(4)	6.330(3) 5.256(3)	(.30/(4) 8.310(4)
c/Å	15.083(4)	10.2164(17)	13.026(4)	10.011(5)	29.749(18)	12.755(6)
α/° R/°	90 95 773(6)	90 ar 271(3)	102.628(4) 04 538(5)	85.508(7)	90 a6 5/3(10)	95.053(7) 100 946(7)
به. ۲۷°۰	90 90	90	114.741(4)	72.559(7)	90	116.761(7)
$V/{\rm \AA}^3$	1308.5(6)	1383.1(4)	671.2(3)	674.2(6)	1328.1(14)	691.0(6)
(μ/mm^{-1}) cm	4, 1.320 0.302	4, 1.883 2.325	2, 1.488 0.294	2.385 2.385	4, 1.304 0.298	2, 1.883 2.327
$F(000)$ $ heta$ max/ $^{\circ}$	616 25 0	760 25 0	308 25 0	380 25 0	616 25 0	380 25 0
Absor. correction	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan

Published on 30 April 2013. Downloaded by Monash University on 13/06/2013 21:03:31.

Table 1 Summary of crystallographic data

Table 1 (Continued)						
T_{\min}	0.956	0.529	0.927	0.709	0.911	0.580
T_{\max}	0.985	0.743	0.971	0.921	0.991	0.973
Reflections collected	9013	6877	6262	6490	6072	6575
Unique reflections	2285	2431	2348	2367	2330	2413
Observed reflections	1826	2184	1794	2237	1548	2204
h, k, l (min, max)	(-14, 13), (-8, 8),	(-9, 10), (-18, 16),	(-8, 8), (-9, 9),	(-10, 10), (-10, 10), ((-10, 10), (-6, 6),	(-9, 9), (
2	(—17, 17) 0.0546	(-11, 12)	(-15, 15)	(-11, 11) 0.0415	(-35, 19)	(c1, c1-) 0.025
Kint Number of narameters	0.0340 218	1070-1100 100	0.0421 202	0.0413 100	010/10	100
D obe D all	0.0850 0.1076	190	202 0 0831 0 1067	190 0 0311 0 033E	0.0650.0.0003	190
$K_{1-}ODS, K_{1-}dII$	0.0830, 0.10/0	0.0302, 0.0334	0.0821, 0.100/	0.0314, 0.0333	0.1000, 0.0992	0.042/, 0.04//
WK_2 -ODS, WK_2 -AII	0.1539, 0.1630 1 212	0.0/81, 0.0805 1.020	0.1925, 0.2050 1 167	0.0769, 0.0781 1.080	0.1400, 0.1393 1 0.12	0.0991, 0.1014 1 1 2 0
\mathbf{A}_{0} \mathbf{A}_{0} \mathbf{A}_{0} \mathbf{A}_{0}	1.242		0.37 -0.30	1.009 0.80	L.043	0.05 -0.36
Δμmax, Δμmin/CA CCDC No.	0.22, ⁻ 0.20 731509	0.37, -0.00 914831	731510 731510	0.00, -0.43 914832	0.43, -0.47 731511	0.30, -0.30 914833
	4N2CI	4N2I	4N3Cl	4N3I	4N4Cl	4N4I
Chemical formula	G_{i} , $H_{i}N_{i}O_{i}O_{i}O_{i}$	C_{i} , $H_{0}N_{i}O_{2}I$	$G_{2,2}H_{2}N_{2}O_{2}O_{1}$	C. H.N.O.I	G_{2} , $H_{2}N$, $O_{2}G_{1}$	C. H.N.O.I
M.	300.70	392.15	300.70	392.15	345.16	392.15
Crystal size	0.24 imes 0.14 imes 0.07	0.15 imes 0.05 imes 0.01	$0.27 \times 0.17 \times 0.09$	0.51 imes 0.05 imes 0.02	$0.62 \times 0.15 \times 0.11$	$0.42 \times 0.04 \times 0.02$
Temp. (K)	297(2)	190(2)	297(2)	190(2)	297(2)	190(2)
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P\bar{1}$	$P2_1/c$	$P2_1/c$	$P2_{1}/c$	$P2_{1}/c$	C2/c
	7.013(4)	7.1884(8)	7.5870(8)	7.8521(11)	7.954(7)	27.638(6)
$b/ m \AA$	7.312(4)	11.9850(13)	13.6007(15)	7.089(1)	13.263(11)	5.5912(13)
$c/ m \AA$	13.309(7)	16.2685(17)	13.3376(14)	24.500(3)	12.684(11)	17.974(4)
<i>α</i> /∘	94.793(8)) 06) 06	06) 06	06
βl°	96.114(8)	96.660(2)	91.266(2)	90.151(2)	94.559(14)	96.932(6)
γ / \circ	107.261(8)	90	90	06	90	60
V/\dot{A}^3	643.2(6)	1392.1(3)	1376.0(3)	1363.8(3)	1334(2)	2757.2(11)
$Z, D_{\text{calc}}/\text{g cm}^{-3}$	2, 1.553	4, 1.871	4, 1.452	4, 1.910	4, 1.498	8, 1.889
μ/mm^{-1}	0.307	2.310	0.287	2.358	0.296	2.333
F(000)	308	760	616 22 0	760	616 22 3	1520
	20.02	0.62	25.0		20.0	25.0
ADSOF. COFFECTION	Multi-Scan	Multi-Scan	Multi-Scan	Multi-Scan	Multi-Scan	Multi-Scan
I_{min}	0.930	0.726	0.92/	0.051	0.658	0.050
1 max Deflections collected	6760 5070	12 150	6760	10 700	0.500	10 416
Unique reflections	2220	2457	2422	2415	2607	2437
Observed reflections	1792	2129	1560	2307	2080	2114
h k l (min max)			(-9,8) (-16,9)		(-0, 0) (-16, 16)	(-32, 32), (-6, 6),
(, , , , , , , , , , , , , , , , , , ,	(-15, 15)	(-19, 19)	(-, -), (-,	(~,~),(~,~), (-29, 29)	(-15, 15)	(-21, 21)
$R_{ m int}$	0.0496	0.0392	0.0784	0.0363	0.0364	0.0343
Number of parameters	226	190	190	190	226	226
R_{1-} obs, R_{1-} all	0.0527, 0.0634	0.0345, 0.0418	0.1000, 0.1394	0.0281, 0.0296	0.0497, 0.0637	0.0338, 0.0423
wR_{2-} obs, wR_{2-} all	0.1434, 0.1507	0.0776, 0.0812	0.2470, 0.2781	0.0662, 0.0672	0.1148, 0.1242	0.0757, 0.0884
$\vec{\mathbf{v}} = \mathbf{v} = \mathbf{v} + \mathbf{v}$	1.U/U 7.770.76	1.13U 0.660.37	1.024	1.172 0.50 -0.41	1.040 ^ ^1	1.12/ ^ 6203E
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} \nabla A$ CCDC No.	0.42, -0.40 731512	0.00, -0.3/ 914834	0.29, -0.30 731513	0.38, -0.41 914835	0.31, -0.20 731514	0.03, -0.33 914836

CrystEngComm

modular positioning of these two groups from ortho to meta and para in their respective rings. To this end, we designed a collection of halogen and NO2 substituted isomeric triaryl compounds containing a 1,2,3-triazole ring flanked by phenyl ring A (at position 1) carrying the NO_2 group and the other phenyl ring C (at position 4) possessing the halogen atom (X = Cl, Br and I, Fig. 1). A detailed structural analysis of all these isomeric compounds would address the issues related to the steric and geometrical preferences for the occurrence of the molecular aggregation through X...NO2 interactions, in general, and its competition with the other well-studied weak intermolecular interactions such as C-H···O/N, C-H···π, C-H···X, X···X, C–X··· π and π ··· π and their effect on the molecular organization in the solid state. Furthermore, this study will also shed more light on the preferable choice for the selection of halogen atom and its favorable position with respect to the nitro group for designing of supramolecular assemblies through the X···NO₂ synthon. Scheme 1 saliently describes the structures of the designed compounds and a retrosynthetic scheme for their synthesis which is founded upon the Cumediated azide-alkyne cycloaddition (CuAAC) reaction. Our preliminary investigations dealing with the synthesis of two series of compounds where X = H or Br have been disclosed.²² Herein we describe the complete details of investigations

dealing with the synthesis of four series (X = H, Cl, Br, I) comprising 30 compounds and their structural analysis.

Experimental

General methods

All solvents were dried according to standard methods before use. Commercial reagents were used without purification. Column chromatography was carried out by using Spectrochem silica gel (60–120, 100–200, 230–400 mesh). All the compounds were characterized by ¹H and ¹³C NMR spectroscopy using Bruker AC 200 MHz or Bruker DRX 400 and Bruker DRX 500 MHz spectrometers, and TMS was used as an internal standard. ¹H and ¹³C NMR chemical shifts are reported in ppm downfield from chloroform-d (δ = 7.25) or TMS and coupling constants (*J*) are reported in Hertz (Hz). The elemental analysis data were obtained on a Thermo Finnigan Flash EA 1112 Series CHNS Analyser.

