FULL PAPER

Synthesis and cytotoxic evaluation of some substituted pyrazole zirconium (IV) complexes and their biological assay

Walaa H. El-Shwiniy 🗅 | Wesam S. Shehab | Soha F. Mohamed | Hend G. Ibrahium

Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Correspondence

Walaa H. El-Shwiniy, Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt. Email: walaa1986@zu.edu.eg; wh595949@gmail.com Pyrazole and their derivatives are found to have intense biological efficiency. In the present work some substituted pyrazole derivatives were synthesized and used as ligands (4-[2-vinylthiophene]-3-methyl pyrozolin-5(4H) - one (L₁), 4-[4-chloro benzylidine]-3-methyl pyrozolin-5(4H) - one (L₂) and 4-[4-dimethylnitro benzylidine]-3-methylpyrozolin-5(4H) - one (L₃)) to prepare the zirconium (IV) complexes. The synthesized ligands and their complexes were obtained as colored powdered materials and were characterized using magnetic measurements, melting point, molar conductance, infrared, electronic, ¹HNMR, mass spectra and thermogravimetric analyses. All of the tested compounds showed good microbial activity against pathogenic microorganisms. The tested compounds exhibited considerable antitumor activity and cytotoxic specificity towards human colon carcinoma cell line (HCT-116).

KEYWORDS

antitumor, complexes, pyrazole derivatives, spectral study, zirconium (IV)

1 | INTRODUCTION

Pyrazolone played a particular role due to both their broad spectrum of bioactivity and their wide ranging utility as synthetic tools in the design of various bioactive molecules. In recent years, substituted pyrazole derivatives have drawn considerable attention owing to their broad spectrum biological properties. Compounds with pyrazole functional units exhibit antimicrobial,^[1] herbicidal,^[2] antitumor,^[3–5] insecticidal,^[6–8] fungicidal^[9] and antiviral activities.^[10,11]Lamberth^[12] has summarized the significance of pyrazole derivatives in crop protection chemistry, including herbicidally-, fungicidally- and insecticidally-active pyrazole classes. Moreover, some substituted pyrazole derivatives (L_1, L_2, L_3) had been synthesized, and the compound belongs to a very important class with pharmacological activity (Scheme 1).

The stability of the zirconium acyl complexes has been found to depend upon the nature of the co-ligands and decreases as the N-donor capacity of the co-ligand increases.^[13] It is possible, therefore, that the use of stronger electron-donor ligands in place of C_5H_5 might facilitate displacement of an acyl ligand. Due to its wide range of biological activity, pyrazoles have received a considerable interest in the field of drug discovery and therefore pyrazole ring constitutes a relevant synthetic target in pharmaceutical industry. In fact, such a heterocyclic moiety represents the core structure of a number of drugs.

Therefore, in the present study, we investigated the coordination behavior of L_1 , L_2 , L_3 for Zr (IV) and the data are correlated with their thermal properties. In this vein, we have been developed novel pyrazole derivatives (L_1 , L_2 , L_3) and Zr (IV) in order to hopefully produce new compounds with antitumor activity. The as-prepared new compounds were designed, synthesized and characterized.

2 | EXPERIMENTAL

2.1 | Materials and methods

2.1.1 | Chemicals

All chemicals used for the preparation of the complexes were of analytical reagent grade, commercially available from different sources and used without further purification. CHN analysis was executed on a Perkin Elmer CHN 2400. The percentages of the metal ions were determined gravimetrically by transforming the solid products into metal ion. The percentages of the metal ions were also estimated using an atomic absorption spectrometer. The spectrometer model was PYE-UNICAM SP 1900 and fitted with the corresponding lamp. IR spectra were recorded on FT-IR 460 PLUS (KBr discs) in the range from 4000–400 cm⁻¹. ¹H and ¹³C NMR spectra were recorded on a Bruker 300 MHz NMR Spectrometer using tetramethylsilane (TMS) as the internal standard, chemical shifts are expressed in δ (ppm) and DMSO- d_6 was used as the solvent. TGA-DTG measurements were carried out with heating rate of 20°C min⁻¹ under N₂ atmosphere from room temperature to 1000 °C using TGA-50H Shimadzu. The mass of sample was accurately weighted out in an aluminum crucible. Absorbance measurements were conducted on a double beam spectrophotometer (T80 UV/Vis) with wavelength range 190 nm ~ 1100 nm, spectral bandwidth of 2 nm. Magnetic measurements were carried out on a Sherwood scientific magnetic balance using Gouy balance using Hg $[Co (SCN)_4]$ as calibrate. All melting points are uncorrected and were determined on a Gallen Kamp electric melting point apparatus. Molar conductivities of the solutions of the ligand and metal complexes in DMSO with concentrations of 1×10^{-3} M were measured on CONSORT K410. The completion of the reactions was confirmed using thin layer chromatography (TLC) on silica gel coated aluminum sheets.

