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AbstractÐA weak HTS hit at the CCR2B receptor has been converted into a potent antagonist by array SAR studies. Selectivity
over the closely related CCR5 receptor is also achieved. # 2000 Elsevier Science Ltd. All rights reserved.

Over recent years, there has been a rapid growth in the
number of isolated low molecular weight proteins called
chemokines (chemotactic cytokines).1 These proteins are
involved in a variety of in¯ammatory responses via
interaction with chemokine receptors located on the cell
surface of leukocytes followed by chemotaxis and in®l-
tration into the adjacent tissue. The chemokine proteins
can be divided into four families dependent on the
arrangement of conserved cysteine residues near the N-
terminus.1 Monocyte chemotactic protein-1 (MCP-1) is
a member of the CC class of chemokines, and has been
strongly implicated in various in¯ammatory diseases.2

The e�ects of MCP-1 are mediated primarily via the
CCR2B receptor,3 and it has been widely recognised that
antagonists of this receptor are potential therapeutic
agents for various pathological conditions, e.g., athero-
sclerosis4 and rheumatoid arthritis.5 This hypothesis has
been recently validated by studies using MCP-16 and
CCR27 knockout mice. Two series of small molecule
CCR2B antagonists have recently been reported, exem-
pli®ed by the Roche compound 18 and the Takeda
compound 2.9 Both these compounds have major dis-
advantages, namely compound 1 possesses poor func-
tional activity, and compound 2 possesses mixed CCR5/
CCR2B receptor a�nities. We now report the identi®-
cation of a potent functional antagonist at the CCR2B
receptor with additional selectivity over CCR5. High-throughput screening of the SmithKline Beecham

compound collection against the cloned human CCR2B
receptor identi®ed the indole derivative 3 as a weak ligand
(Ki 5.3 mM).12 Herein we describe the SAR around 3 and
its conversion into a potent antagonist at the CCR2B
receptor.
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Our initial chemical programme was divided into three
discrete areas: modi®cation to the biphenyl amide moiety,
variation of the chain length between the two side-chain
nitrogen atoms, and substitution on the indole ring.

Chemistry10

Amide linked compounds were synthesised by either of
the routes shown in Scheme 1. Alkylation of the
readily available indolopiperidines 411 with a bromo-
alkylphthalimide gave the chain extended protected
amine derivatives 5, which were deprotected to a�ord
primary amines 6. Coupling with the appropriate car-
boxylic acid provided the desired target structures 7.
Alternatively, the products 7 could be obtained via a
direct alkylation of 4 with the appropriate bromoalkyl
amides. Urea and sulfonamide analogues were prepared
by a similar process.

Structure±activity relationships

Initially, we focused on modi®cations to the aromatic
amide group in 3 (see Table 1). Unfortunately, it was
found that the majority of substituted benzamides inves-
tigated exhibited reduced potency at the CCR2B receptor
(data not shown), with the exception of halogen sub-
stituted analogues, e.g., 8 and 9. Replacement of the
amide carbonyl in 9 by sulfonyl also resulted in reduced
potency. Introduction of a one- or two-carbon linker as
in 11 or 12 o�ered no advantage, however replacement
of the methylene group in 11 with NH to form the urea
13 provided a threefold potency increase. More interest-
ingly, replacement of the benz-amide functionality in 9
with 3,4-dichlorocinnamide to give 14 conferred a 10-
fold increase in a�nity.

Having identi®ed the cinnamide linker in 14 as opti-
mal, we explored the in¯uence of substitution on
the aromatic ring. As illustrated in Table 2, highest
a�nity was observed with a small lipophilic sub-
stituent at positions 3 and/or 4 on the phenyl ring, 14
and 19 representing preferred compounds. Larger
substituents as in 25, or polar groups as in 27, were
disfavoured.

We then studied the e�ect of varying the carbon chain
length between the basic nitrogen and the amide nitrogen.
As can be seen from Table 3, a C5 linkage is preferred,
closely followed by C4 and C3, with C2 and C6 being
essentially inactive.

Scheme 1. Synthetic route to amide derivatives. Reagents: (a) Br(CH2)nNphthalimide, NaHCO3, DMF, 80�C (75±85%); (b) hydrazine, ethanol,
re¯ux (65±90%); (c) R2CO2H, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, HOBT, CH2Cl2, room temp. (50±90%); (d) Br(CH2)nNHCOR2,
NaHCO3, DMF, 80�C (60±90%).
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Finally, we undertook an SAR study on indole ring
substitution, with key ®ndings summarised in Table 4.
Signi®cantly, it was found that an H-bond donor at C-5
was bene®cial with the 5-OH indole 34 exhibiting a 10-
fold increase in a�nity. This e�ect was also mirrored by
the 5-MeSO2NH analogue 35, which suggests a speci®c
H-bonding interaction, as the corresponding 5-MeO, 4-
OH and 6-OH derivatives did not show this increase. The
indole NH appears to be crucial for high a�nity, since
the indole N-Me analogue 39 was ca. 80-fold less active.
This hypothesis is also supported by the lack of activity
for the corresponding benzofuran and benzothiophene
analogues.13 C-2 substitution, as in 40, conferred a
slight reduction in a�nity which can be rationalised by
an adverse conformational e�ect on the active indole-
piperidine orientation.

Having identi®ed 34 as a potent ligand at the CCR2B
receptor, we then examined its e�ects in a functional
system, and also its e�ects at the closely related CCR5
receptor. Initially, 34 was tested for its ability to inhibit
MCP-1-stimulated calcium transients using fura-2-loaded
human monocytes, and was found to have a mean Kb of

26 nM (n=2). Similarly, in a functional model based on
inhibition of MCP-1 stimulated chemotaxis of human
monocytes, it was shown that 34 is a potent antagonist
with a mean Kb of 25 nM (n=2). Finally, the e�ects of
antagonist 34 at the CCR2B receptor (Ki 50 nM) were
demonstrated to be speci®c, with CCR5 receptor a�nity
considerably lower (Ki 4260 nM).

In summary we have identifed 34 as a potent CCR2B
receptor antagonist, which has comparable activity in
binding and functional studies, and which is selective
over the CCR5 receptor, its closest chemokine receptor
homologue. Unfortunately, 34 was not progressed due
to unwanted 5-HT receptor a�nities. Modi®cations to
structure 34, which reduce its propensity to interact with
5-HT receptors, will be the subject of a future publication.
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