Synthesis

As shown in Scheme 1, 1,4-substituted triazoles have been synthesized by two different routes. For the 2,4-nitro series of isomers we have followed the one-pot two-step sequence involving a nucleophilic aromatic substitution (S_NAr) of 2-/4-fluorobenzenes with azide nucleophile and the *in situ* Huisgen

Fig. 2 Molecular organization in (a) 2N, (b) 2N2CI, and (c) 2N2I; molecular organization in 2N2Br is similar to 2N2CI.

cycloaddition of the resulting aryl azides with alkynes.^{22–24} For the 3-nitro series, 3-azidonitrobenzene has been used directly for the CuAAc reaction. All the products were isolated in good yield (Chart 1). The solid residue obtained was crystallized from appropriate solvent systems to produce colorless to yellow crystals (see ESI† for details).

Crystallographic details

Crystals of chloro and iodo compounds were stable at room temperature and the diffraction data measurements were carried out on a Bruker SMART APEX CCD diffractometer with graphite-monochromatized (Mo K α = 0.71073Å) radiation. The X-ray generator was operated at 50 kV and 30 mA. Data were collected with ω scan width of 0.3° at different settings of ϕ (0°, 90°, 180° and 270°) keeping the sample-to-detector distance fixed at 6.145 cm and the detector position (2 θ) fixed at –28°. The X-ray data collection was monitored by SMART program (Bruker, 2003).²⁵ All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs (Bruker, 2003). SHELX-97 was used for structure solution and full matrix least-squares refinement on F^2 .²⁶ All

the hydrogen atoms for compounds 2N2Cl. 4N2Cl. 4N4Cl were located in difference Fourier map and refined isotropically whereas they were placed in idealized positions for compounds 2N3Cl, 2N4Cl, 4N3Cl (C-H = 0.93 Å) and 2N3I, 2N4I, 3N2I, 3N3I, 3N4I, 4N2I, 4N3I, 4N4I (C-H = 0.95 Å) and constrained to ride on their parent atoms $[U_{iso}(H) = 1.2U_{eq}(C)]$. All H-atoms in 3N2Cl (except H1 and H5) and 3N4Cl (except H12), while H1, H5, H12 in 3N3Cl, were obtained from difference Fourier and refined isotropically whereas the other H-atoms in these structures were placed in geometrically idealized positions (C-H = 0.93 Å) and constrained to ride on their parent atoms $[U_{iso}(H) = 1.2U_{eq}(C)]$. In the crystal structure of 4N4I, both nitro group and iodine atom showed an orientational disorder such that the positions of nitro and iodo groups were exchanged with occupancies 0.9 and 0.1 respectively. Details of crystallographic data of these compounds are summarized in Table 1. Crystal structure of 12 compounds (3-non-halo and 9-bromo derivatives, Chart 1) discussed here have already been reported earlier.²² They have been directly used for the analysis without further refinement (see ESI[†] for their crystal structure data).

Table 2 Geometrical parameters of the intermolecular interactions for 2-NO2 series

			-				
2-NO ₂ series	Entry	D-H···A	D–H (Å)	H····A (Å)	D…A (Å)	D–H···A (°)	Symmetry codes
2N	1	C1-H1…O1	0.94(3)	2.47(3)	3.270(3)	143(2)	3/2 - x, $-1/2 + y$, $1/2 - z$
	2	C11-H11…N2	0.97(3)	2.71(3)	3.642(4)	162(2)	x, -1 + y, z
	3	C13-H13…O2	0.97(3)	2.59(3)	3.334(4)	133(2)	1 - x, -y, 1 - z
2N2Cl	4	C1-H1…O1	0.90(2)	2.58(2)	3.397(3)	150(2)	1/2 - x, $1/2 + y$, $1/2 - z$
	5	C13-H13…O2	0.88(2)	2.70(2)	3.385(3)	135(2)	1 - x, 2 - y, -z
	6	C5-H5…Cl1	0.91(2)	2.89(2)	3.652(3)	142(2)	x, -1 + y, z
2N2Br	7	C1-H1…O1	0.93	2.65	3.451(6)	141	3/2 - x, $1/2 + y$, $3/2 - z$
	8	C13-H13···O2	0.93	2.68	3.482(6)	145	1 - x, 2 - y, 2 - z
	9	C5-H5Br1	0.93	2.92	3.690(6)	141	x, -1 + y, z
2N2I	10	C1-H1N3	0.95	2.44	3.357(6)	163	1 + x, y, z
	11	C1-H1…N2	0.95	2.73	3.581(6)	149	1 + x, y, z
	12	C8–I1···Cg	2.087(5)	3.618(2)		157.6(1)	-x, $1/2 + y$, $1 - z$
	13	C7-H7O1	0.95	2.64	3.263(6)	124	-x, -1/2 + y, 1 - z
2N3Cl	14	C13-H13···N2	0.93	2.68	3.591(6)	168	2 - x, $1/2 + y$, $1 - z$
	15	C11-H11…N2	0.93	2.71	3.621(6)	168	1 + x, y, z
	16	C5-H5…O2	0.93	2.64	3.382(6)	137	x, y, 1 + z
	17	C4-H4····Cl1	0.93	2.94	3.629(5)	132	1 + x, y, z
	18	C1-H1···Cg	0.93	2.92	3.563(5)	128	2 - x, $1/2 + y$, $2 - z$
2N3Br	19	C1-H1O1	0.93	2.32	3.153(4)	150	1/2 - x, $-1/2 + y$, $1/2 - z$
	20	C11-H11N2	0.93	2.54	3.360(4)	147	x, -1 + y, z
	21	C7-Br1···Br1	1.893(3)	3.696(1)		141(1)	-1 - x, 1 - y, -z
2N3I	22	C1-H1…O1	0.95	2.27	3.152(4)	153	3/2 - x, $1/2 + y$, $1/2 - z$
	23	C11-H11N2	0.95	2.52	3.365(4)	148	x, 1 + y, z
	24	C7–I1…I1	2.094(3)	3.903(1)		144(1)	-x, 2 - y, -z
2N4Cl	25	C10C-H10C…O2B	0.93	2.63	3.221(4)	122	1 - x, -1/2 + y, 1/2 - z
	26	C1C-H1C···O2B	0.93	2.65	3.416(4)	140	1 - x, $-1/2 + y$, $1/2 - z$
	27	C5C-H5C…O1A	0.93	2.71	3.530(4)	147	1 - x, $-1/2 + y$, $1/2 - z$
	28	C1B-H1B····N3C	0.93	2.55	3.445(4)	163	2 - x, $1/2 + y$, $1/2 - z$
	29	C1B-H1B····N2C	0.93	2.49	3.282(4)	143	2 - x, $1/2 + y$, $1/2 - z$
	30	C12B-H12B…O1C	0.93	2.50	3.413(4)	169	x, 1 + y, z
	31	C5A-H5A····N2B	0.93	2.74	3.629(4)	160	x, y, z
	32	C6A-Cl1A····O2A					
2N4Br	32	C1-H1N2	0.86(3)	2.66(3)	3.447(4)	152(2)	1 - x, y, z
	33	C6-Br1···Br1	1.903(3)	3.473(1)		155(1)	-x, 1 - y, 2 - z
	34	C13-H13…Cg1 (Cg1-triazole ring)	0.93	3.14	3.958	148	x, 1/2 - y, -1/2 + z
2N4I	35	C1-H1N3	0.95	2.54	3.425(4)	156	1 + x, y, z
	36	C1-H1N2	0.95	2.51	3.402(5)	157	1 + x, y, z
	37	C6-I1…I1	2.107(4)	3.805(2)		162(1)	1 - x, 1 - y, -z
	39	C13-H13…O1	0.95	2.64	3.219(3)	120	x, 3/2 - y, 1/2 + z
	40	C13-H13…Cg1 (Cg1-triazole ring)	0.95	2.93	3.779(4)	150	x, 3/2 - y, 1/2 + z

Results and discussion

As indicated in Chart 1, the resulting 30 compounds were classified according to the position of the nitro group as 2NO₂, 3NO₂ and 4NO₂ families. Detailed crystal structure analyses of all the compounds have been performed and all the inherent structural features present in these compounds are described below.