2.2 | Synthesis

A series of 4-arylidene-3-methyl-5-pyrazolone derivatives have been synthesized by condensing 3-methyl-5pyrazolone with substituted aromatic aldehydes as illustrated in Scheme 1. Structures of the synthesized compounds (**2–4**) as follow:

SCHEME 1 Structure of the synthesized compounds

2.2.1 | Synthesis of 3-methyl-5-pyrazolone (Scheme 1)^[14]

In this work take ethyl acetoacetate in a beaker and stirred magnetically and add to a solution of hydrazine hydrate in absolute alcohol.^[14] The reaction mixture was kept at 60°C and the crystalline was separated after stirring for 1 hr at 60°C. The crystallization complete when the reaction mixture cooled in ice bath. Then crystalline solid was washed with cold alcohol and dried. The 3- methyl-5-pyrazolone so obtained was kept for next step of the synthetic scheme.^[15] Yellow solid, Yield 81%, m.p.: 207-210°C. IR (KBr, v, cm⁻¹): 2566.47 cm⁻¹ (CH₃ group), 3283.05 cm⁻¹ Stretch), 1609.91 cm^{-1} (CH=CHstretch), (N-H 1735.77 cm⁻¹, 1676.28 cm⁻¹ (ketone group), 1342-1266 cm⁻¹ (C-N stretch), 3000–2840 cm⁻¹ (C-H stretch). ¹HNMR (DMSO- d_6 , 300 MHz): $\delta = 0.265$ (s, 1H, NH, Pyrazolonenucleus), δ , ppm: 1.652 (s, 2H, CH₂), δ , ppm: 0.8263 (s, 3H, CH₃). Anal. Calcd for C₄H₆N₂O (98.1): C, 48.97; H, 6.16; N, 28.56; Found C, 48.96; H, 6.15; N, 28.56%.

2.2.2 | Synthesis of 3-methyl-5-pyrazolone derivatives^[16-18]

Take synthesized pyrazolone in freshly prepared 20% sodium hydroxide (alcoholic solution) was poured into it and stirred magnetically for 30 min. Substituted aromatic aldehyde was added to the reaction mixture and kept under constant stirring for 8 hrs. Reaction

mixture was transferred to crushed ice and neutralized with dil. HCl to precipitate the product in Scheme 1. Synthesis of 3-methyl-5-pyrazolone (intermediate) via Knorrpyrazolone reaction and further reaction with substituted arylaldehydes to obtain 3-methyl-5-pyrazolone derivatives.^[19]

2.2.3 | 4-[2-vinylthiophene]-3-methyl pyrozolin-5(4H) - one (L₁)

Black, m.p.: 260°C, Yield 79% IR (KBr, v, cm⁻¹): 3413 (NH), 1595 (C=O), 1406 cm⁻¹ (C=N) and 1011 cm⁻¹ (C=S). ¹HNMR (DMSO- d_6 , 300 MHz): δ = 1.98 (s, 3H, CH₃), 6.75 (S, 1H, =CH-Ar), 8.11 (d, 3H, Ar-H), 11.15 (s, 1H, -NH). Anal. Calcd for C₉H₈N₂OS (192): C, 56.25; H, 4.16; N 14.58; S, 16.66; Found C, 56.00; H, 4.75; N, 14.55; S, 16.56%.

2.2.4 | 4-[4-chloro benzylidine]-3-methyl pyrozolin-5(4H) - one (L₂)

Yellow, m.p.: 240°C, Yield 84% IR (KBr, ν , cm⁻¹): 3413 (NH), 1590 (C=O) and 1406 cm⁻¹ (C=N). ¹H NMR (DMSO-*d*₆, 300 MHz): δ = 1.88 (s, 3H, CH₃), 6.51 (S, 1H, =CH-Ar), 7.39 (m, 4H, Ar-H), 8.64 (s, 1H, -NH). Anal. Calcd for C₁₁H₉N₂OCl (220.5): C, 59.86; H, 4.08; N 12.69; Cl, 16.09; Found C, 59.42; H, 4.03; N, 12.26; Cl, 16.00%.