2NO₂ family

Crystal structures of all the 10 compounds in this family contain one molecule in the asymmetric unit (Z' = 1) except in **2N4Cl**, the asymmetric unit of which contains three symmetry independent molecules (Z' = 3). Structures of **2N**, **2N2Cl** and **2N2Br** are isostructural and crystallized in the centrosymmetric monoclinic space group, $P2_1/n$. Similarly, the structures of **2N3Br** and **2N3I**, as well as **2N4Br** and **2N4I**, are respectively isostructural and crystallize in the centrosymmetric monoclinic space group $P2_1/n$ and $P2_1/c$ respectively. The remaining three structures in this family belong to chiral space groups; **2N2I** and **2N3Cl** crystallized in monoclinic, $P2_1$ and **2N4Cl** in orthorhombic space group $P2_12_12_1$.

2N2X series. Both phenyl rings (nitro as well as halo) in this series of compounds showed significant deviation from the planarity of the central triazole ring. Molecules in their crystals, in general, are associated *via* C-H···O and/or C-H···N, C-H···X and C-X··· π interactions (X = halogens) and do not assemble *via* any of the three possible X···NO₂ synthon.

Molecules in the isostructural crystals of 2N, 2N2Cl and 2N2Br assemble helically across the crystallographic twofold

Fig. 3 Molecular organization in (a) 2N3Cl, and (c) 2N3I; molecular organization in 2N3Br is similar to 2N3Cl.

screw axis via C-H···O interactions involving the triazole ring and the nitro group (Fig. 2a and 2b, Fig. S3 (ESI[†]), entries 1, 4 and 7 in Table 2). This helical association also brings the unittranslated molecules closer along the helical assembly to generate C-H ... N interactions in 2N (Table 2, entry 2) and C-H···X (X = Cl and Br) contacts in 2N2Cl and 2N2Br (Table 2, entries 6 and 9). The neighboring helices along the ac diagonal are bridged via centrosymmetric C-H···O contact thus engaging the nitrobenzene group across the inversion center (Table 2, entries 3, 5, 8). Molecules in 2N2I also form a helical architecture along the *b*-axis exclusively *via* linear C-I··· π halogen bonding interactions (Table 2, entry 12) comprising adjacent iodobenzene rings along the twofold screw axis. This linear driving force seems to be responsible for guiding chiral molecular packing in crystals of 2N2I.27 This arrangement is also supplemented by long and non-linear C-H-O contact (Table 2, entry 13). The adjacent helices along the *a*-axis are stitched together in parallel fashion via edge-to-edge linear bifurcated C-H...N contacts (Table 2, entries 10, 11) to generate an overall helical architecture in the ab plane (Fig. 2c).

2N3X series. In all the three structures of this series the halobenzene ring is slightly $(11-15^{\circ})$ out of plane, while the nitrobenzene ring showed a marked difference $(47-52^{\circ})$ from the least square plane of the triazole ring moiety. Similar to **2N2X** series, molecules in this series are also linked by C-H···O

Fig. 4 Molecular organization in (a) 2N4Cl and (b) 2N4I; 2N4Br is isostructural with 2N4I.

and/or C-H···N, C-H···X and halogen···halogen interactions of Type I (see ESI,† Fig. S1) category but do not pack in their crystals *via* any of the three possible X···NO₂ synthons.

Molecules in the chiral crystals of 2N3Cl arranged helically along the crystallographic 21-screw axis forming two separate helical patterns via edge-to-edge C-H···N and edge-to-face offcentered C-H··· π interactions between the C-H of the triazole ring and the π electron cloud of chlorobenzene ring (Table 2, entries 14, 17). These two intercalated helices are connected along the c-axis via C-H...O contact (Table 2, entry 16) to generate a concave crystal packing on the bc plane (Fig. 3a). Molecules in isostructural crystals of 2N3I and 2N3Br are also arranged helically (Fig. 3b and Fig. S4 (ESI[†])) like in crystals of 2N, 2N2Cl and 2N2Br but here the helices are packed much more discretely providing well-guided channels. The successive molecules along the helix are connected via short C-H···O and C-H...N contacts (Table 2, entries 19, 20, 22, 23) and the adjacent helices are assembled in antiparallel mode via a centrosymmetric halogen malogen contact of Type I motif.16b

2N4X series. Compound **2N4Cl** crystallized in chiral space group $P2_12_12_1$ with Z' = 3. Out of the three symmetry independent molecules, molecules B and C had a similar conformation whereas the third molecule A showed a slight deviation from other two. In all three molecules the nitrobenzene ring showed a significant deviation (range 48– 65°) from the least square plane of the triazole ring than the chlorobenzene ring (2–9°). A similar trend is also observed for crystals of **2N4Br** and **2N4I** for the nitrobenzene ring; however the halobenzene ring showed more out of plane deviation (16– 20°) than **2N4Cl**. In this series also, molecular packing is mostly governed by C–H···O and C–H···N interactions. However, this is the first series where the existence of the Cl···NO₂ synthon is noticed in **2N4Cl** although having the mono-coordinated Type III motif. In crystals of **2N4Br** and **2N4I** halogen···halogen and C-H··· π contacts seem to dictate the molecular packing.

In compound 2N4Cl, molecules B and C form a composite helix (blue-red) wherein each molecule is distributed alternately along the helical a-axis via bifurcated C-H···O and edgeto-edge C-H···N contacts (Table 2, entries 25, 26, 28, 29). The adjacent helices are packed in antiparallel style via another short and linear C-H···O interaction (Table 2, entry 30). Interestingly, the third molecule A also forms its own helical architecture (green) which is sandwiched between the complementary helices of molecules B and C along the c-axis (Fig. 4a). The successive molecules along the helix of A adhere to the composite helix of molecules B and C via C-H-O and C-H…N contacts (Table 2, entries 27, 31). Molecular packing viewed down the helical axis (a-axis) revealed a layered arrangement of molecules B and C through C-H-O contacts encapsulating the layer of molecule A (Fig. S5, ESI[†]). Molecules of A are held to each other along the layer through linear mono-coordinated Cl^{...}NO₂ halogen bonding contact of Type III motif. In contrast, molecules in isostructural crystals of 2N4Br and 2N4I have a quite different arrangement forming a one-dimensional chain structure along the a-axis via bifurcated C-H. interactions (Table 2, entries 33, 36, 37). The neighboring 1D chains are held together via off-centered C- $H \cdots \pi$ (π cloud of the triazole ring) and C-H \cdots O contacts to generate a cone shape structure down the a-axis (Table 2, entries 35, 39, 40). Such contiguous cone structures are linked to each other along the *b*-axis via short centrosymmetric halogen whalogen contacts (Table 2, entries 34, 38) generating the helical architecture (Fig. 4b).

Fig. 5 Molecular organization in (a) 3N2CI and (b) 3N2Br; 3N2I (c) has a similar association but forms wavy chains, while in 3N2Br it forms a 2D sheet pattern.

Table 3 Geometrical parameters of the intermolecular interactions for the 3-NO2 series

	Entry	D-H…A	D–H (Å)	H···A (Å)	D…A (Å)	D–H···A (°)	Symmetry codes
3N	1	C1-H1···O1	0.93	2.53	3,409(3)	158	-x, $2 - y$, $1 - z$
	2	C14-H14···O1	0.93	2.48	3.408(3)	176	-x, 2 - y, 1 - z
	3	C8-H8····O2	0.93	2.70	3.593(3)	160	-x, 2 - y, 1 - z
	4	C6-H6···O2	0.93	2.57	3.372(3)	144	x, 3/2 - y, 1/2 + z
	5	C10-H10····N2	0.93	2.50	3.358(3)	154	1 - x, -y, 1 - z
3N2Cl	6	C1-H1…O1	0.93	2.77	3.249(6)	113	2 - x, $-1/2 + y$, $3/2 - z$
	7	C6-H6…O1	0.94(5)	2.66(6)	3.499(6)	148(4)	-1 + x, $3/2 - y$, $-1/2 + z$
	8	C7-H7···O2	0.95(4)	2.58(4)	3.328(6)	135(3)	-1 + x, $1/2 - y$, $-1/2 + z$
	9	Cg2···Cg2 (π ··· π), Cg2–chlorobenzene ring		3.847(3)	Dihedral angle 0°		1 - x, 1 - y, 1 - z
3N2Br	10	C10-H10····O2	0.93	2.67	3.57(2)	165	1/2 + x, $5/2 - y$, $1/2 + z$
	11	C10-H10····O1	0.93	2.72	3.34(2)	125	1/2 + x, $5/2 - y$, $1/2 + z$
	12	C7-H7…N3	0.93	2.71	3.61(2)	161	1/2 + x, $3/2 - y$, $1/2 + z$
	13	C7-H7N2	0.93	2.73	3.446	135	1/2 + x, $3/2 - y$, $1/2 + z$
	14	C8-Br1···O2	1.913(2)	3.317(17)		144(1)	1/2 + x, $5/2 - y$, $1/2 + z$
3N2I	15	C10-H10····O2	0.95	2.48	3.414(4)	169	1 - x, 1/2 + y, 1/2 - z
	16	C11-H11…O1	0.95	2.69	3.500(6)	127	1 - x, $1/2 + y$, $1/2 - z$
	17	C8-I1O2	2.103(3)	3.482(3)		137(1)	1 - x, $1/2 + y$, $1/2 - z$
3N3Cl	18	C5-H5…N2	0.93(5)	2.60(5)	3.470(6)	157(4)	x, 1 + y, z
	19	C5-H5…N3	0.93(5)	2.82	3.715	162	x, 1 + y, z
	20	C12-H12····O2	0.94(2)	2.52(3)	3.418(6)	161(4)	2 - x, 1 - y, 2 - z
	21	C1-H1…O1	0.98(4)	2.26(4)	3.235(5)	171(3)	x, 1 + y, z
	22	C10-H10…O1	0.93	2.72	3.623(5)	164	x, 1 + y, z
	23	C6-H6···Cl1	0.93	3.04	3.961(5)	169	1 - x, 2 - y, -z
3N3Br	24	C1-H1…O1′	0.93	2.47	3.395(3)	173	<i>x</i> , <i>y</i> , <i>z</i>
	25	C4-H4···O2′	0.93	2.67	3.478(4)	146	<i>x</i> , <i>y</i> , <i>z</i>
	26	C8-H8···Br1′	0.93	3.04	3.926(3)	161	-1 + x, -1 + y, -1 + z
	27	C1'-H1'····O1	0.93	2.44	3.351(4)	167	<i>x</i> , <i>y</i> , <i>z</i>
	28	C4'-H4'····O2	0.93	2.55	3.391(4)	151	<i>x</i> , <i>y</i> , <i>z</i>
	29	$C14' - H14' \cdots O1$	0.93	2.66	3.584(4)	1/3	<i>x</i> , <i>y</i> , <i>z</i>
	30	C8 -H8Br1	0.93	2.98	3.908(3)	1/2	1 + x, 1 + y, 1 + z
	31	C14-H14···O1	0.93	2.73	3.636	166	<i>x</i> , <i>y</i> , <i>z</i>
	32	$C_{1}^{\prime} = Br_{1}^{\prime} \cdots N_{3}^{\prime}$	1.905	3.433		160.9	1 + x, 1 + y, 1 + z
ONOT	33	C/- Br1N3	1.903	3.403	2.214(4)	163./	-1 + x, -1 + y, -1 + z
3N31	34		0.95	2.37	3.314(4)	1/3	-x, 2 - y, 1 - z
	35	C4-H4···O2	0.95	2.59	3.437(5)	149	-x, 2 - y, 1 - z
	30	$C_{14} H_{14} H_{14} H_{14}$	2.105(4)	3.354(3)	2 = 0.0(4)	101(1)	1 - x, 2 - y, -1 - z
	3/	C_{14} -H14 O_{1}	0.95	2.05	3.398(4)	1/3	-x, z - y, 1 - z
	20		0.95	2 2 4 9	4.074(3)	103	1 - x, 2 - y, 1 - 2
2N4Cl	39	C12-H12-11	0.93	3.240	3.904(3)	134 142(2)	-1 + x, -1 + y, 1 + z 1 - x, 2 - y, 1 - z
311401	40	$C10-H10^{-1}N2$ C14-H14O1	0.00(3)	2.39(3)	2 2 2 5 (1)	143(3) 174(2)	1 - x, 2 - y, 1 - 2
	41	C9_H9C2	0.88(3)	2.51(3)	3.363(4)	174(3) 152(2)	x, y, 1 z
	42	C1-H1···O1	0.89(3)	2.04(4) 2.53(3)	3.400(5)	155(3) 165(3)	x, y, 1 z -r - y 1 - z
	43	$C_{6-}C_{1}$	1.730(4)	2.03(3)	5.599(5)	156(1)	x, y, 1 z -1/2 + r 1/2 - y -1/2 + z
3N/Br	44	C1-H1O1	0.80(3)	2.56(3)	3 413(5)	150(1) 161(3)	1/2 + x, 1/2 = y, 1/2 + 2 1 - r - y 1 - 7
31 14 DI	45	C_{8} -H8O2	0.85(3)	2.30(3)	3 482(5)	151(3) 153(3)	1 - x, y, 1 - z
	40	C14-H14···O1	0.00(4)	2.70(4) 2.49(3)	3.404(4)	177(3)	1 - x, y, 1 - z
	48	C10-H10N2	0.92(3)	2.49(3) 2.56(4)	3 342(5)	142(3)	x_{1}, y_{1}, z_{2} 2 - r 2 - v 1 - 7
	49	C6-Br1O2	1.896(4)	3.169(3)	0.012(0)	158(1)	-1/2 + x, $1/2 - v - 1/2 + 7$
3N4I	50	C1-H1···O1	0.95	2.31	3.251(6)	168	x, 1 + y, z
	51	C7-H7N2	0.95	2.57	3.428(7)	151	x, 1 + y, z
	52	C7-H7N3	0.95	2.75	3.667(6)	163	x, 1 + y, z
	53	C10-H10···O1	0.95	2.60	3.526(6)	164	x, 1 + y, z
	54	C6–I1···O2	2.105(5)	3.300(5)		159(1)	1 + x, 2 + y, 1 + z
	~ -					(-)	,, - · ~

3NO₂ family

Crystals of all the 10 compounds in this family crystallized in the centrosymmetric space group with Z' = 1 except in **3N3Br**, where Z' = 2. In all cases, the three rings, the triazole, nitrobenzene and halobenzene have different orientations with respect to each other. In **3N**, **3N3Cl**, **3N3Br**, **3N3I**, **3N4Cl**, **3N4Br**, the C–H group of the triazole ring and the nitro group are in *cis*-conformation whereas in **3N2Cl**, **3N2Br**, **3N2I** and **3N4I**, the C–H group and the NO₂ group have *anti*-conformation. Similarly, the halo group in **3N2Cl**, **2N2Br**, **3N2I**, **3N3Br**, **3N3I** C-H group of triazole have *cis*-conformation whereas both groups acquire *anti*-conformation in **3N3Cl**. The structures of **3N**, **3N4Cl**, **3N4Br** are isostructural, and the same is the case with **3N2Br**, **3N2I** and **3N3Br**, **3N3I** respectively.

3N2X series. Halobenzene and nitrobenzene rings in **3N2Cl** and **3N2I** slightly deviate from the least square plane of the triazole moiety, whereas in **3N2Br** all three rings are in plane. Molecules in the crystals of this series are associated mostly

Fig. 6 Molecular organization in 3N3Cl (a, b) and 3N3I (c, d); 3N3Br has similar organization as 3N3I.

via C-H···O and C-H···N interactions. In addition, monocoordinated X···NO₂ synthon is also observed in crystals of 3N2Br and 3N2I. Molecules in crystals of **3N2Cl** assemble in helical fashion across the 2_1 -screw axis through long and non-linear C-H···O contacts (Fig. 5a, Table 3, entry 6). The neighboring helices

Fig. 7 Molecular organization in (a) 3N, (b) 3N4Br and (c), (d) 3N4I; 3N4Cl has a similar molecular architecture as 3N4Br.

Table 4 Geometrical parameters of the intermolecular interactions for 4-NO2 series