2.2.5 | 4-[4-dimethylnitro benzylidine]-3methylpyrozolin-5(4H)- one (L₃)

Orange, m.p.: 180°C, Yield 65% IR (KBr, v, cm⁻¹): 3418 (NH), 1613 (C=O) and 1406 cm⁻¹ (C=N). ¹H NMR (DMSO- d_6 , 300 MHz): δ = 1.91 (s, 3H, CH₃), 3.71

(s, 6H, -N (CH₃)₂), 6.51 (S, 1H, =CH-Ar), 7.51–7.60 (m, 4H, Ar-H), 8.97 (s, 1H, -NH). Anal. Calcd for $C_{13}H_{15}N_{3}O$ (229.14): C, 68.08; H, 6.54; N 18.32; Found C, 68.07; H, 6.13; N, 18.10.

$2.2.6 \mid [ZrO(L_1)Cl]Cl \cdot H_2O$

Grey; Yield: 77%; m.p.: 120° C; M.Wt: 580.22; Elemental analysis for ZrC₁₈H₁₈N₄O₄S₂Cl₂: found, C, 38.16; H, 3.02; N, 9.37; Zr, 16.00; Cl, 12.83. Calcd, C, 38.41; H, 3.10; N, 9.69; Zr, 16.22; Cl, 12.62; $\Lambda_{\rm m} = 99.50$ S cm² mol⁻¹; IR (KBr, ν , cm⁻¹): 3390 m,br (NH), 1600 m (C=O), 1457vw cm⁻¹ (C=N) and 1054 m cm⁻¹(C=S), 544w and 492w (M–N). ¹HNMR (DMSO-*d*₆, 300 MHz): $\delta = 2.49$ (s, 3H, CH₃), 3.42 (s, 2H, H₂O), 6.75 (S, 1H, =CH-Ar), 8.11 (d, 3H, Ar-H).

$2.2.7 \mid [ZrO(L_2)Cl]Cl \cdot H_2O$

Orange; Yield: 81%; m.p.: 296°C; M.Wt: 637.22; Elemental analysis for $ZrC_{22}H_{20}N_4O_4Cl_4$: found, C, 42.33; H, 3.12; N, 9.00; Zr, 14.21; Cl, 22.43. Calcd, C, 42.63; H, 3.31; N, 9.04; Zr, 14.73; Cl, 22.93; $\Lambda_m = 89.00$ S cm² mol⁻¹; IR (KBr, ν , cm⁻¹): 3400 m,br (NH), 1599 m (C=O), 1421 m cm⁻¹ (C=N) and 638w and 539w (M–N). ¹HNMR (DMSO- d_6 , 300 MHz): $\delta = 2.07$ (s, 3H, CH₃), 7.33 (S, 1H, =CH-Ar), 7.37–7.94 (d, 3H, Ar-H), 3.46 (s, 2H, H₂O).

2.2.8 | $[ZrO(L_3)Cl]Cl \cdot H_2O$

Brown; Yield: 69%; m.p.: 110°C; M.Wt: 654.50; Elemental analysis for $ZrC_{26}H_{32}N_6O_4Cl_2$: found, C, 48.99; H, 4.41; N, 9.00; Zr, 14.15; Cl, 11.05. Calcd, C, 49.01; H, 4.88; N, 13.19; Zr, 14.33; Cl, 11.15; $\Lambda_m = 91.51$ S cm² mol⁻¹; IR

TABLE 1 Some selected Infrared frequencies^a (cm⁻¹) and tentative assignments^b for L₁, L₂, L₃ and their complexes.

L_1	$[ZrO(L_1)_2Cl]Cl \cdot H_2O$	L ₂	$[ZrO(L_2)_2Cl]Cl \cdot H_2O$	L_3	$[ZrO(L_3)_2Cl]Cl \cdot H_2O$	Assignments ^b
-	3397 _{v,br}	-	3402 _{m,br}	-	3399 _{m,br}	ν(O-H); H ₂ O
3413 _{m,br}	3390 _{m,br}	3413 _{m,br}	3400 _{m,br}	3413 _{m,br}	3399 _{m,br}	ν(N-H); -NH
3093 _w	3090	3070 _m	3070	$3060_{\rm w}$	3065	ν(C-H); aromatic
2917 _m	2917	2925 _m	2925	2917 _m	2915	ν(C-H); aliphatic
1595 _{ms}	1600 _m	1590 _{m,sh}	1599 _m	1613 _{vs}	1615 _m	ν(C=O)
1406 _m	1457 _s	1406 _s	1421 _m	1406 _m	1433 _{vw}	ν(C=N),
1406 _m	1430 _s	1491 _m	1450 _m	1400 _m	1410 _{vw}	ν (C=C)
-	830 m	-	833w	-	862 m	$\nu(\mathrm{Zr}=\mathrm{O})$
-	544	-	638	-	593	ν(M-N)
-	492	-	539	-	543	
-	-	-	680 s	-		