	Entry	D-H···A	D–H (Å)	H····A (Å)	D····A (Å)	D–H···A (°)	Symmetry codes
4N	1	C6-H6…O1	0.956(17)	2.575(17)	3.342(2)	137(1)	x, 1 + y, 1 + z
	2	C6-H6…O2	0.956(17)	2.660(17)	3.333(2)	128(1)	1 + x, 1 + y, 1 + z
4N2Cl	3	C6-H6…O2	0.97(3)	2.54(3)	3.486(4)	166(3)	x, 1 + y, -1 + z
	4	C14-H14O2	0.93(3)	2.51(3)	3.377(4)	155(2)	x, 1 + y, z
	5	C5-H5…Cl1	0.92(3)	2.93(3)	3.487(3)	120(2)	x, 1 + y, z
	6	C11-H11…N2	0.91(3)	2.57(3)	3.367(4)	147(2)	x, -1 + y, z
4N2Br	7	C6-H6…O1	0.93	2.62	3.321(5)	132	1/2 + x, $1/2 - y$, $1/2 + z$
	8	C11-H11N2	0.93	2.56	3.231(4)	130	x, 1 - y, -1/2 + z
	9	C8-Br1O2	1.914(4)	3.268(4)		145(1)	1/2 - x, $1/2 - y$, $-z$
	10	C8-Br1···O1	1.914(4)	4.413(3)		165(1)	1/2 - x, 1/2 - y, -z
4N2I	11	C10-H10O2	0.95	2.60	3.465(4)	152	1 - x, $-1/2 + y$, $5/2 - z$
	12	C8-I1O1	2.103(3)	3.496(3)		144(1)	x, -1 + y, z
	13	C11-H11…O1	0.95	2.70	3.263	118	1 - x, $-1/2 + y$, $5/2 - z$
	14	C5-H5N2	0.95	2.69	3.500	143	-x, $-1/2 + y$, $3/2 - z$
4N3Cl	15	C1-H1O2	0.93	2.36	3.283(6)	175	1 - x, $-1/2 + y$, $1/2 - z$
	16	C10-H10O1	0.93	2.63	3.423(7)	143	1 - x, $-1/2 + y$, $1/2 - z$
	17	C5-H5N2	0.93	2.58	3.438(7)	153	$2 - x_1 - \frac{1}{2} + y_1 - \frac{1}{2} - \frac{1}{2}$
4N3Br	18	C1-H1O2	0.93	2.33	3.247(3)	169	2 - x, -1/2 + y, 3/2 - z
	19	C8-H8O2	0.93	2.66	3.556(4)	161	$2 - x_1 - \frac{1}{2} + y_1 \frac{3}{2} - z_2$
	20	C10-H10O1	0.93	2.56	3.387(4)	148	2 - x, -1/2 + y, 3/2 - z
	21	C5-H5N2	0.93	2.52	3387(4)	155	$1 - r - \frac{1}{2} + y + \frac{1}{2} - z$
	22	C7-Br101	1.897(3)	3.292(3)	0.007(1)	160(1)	r = 1 + y = 7
4N3I	22	C6-H6…O1	0.95	2.43	3341(4)	161	1 + r 3/2 - v 1/2 + 7
-1101	23	C7-I101	2 111(3)	2.45 3.454(3)	5.541(4)	164(1)	1 + x, 3/2 = y, 1/2 + z 1 + x, 1/2 - y, 1/2 + z
	25	C7-I1O2	2.111(3)	3 406(3)		160(1)	1 + x, 1/2 = y, 1/2 + z 1 + x, 1/2 = y, 1/2 + z
	25	C11_H11N2	0.95	2.64	3 342	131	r = 1 + y 7
	20	C11-H11 M2 C14-H14O2	0.95	2.04	2 4 2 2	124	x, 1 + y, z
ANACI	27	C_{1} - H_{1} O_{2}	0.95	2.71 2.42(2)	2.432	134 174(2)	$x, \pm y, z$ $1 - r - \frac{1}{2} \pm y - \frac{2}{2} - r$
411401	20	$C1-H1^{-1}O2$	0.80(2)	2.43(3)	3.200(3) 3.521(4)	1/4(2) 162(1)	1 - x, -1/2 + y, 3/2 - 2 1 - x, -1/2 + y, 3/2 - 7
	29	C5_H5N2	0.94(2)	2.02(3)	3.521(4)	102(1) 161(1)	1 x, 1/2 + y, 3/2 z -r - 1/2 + y, 5/2 - r
ANAD	21	$C_{1} H_{1} O_{2}'$	0.92(3)	2.74(3)	3.022(4)	171	x, 1/2 + y, 5/2 = 2
41 N4DI	20	C1-H1O2	0.93	2.30	3.279(3)	171	x, y, z
	32	C10-H10-C2	0.93	2.00	3.323(3)	1/4	x, y, z
	33	C1 - H1 - H2	0.93	2.31	3.230(5)	108	-1 + x, y, 1 + z
	34	C10 -H10 ····O2	0.93	2./1	3.620(5)	165	-1 + x, y, 1 + z
	35	04-H4···N3	0.93	2.65	3.401(5)	139	-x, -y, -z
43141	36	C4 -H4N3	0.93	2.60	3.334(5)	13/	1 - x, 1 - y, 2 - z
4N41	37	C1-H1N3	0.95	2.59	3.515(5)	166	x, 1 + y, z
	38	C1-H1N2	0.95	2.64	3.557(5)	162	x, 1 + y, z
	39	C6-I1…O1	2.103(6)	3.520(6)		153(1)	1/2 + x, $5/2 - y$, $-1/2 + z$
	40	C6-I1O2	2.103(6)	3.320(6)		167(1)	1/2 + x, $5/2 - y$, $-1/2 + z$

along the ac diagonal are packed in an antiparallel manner via two moderate C-H···O interactions, engaging both oxygens of the nitro group and phenyl H-atoms (Table 3, entries 7, 8). This arrangement also brings the chlorobenzene rings of adjacent helices in stacking mode to form a centrosymmetric aromatic π ··· π interaction, thus supporting the tight binding of the helices. Molecules in the isostructural crystal of 3N2Br and 3N2I form 2D layered structures wherein closely associated molecules are linked via C-H···O and mono-coordinated $X \dots NO_2$ Type III synthon (Table 3, entries 10, 11, 14–17) that resemble flat helical ribbons in 3N2Br and wavy layers in 3N2I (Fig. 5b and 5c). These helical layers are weakly associated via bifurcated C-H...N contacts in 3N2Br forming a planar sheet structure, while it generates periodic wavy layers in 3N2I (Table 3, entries 10, 11, 14–17). In both cases the neighbouring layers create a multiple stack structure through aromatic $\pi \cdots \pi$ interactions.

3N3X series. Halobenzene and nitrobenzene rings are almost coplanar with the central triazole ring in **3N3Cl** whereas in **3N3Br** and **3N3I**, they deviate slightly. The crystal

structures of all the compounds in this series are, in general, packed by the C-H···O, C-H···N and C-H···halogen interactions. In addition, molecules in **3N3Br** and **3N3I** make almost linear C-X···N halogen bonding interactions.

In 3N3Cl, molecules form a 1D molecular tape connecting the unit-translated molecules along the *b*-axis via bifurcated C-H···N and C-H···O interactions (Fig. 6a, Table 3 entries 18, 19, 21, 22). The adjoining antiparallel 1D molecular tapes are linked centrosymmetrically along the c-axis via C-H···O interactions to form a dimeric tape structure bringing the nitrobenzene moieties in close association across the inversion centre (Table 3, entry 20). These dimeric tapes are further linked centrosymmetrically along the same direction via C-H…Cl contacts to form a 2D molecular sheet pattern (Table 3, entry 23). Molecules in isostructural crystals of 3N3Br and 3N3I create a zero dimensional face-to-face centrosymmetric dimeric assembly via C-H···O interactions (Fig. 6c and S6 (ESI[†]), Table 3, entries 24, 25, 27–29, 31, 34, 35, 37). These dimers extended along the c-axis through centrosymmetric C-H···X (X = halogen) and C-X···N halogen bonding contacts

Fig. 8 Molecular organization in **4N** (a) corrugated sheet formed by association of molecules *via* chains of C–H···O interactions, (b) arrangement of the sheets in the *ab* plane.

(Table 3, entries 26, 30, 32, 33, 36, 38, 39), whereas they are loosely stitched along the *ab* diagonal *via* hydrophobic edge-to-edge short C–H···H–C contacts¹⁴ forming a 2D sheet pattern (Fig. 6c). The 2D sheets in all cases generates a multiple stack structure down the *a*-axis through aromatic π ··· π interactions (Fig. 6b and 6d).

3N4X series. Nitro group in **3N**, **3N4Cl** and **3N4Br** displays a similar orientation with respect to the triazole ring while its orientation is exactly opposite in **3N4I**. Moreover, both phenyl rings in **3N**, **3N4Cl** and **3N4Br** showed slight divergence from the least square plane of triazole moiety, however these rings are almost coplanar with the triazole ring in **3N4I**. These conformational features at the single molecular level led isostructurality in **3N**, **3N4Cl** and **3N4Br** while **3N4I** revealed a different molecular architecture. Molecules in all these cases are arranged mostly *via* C–H···O, C–H···N and mono-coordinated C–X···O halogen bonding synthon in their crystals.

Molecules in **3N**, **3N4Cl** and **3N4Br** form a zero dimensional face-to-face centrosymmetric dimeric assembly *via* C–H···O interactions similar to that of **3N3Br** and **3N3I** (Table 3, entries 1–3, 41–43, 45–47). The difference lies only in the stitching of these dimers in 2D. The dimers in **3N**, **3N4Cl** and **3N4Br** are

connected via centrosymmetric short C-H···N interactions (Table 3, entries 5, 40, 48) forming a 2D sheet structure in the ab plane whereas in 3N3Br and 3N3I they are linked via short C-H···H-C contacts. These successive sheets along the *c*-axis are perpendicularly stitched through the C-H-O interaction in 3N (Fig. 7a, Table 3, entry 4) whereas the same interaction is replaced by mono-coordinated X...NO₂ synthon of Type III motif in 3N4Cl and 3N4Br, forming a square grid type network (Fig. 7b and S7 (ESI[†]), Table 4, entries 44, 48). The generation of face-to-face dimeric assembly in 3N4I is precluded due to the entirely opposite orientation of nitro group. Instead, the molecules in 3N4I generate a 1D sheet structure by linking unit-translated molecules via bifurcated C-H···O and C-H···N interactions (Table 3, entries 50-53). The nearest sheets along the c-axis are linked via Type III short and linear monocoordinated C-I···O halogen bonding synthon, thus forming a 2D sheet structure (Fig. 7c, Table 3, entry 54). The adjoining 2D sheets along the third dimension create a stacking assembly *via* $\pi \cdots \pi$ interactions.

4NO₂ family

Crystals of all the 10 compounds in this family crystallized in centrosymmetric space groups as Z' = 1 except in **4N4Br**, where Z' = 2. In all the structures, the triazole, nitrobenzene and halobenzene groups adopts diverse orientations with respect to each other. However the structures of **4N2I**, **4N3Cl**, **4N3Br** are found to be isostructural.

In **4N**, benzene and nitrobenzene rings showed significant deviation from the planarity of triazole moiety. Molecules form a corrugated sheet pattern linked *via* bifurcated weak C–H···O interactions (Fig. 8a, Table 4, entries 1, 2). The adjacent sheets generate multiple stack layers through various weak interactions (Fig. 8b).

4N2X series. Molecules in the crystals of this series are mostly associated *via* C–H···O, C–H···N and C–H···halogen interactions. The existence of C–X···O interaction of mono and bifurcated motifs is also observed (Table 4). All the three rings displayed dissimilar conformations resulting in different packing arrangements.

In 4N2Cl and 4N2Br, the halobenzene ring is almost coplanar whereas the nitrobenzene ring showed a noticeable difference in conformation from the least square plane of triazole ring. However, both the phenyl rings adopt a similar orientation in 4N2I but deviated from the plane of the triazole ring by $\sim 24^{\circ}$. In **4N2Cl**, molecules form a flat 1D molecular chain connecting the unit-translated molecules along the b-axis via C-H···O, C-H···N and C-H···Cl interactions (Fig. 9a, Table 4, entries 4-6). Arrangement of these nearest 1D chains through C-H-O interactions generate a 2D corrugated sheet structure in the bc plane (Table 4, entry 3). The closest neighbouring sheets are connected via Cl…Cl (3.482 Å) contacts of Type I geometry to generate a ladder type network, wherein the Cl…Cl association act as rungs and the sheet as rails. These parallel ladders are loosely packed through van der Waal's interactions (Fig. 9b). Molecules in crystals of 4N2Br, displays the first occurrence of the asymmetric bifurcated Type II motif where two centrosymmetrically related molecules associated via three centered Br...O₂N synthons (Fig. 9c). The nitro group oxygen O2 is closer to the halogen atom Br1 than

Fig. 9 Molecular organization in 4N2Cl (a) and (b), 4N2Br (c) and (d) and 4N2I (e) and (f).

the oxygen O1 (Table 4, entries 9, 10). This dimeric motif acquired the double convex spindle shape²⁸ down the *c*-axis; which are further connected through C–H···O and C–H···N interactions to generate a 2D pattern of an intercalated helix (Fig. 9d, Table 4, entries 7, 8). Crystal structure of **4N2I** revealed a flat helical self-assembly of molecules across the crystallographic two-fold screw axis through two C–H···O and a mono-coordinated I···NO₂ halogen bonding synthon of Type III motif (Table 4, entries 11–13). The adjoining helices along the *c*-axis are bridged *via* C–H···N contacts forming a 2D sheet structure (Fig. 9e, Table 4, entry 14). Viewing down the *ac* diagonal revealed a periodic wavy structure running along the *b*-axis. The antiparallel wavy sheets are stacked over each other by centrosymmetric π ··· π interactions engaging triazole rings across the inversion center (Cg-centroid of the ring, Fig. 9f).

4N3X series. In **4N3Cl** and **4N3Br**, both benzene rings are coplanar with the central triazole ring while in **4N3I** nitrobenzene and triazole ring showed a similar conformation whereas the iodobenzene ring revealed a noticeable difference in conformation with respect to the former. The similar conformation of all the three rings led to isostructurality in crystals of **4N3Cl** and **4N3Br** whereas **4N3I** adopts a different molecular packing. Molecules in all the structures are associated *via* C–H···O, C–H···N and X···O₂N halogen bonding

contacts (Table 4). Molecules in **4N3Br** form a flat helical assembly (similar to **4N2I**) along the crystallographic two-fold screw axis *via* three C-H···O and a mono-coordinated Br···NO₂ halogen bonded synthon of Type III geometry (Table 4, entries 18–20, 22) whereas in **4N3Cl** the molecular arrangement slightly altered from the global planarity keeping the two C-H···O contacts intact (Table 4, entries 15, 16) but lost a C-H···O and a Cl···NO₂ contacts (Fig. 10a and 10c). These flat helices are connected *via* C-H···N interactions along the *c*-axis to produce a 2D sheet structure in **4N3Br** (Fig. 10d) and a periodic wavy structure in **4N3Cl** (Fig. 10b). These 2D sheets and wavy layers are packed in antiparallel fashion *via* van der Waal's forces.

In **4N3I**, the out of plane orientation of the iodobenzene ring could be due to its engagement in symmetric bifurcated three centered I···O₂N halogen bond generation, which appeared to be the driving force in molecular organization. Notably, this is the first case where symmetric X···O₂N interaction (Type I) is observed among all the crystal structures studied so far. The two oxygen atoms of the nitro group are at a similar distance from the iodine atom and the angle of approach is comparable (Table 4, entries 24, 25). This symmetric I···O₂N interaction motif generates a flat helical structure by closely associating the *c*-glide related molecules. Such unit-translated nearest

Fig. 10 Molecular organization in the structures of 4N3Br (a) and (b), 4N3Cl (c) and (d) and 4N3I (e) and (f).

helices along the *b*-axis are connected by short and linear C-H···O interactions to make a 2D sheet structure (Fig. 10e, Table 4, entry 23). Molecular association within the 2D sheet structure is further supported by C-H···O and C-H···N contacts (Table 4, entries 26, 27). The adjoining 2D sheets are stacked in antiparallel fashion *via* centrosymmetric aromatic π ··· π interactions engaging two nitrobenzene rings and other van der Waal's forces (Fig. 10f).

4N4X series. All the three rings differed slightly in their orientation. However, the difference is more significant in **4N4I**. The two symmetry independent molecules in the asymmetric unit of **4N4Br** deviate by a small dihedral angle between the triazole and bromobenzene groups while the difference is more observable in the nitrobenzene ring and the triazole ring.

The crystal structure of **4N4Cl** is grossly similar to the crystal structures of **4N2I**, **4N3Cl** and **4N4Br**. Molecules in **4N4Cl** form a flat helical assembly around the crystallographic two-fold screw axis through short and linear bifurcated C–H···O contacts (Table 4, entries 28, 29). These flat helices are bridged along the *c*-axis *via* short and linear C–H···N interactions forming a 2D sheet structure (Fig. 11a, Table 4, entry 30). The adjacent sheets are stacked in antiparallel

fashion through van der Waals forces (Fig. 11b). Similarly in crystals of 4N4Br molecules creates a 2D sheet network through C-H···N and C-H···O contacts (Fig. 11c). Both symmetry independent molecules forms centrosymmetric dimers via C-H...N contacts with their respective pairs (Table 4, entries 35, 36). The neighboring dimers are linked through bifurcated C-H···O contacts (Table 4, entries 31-34), forming a 2D flat sheet structure. The adjoining sheets generate a multiple stack structure by aligning in an antiparallel manner through van der Waals forces (Fig. 11d). Closely associated molecules in 4N4I form a 1D molecular chain along the *b*-axis through bifurcated C-H...N interactions (Table 4, entries 37, 38). The adjoining 1D chains are stitched via unsymmetrical bifurcated three centered I-O2N halogen bonding interactions of Type II motif along the c-axis generating 2D corrugated sheet pattern (Fig. 11e). Two oxygen atoms of the NO₂ group are at dissimilar distances from the iodine atom and same is the case with their respective approach angle (Table 4, entries 39, 40). The adjoining sheets are linked in anti-parallel fashion via C-H··· π interactions (Fig. 11f).

A comprehensive compilation of various intermolecular interactions observed in all the crystal structures that led to

Fig. 11 Association of molecules in the structures of 4N4CI (a) and (b) and 4N4Br (c) and (d) and 4N4I (e) and (f).

different molecular packing revealed that in the absence of conventional H-bonding interactions, the weaker interactions like C-H···O, C-H···N, C-H··· π , π ··· π , C-H···X, X···X and X···O played a dominant role in the outcome of the solid structures. Moreover, the conformation of both the phenyl rings had a significant effect on the organization of the molecules, leading to different molecular architectures. Molecules in the 2-NO2 family largely pack in helical fashion due to the noncoplanarity of all the three rings supported by C-H...O, C-H…N, X…X interactions but not by X…O₂N halogen bonding contacts. Molecular association in 3NO2 and 4NO2 family generates either a helical assembly or a 2D sheet pattern depending on the conformation of all three rings. A slight deviation from planarity led to helical packing or to the corrugated 2D sheet pattern, whereas the planar structure generates the 2D sheet pattern. Furthermore, it has been observed that X···O₂N interactions are found to be present in the 2D sheet or corrugated sheet structure. Out of a total of 27

structures (halogen isomers), we found X…O2N contacts in a total of 12 structures, of which 9 are of Type III motif (2N4Cl, 3N2Br, 3N2I, 3N4Br, 3N4Cl, 3N4I, 4N2I, 4N3Cl and 4N3Br), two are of Type II (4N4I and 4N2Br) and only one structure i.e. 4N3I showed bifurcated X···O₂N contacts (Type I motif) in its molecular association. We also observed centrosymmetric Type I X ... X halogen bond contact stabilizing the molecular packing with support from C-H-O and C-H-N contacts in some of the structures. The presence of edge-to-edge bifurcated C-H n interactions in the molecular aggregation directing lateral self assembly into 2D sheet structures or wavy structures are also noticed.²⁹ Hydrophobic forces such as $\pi \cdots \pi$ and other van der Waal's interactions also played a significant role in the stacking of the 2D sheets with the interplanar distance lying in the range \sim 3.4–3.5 Å leading to their subsequent stabilization. It is quite interesting to note that molecules in only one structure utilize the C-X $\cdots\pi$ halogen bond in their association, which greatly contributed to its

helical architecture (**2N2I**). As often observed,³⁰ the crystals of halo derivatives are mostly isomorphous; however in these series of isomeric compounds very few crystal systems revealed an isostructural arrangement whereas in most cases different packing arrangements are noticed.

Conclusions

The modular positioning of halogen (X) and NO₂ functional groups on the series of isomeric triaryl compounds for the evaluation of the occurrence of the X...NO2 synthon is demonstrated. The structures are classified as 2-NO₂, 3-NO₂ and 4-NO₂ families representing the position of nitro groups on ortho, meta and para respectively each comprising the structures with and without halo groups; the halogen atoms positions are also varied from *ortho* and *meta* to *para* positions. In all the crystal structures, the molecules either assembled helically or formed the 2D sheet structure depending on the conformations of all the three rings; irregular geometry produced a helical architecture and planar conformations displayed a 2D flat assembly. The possibility of the X...NO2 synthon in the helical arrangement appeared to be remote and revealed only associations via mono-coordinated Cl...NO2 halogen bonds of Type III motif. However, the prospect of X···NO₂ halogen bond in a planar structure seemed positive although few in number. Type I and Type II motifs have materialized during head to tail association of molecules in heavier halogen derivatives *i.e.* bromo and iodo as observed earlier^{20,21} whereas the Type III pattern does not seem to have any such preference. This indicates that the lighter halogen atom i.e. Cl, does not seem to be suitable for the generation of three centered bifurcated X...NO₂ halogen bonding synthons whereas the other two heavier halogens have a tendency to engage in Type II and Type III motifs although it again depends on their positions with respect to the nitro groups. Also the very few hits observed for Type II and Type III motifs even for the bromo and iodo derivatives could be due to the existence of other equally energetic and competitive interactions during crystal growth which made things more complex to predict the patterns of supramolecular aggregation. This showed that even in simple cases of such isomeric series of compounds the pattern of supramolecular arrangement and even the nature of interaction involved could differ significantly. Aggregation patterns of molecules in isomeric structures could not be readily predicted even from a knowledge of the patterns in similar structures.²¹

Acknowledgements

The authors would like to acknowledge the CSIR (India) for funding this project under ORIGIN program of 12FYP and for financial assistance in the form of research fellowships to YG, KAD, SC and SK.

Notes and references

- 1 (a) G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647; (b) J.-M. Lehn, Pure Appl. Chem., 1978, 50, 871; (c) G. R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam, 1989; (d) J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995; (e) C. B. Aakeröy, Acta Crystallogr., Sect. B: Struct. Sci., 1997, 53, 569; (f) J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4763; (g) G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4763; (g) G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4769; (h) G. R. Desiraju, Crystal Design: Structure and Function, Wiley, New York, 2003; (i) G. R. Desiraju, J. Mol. Struct., 2003, 656, 5; (j) J. A. Bis and M. J. Zaworotko, Cryst. Growth Des., 2005, 5, 1169; (k) D. Braga, L. Brammer and N. R. Champness, CrystEngComm, 2005, 7, 1; (l) G. R. Desiraju, Angew. Chem., Int. Ed., 2007, 46, 8342.
- 2 For selected reviews see:(a) J. M. Dumas, M. Gomel and M. Guerin, in *The Chemistry of Functional Groups, Supplement D*, ed. S. Patai and Z. Rappaport, John Wiley & Sons Ltd., New York, 1983, Chap. 21, p.985; (b) A. C. Legon, *Chem.-Eur. J.*, 1998, 4, 1890; (c) A. C. Legon, *Angew. Chem., Int. Ed.*, 1999, 38, 2686; (d) P. Metrangolo and G. Resnati, *Chem.-Eur. J.*, 2001, 7, 2511; (e) R. G. Gonnade, M. S. Shashidhar and M. M. Bhadbhade, *J. Indian Inst. Sci.*, 2007, 87, 149; (f) P. Metrangolo, G. Resnati, T. Pilati and S. Biella, *Struct. Bonding*, 2008, 126, 105; (g) *Halogen Bonding Fundamentals and Applications*, ed. P. Metrangolo and G. Resnati, Springer, Berlin, 2008; (h) P. Metrangolo, G. Resnati, T. Pilati and S. Biella, *Angew. Chem., Int. Ed.*, 2008, 47, 6114.
- 3 P. Metrangolo, H. Neukirch, T. Pilati and G. Resnati, *Acc. Chem. Res.*, 2005, **38**, 386–395.
- 4 (a) O. Hassel and C. RØmming, Q. Rev. Chem. Soc., 1962,
 16, 1; (b) O. Hassel, Science, 1970, 170, 497.
- 5 (a) J. A. R. P. Sarma, F. H. Allen, V. J. Hoy, J. A. K. Howard, R. Thaimattam, K. Biradha and G. R. Desiraju, *Chem. Commun.*, 1997, 101; (b) A. D. Bond, J. Griffiths, J. M. Rawson and J. Hulliger, *Chem. Commun.*, 2001, 2488; (c) P. K. Thallapally, G. R. Desiraju, M. Bagieu-Beucher, R. Masse, C. Bourgogne and J. F. Nicoud, *Chem. Commun.*, 2002, 1052; (d) S. George, A. Nangia, C.-K. Lam, T. C. W. Mak and J.-F. Nicoud, *Chem. Commun.*, 2004, 1202–1203; (e) P. Metrangolo, G. Resnati, F. Meyer, T. Pilati, R. Liantonio and F. Meyer, *J. Polym. Sci., Part A: Polym. Chem.*, 2007, 45, 1 and references therein.
- 6 (a) P. Metrangolo and G. Resnati, Chem.-Eur. J., 2001, 7, 2511; (b) R. G. Gonnade, M. S. Shashidhar and M. M. Bhadbhade, J. Indian Inst. Sci., 2007, 87, 149; (c) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati and G. Terraneo, Angew. Chem., Int. Ed., 2008, 47, 6114; (d) G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, M. Sansotera and G. Terraneo, Chem. Soc. Rev., 2010, 39, 3772.
- 7 (a) P. Auffinger, F. A. Hays, E. Westhof and P. S. Ho, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 16789 and references therein; (b) A. R. Voth, F. A. Hays and P. S. Ho, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 6188; (c) R. Tawarada, K. Seio and M. Sekine, J. Org. Chem., 2008, 73, 383.
- 8 (a) R. Bertani, P. Metrangolo, A. Moiana, E. Perez, T. Pilati,
 G. Resnati, I. Rico-Lattes and A. Sassi, *Adv. Mater.*, 2002, 14, 1197; (b) J. Xu, X. Liu, T. Lin, J. Huang and C. He,

Macromolecules, 2005, **38**, 3554; (c) P. Metrangolo, C. Prasang, G. Resnati, R. Liantonio, A. C. Whitwood and D. W. Bruce, *Chem. Commun.*, 2006, 3290.

- 9 (a) A. Farina, S. V. Meille, M. T. Messina, P. Metrangolo,
 G. Resnati and G. Vecchio, Angew. Chem., Int. Ed., 1999, 38, 2433; (b) T. Takeuchi, Y. Minato, M. Masayoshi and
 H. Shinmori, Tetrahedron Lett., 2005, 46, 9025.
- 10 Y. Jiang, A. A. Alcaraz, J. M. Chen, H. Kobayashi, Y. J. Lu and J. P. Snyder, *J. Med. Chem.*, 2006, **49**, 1891.
- 11 (a) P. Metrangolo, F. Meyer, T. Pilati, D. M. Proserpio and G. Resnati, *Cryst. Growth Des.*, 2008, 8, 654; (b)
 K. Raatikainen and K. Rissanen, *CrystEngComm*, 2009, 11, 750; (c) K. M. Sureshan, R. G. Gonnade, V. G. Puranik, M. M. Bhadbhade and M. S. Shashidhar, *Chem. Commun.*, 2001, 881.
- 12 http://www.iupac.org/fileadmin/user_upload/publications/ recommendations/metrangolo_prs.pdf.
- 13 C. Legon, *Halogen Bonding: Fundamentals and Applications*, ed. P. Metrangolo and G. Resnati, Springer, Berlin, 2008, pp. 17–64.
- 14 (a) R. E. Rosenfield, R. Parthasarathy and J. D. Dunitz, J. Am. Chem. Soc., 1977, 99, 4860; (b) T. N. G. Row and R. Parthasarathy, J. Am. Chem. Soc., 1981, 103, 477; (c) N. Ramasubbu, R. Parthasarathy and P. Murray-Rust, J. Am. Chem. Soc., 1986, 108, 4308.
- 15 V. R. Hathwar, R. G. Gonnade, P. Munshi, M. M. Bhadbhade and T. N. Guru Row, *Cryst. Growth Des.*, 2011, 11, 1855.
- 16 (a) G. R. Desiraju and V. R. Pedireddi, J. Chem. Soc., Chem. Commun., 1989, 1112; (b) V. R. Pedireddi, J. A. R. P. Sarma and G. R. Desiraju, J. Chem. Soc., Dalton Trans., 1992, 2, 311; (c) G. R. Desiraju, V. R. Pedireddi, J. A. R. P. Sarma and D. E. Zacharias, Acta Chim. Hung., 1993, 451.
- 17 (a) F. H. Allen, J. P. M. Lommerse, V. J. Hoy, J. A. K. Howard and G. R. Desiraju, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1997, 53, 1006; (b) F. H. Allen, C. A. Baalham, J. P. M. Lommerse, P. R. Raithby and E. Sparr, *Acta Crystallogr., Sect. B: Struct. Sci.*, 1997, 53, 1017.
- 18 (a) N. Ramasubbu, R. Parthasarathy and P. Murray-Rust, J. Am. Chem. Soc., 1986, 108, 4308; (b) G. R. Desiraju and R. Parthasarathy, J. Am. Chem. Soc., 1989, 111, 8725; (c) Y.-X. Lu, J.-W. Zou, Y.-H. Wang and Q.-S. Yu, J. Mol. Struct. (THEOCHEM), 2006, 767, 139.
- 19 For selected papers that deal with the Cl···NO₂ synthon see: (a) S. Kumakura and Y. Kuroishi, Bull. Chem. Soc. Jpn., 1983, 56, 1541; (b) M. Kubicki, J. Mol. Struct., 2004, 698, 67; (c) S. A. Barnett, A. Johnston, A. J. Florence and A. R. Kennedy, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2005, **61**, o2318; (*d*) S. A. Barnett, A. Johnston, A. J. Florence and A. R. Kennedy, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2005, 61, 03666; (e) S. A. Barnett, T. Pradon, C. Lewis and D. A. Tocher, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, 62, 01662; (f) R. S. Rathore, T. Narasimhamurthy, T. Vijay, H. S. Yathirajan and P. Nagaraja, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2005, 62, 036; (g) L. S. Reddy, S. K. Chandran, S. George, N. J. Babu and A. Nangia, Cryst. Growth Des., 2007, 7, 2675; (h) I. Mossakowska and G. Wojcik, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, 63, 0123; (*i*) S. A. Barnett, A. Johnston, A. J. Florence, S. L. Price and D. A. Tocher, Cryst. Growth Des., 2008, 8, 24.

- 20 Selected references that deal with X···NO₂ 3-centered bifurcated halo···O₂N synthon see: (a) J. M. A. Robinson, D. Philp, K. D. M. Harris and B. M. Kariuki, New J. Chem., 2000, 24, 799; (b) P. K. Thallapally, G. R. Desiraju, M. Bagieu-Beucher, R. Masse, C. Bourgogne and J.-F. Nicoud, Chem. Commun., 2002, 1052; (c) P. K. S. Thallapally, S. Basavoju, G. R. Desiraju, M. Bagieu-Beucher, R. Masse and J.-F. Nicoud, Curr. Sci., 2003, 85, 995; (d) M. Kubicki, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2004, 60, 0341; (e) S. George, A. Nangia, C.-K. Lam, T. C. W. Mak and J.-F. Nicoud, Chem. Commun., 2004, 1202; (f) R. Custelcean, Chem. Commun., 2008, 295.
- 21 (a) For studies of halo...nitro interactions in isomeric compounds see: N. Maschiocchi, M. Bergamo and A. Sironi, Chem. Commun., 1998, 1347; (b) S. J. Garden, F. R. da Cunha, J. L. Wardell, J. M. S. Skakle, J. N. Low and C. Glidewell, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2002, 58, 0463; (c) S. J. Garden, S. P. Fontes, J. L. Wardell, J. M. S. Skakle, J. N. Low and C. Glidewell, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 701; (d) C. J. Kelly, J. M. S. Skakle, J. L. Wardell, S. M. S. V. Wardell, J. N. Low and C. Glidewell, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 94; (e) C. Glidewell, J. N. Low, J. M. S. Skakle, S. M. S. V. Wardell and J. L. Wardell, Acta Crystallogr., Sect. B: Struct. Sci., 2004, 60, 472; (f) C. Glidewell, J. N. Low, J. M. S. Skakle, S. M. S. V. Wardell and J. L. Wardell, Acta Crystallogr., Sect. B: Struct. Sci., 2005, 61, 227; (g) J. L. Wardell, J. N. Low, J. M. S. Skakle and C. Glidewell, Acta Crystallogr., Sect. B: Struct. Sci., 2006, 62, 931.
- 22 C. V. Ramana, S. Chatterjee, K. A. Durugkar and R. G. Gonnade, *CrystEngComm*, 2009, 11, 143.
- 23 K. A. Durugkar, R. G. Gonnade and C. V. Ramana, *Tetrahedron*, 2009, **65**, 3974.
- 24 For recent reviews on "click reaction" see: (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004; (b) H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8, 1128; (c) W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 2007, 28, 15; (d) M. V. Gil, M. J. Arévalo and Ó. Lopez, Synthesis, 2007, 1589; (e) R. A. Evans, Aust. J. Chem., 2007, 60, 384; (f) O. S. Wolfbeis, Angew. Chem., Int. Ed., 2007, 46, 2980; (g) J. F. Lutz, Angew. Chem., Int. Ed., 2008, 47, 2182; (h) Y. Hua and A. H. Flood, Chem. Soc. Rev., 2010, 39, 1262.
- 25 Bruker, SADABS (Version 2.05), SMART (Version 5.631), SAINT (Version 6.45) and SHELXTL (Version 6.14), Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
- 26 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, A64, 112.
- 27 B. K. Saha, A. Nangia and J.-F. Nicoud, *Cryst. Growth Des.*, 2006, 6, 1278.
- 28 K. M. Sureshan and R. G. Gonnade, *CrystEngComm*, 2013, **15**, 1676.
- (a) C. E. Marjo, M. L. Scudder, D. C. Craig and R. Bishop, J. Chem. Soc., Perkin Trans. 2, 1997, 2099; (b) V. R. Pedireddi, W. Jone, A. P. Chorlton and R. Docherty, Chem. Commun., 1996, 997; (c) F. A. Cotton, L. M. Daniels, G. T. Jordan IV and C. A. Murillo, Chem. Commun., 1997, 1673; (d) K. Shivakumar, A. Vidyasagar, A. Naidu, R. G. Gonnade and K. M. Sureshan, CrystEngComm, 2012, 14, 519.
- 30 (a) S. Chantrapromma, B. Jindawong, H.-K. Fun, S. Anjum and C. Karalai, *Acta Crystallogr., Sect. E: Struct. Rep. Online*,

2005, **61**, o2096; (*b*) R. J. Santos-Contreras, F. J. Martínez-Martínez, E. V. García-Báez, I. I. Padilla-Martínez, A. L. Peraza and H. Höpfl, *Acta Crystallogr., Sect. C: Cryst. Struct. Commun.*, 2007, **63**, o239; (*c*) M. Kubicki, W. Prukala and B. Marciniec, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, 63, 0754; (d) W. Prukala, D. Prukala and M. Kubicki, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2008, 64, 0269.