 $^{a}s = strong$, w = weak, v = very, m = medium, br = broad, sh = shoulder,

 ${}^{b}\nu =$ stretching, $\delta_{b} =$ bendin, $\delta_{r} =$ rocking.

4 of 16 WILEY Organometalli

(KBr, v, cm⁻¹): 3399 m,br (NH), 1615 m (C=O) and 1433vw cm⁻¹ (C=N) and 593w and 543w (M–N). ¹HNMR (DMSO-*d*₆, 300 MHz): δ = 1.84 (s, 3H, CH₃), 2.11–2.54 (s, 6H, -N (CH₃)₂), 7.64 (S, 1H, =CH-Ar), 7.45–7.64 (m, 4H, Ar-H), 3.40 (s, 2H, H₂O).

2.3 | Biological activity and in vitro cytotoxicity assays

The procedures of antibacterial activity assay were evaluated according to the literature.^[20] The synthesized compounds were tested against colon carcinoma cell line (HCT-116).^[21] Antitumor viability assay was performed by the described method by Saintigny and Monnat Jr.^[22]

3 | RESULTS AND DISCUSSION

The complexes of L₁, L₂, L₃ with Zr(IV) were prepared and studied. Depending on elemental analysis, the molar ratio of the prepared complexes was determined. Conductance measurements, magnetic susceptibilities and spectral measurements were different parameters used to obtain the geometry and formulas of prepared complexes. From magnetic measurments, the prepared complexes have diamagnetic properties. For Zr(IV) complexes and its corresponding ligands, the conductivity measurements were done in DMSO at $1.0 \times 10P^{-3}PM$ and were found from 5.03 to 99.50 S cm² mol^{-1[23]} and it indicated that they were electrolytes.^[24–26] Chloride ion was found as

SCHEME 2 The proposed structures of the synthesized complexes

counter ions for the isolated complexes and this was agreed with IR-data and molar conductance.

3.1 | Infra-red Spectra analysis

The infra-red spectra for the three free ligands (L_1, L_2, L_3) and their metal complexes were showed in Figure S1 and listed in Table 1. From these spectra the site and kind of

 $\label{eq:FIGURE 1} \begin{array}{l} \mbox{Electronic absorption for } L_1, \ [ZrO \ (L_1)_2Cl]Cl \bullet H_2O, \\ L_2, \ [ZrO \ (L_2)_2Cl]Cl \bullet H_2O, \ L_3 \ \mbox{and} \ [ZrO \ (L_3)_2Cl]Cl \bullet H_2O \end{array}$

donation that may be involved in chelation could be identified.^[27,28] At 3413 and 1406 cm⁻¹ two bands attributed to the stretching vibration of ν (N-H) amino and for ν (C=N) hydrazono groups. i.e. respectively for L₁, L₂, L₃.^[29,30] From shifting to higher and lower frequency values for ν (C=N), the coordination between the ligand molecule and Zr(IV) through the nitrogen atom of hydrazono group was confirmed. The following higher frequencies (1457, 1421 and 1433) values of ν (C=N) may indicate an increase of C=N bond strength as a result of coordination.

Upon coordination to Zr(IV) the electron density on the nitrogen atom was decreased this lead to a decrease in the electron repulsion between the nitrogen lone pair and the double bond electrons and as a result C=N bond became a strong band with a higher frequency.^[29-31] A lower frequency value (3390, 3400 and 3399 cm⁻¹) for the shifting of ν (N-H) indicated a decrease of the N-H bond strength upon coordination.^[29] These changes of the IR spectra suggest that L₁, L₂, L₃ are coordinated to the Zr(IV) via two nitrogen atoms of amino (N-H) and hydrazono (C=N) groups. The ν (O-H) vibration of the water molecules in the prepared complexes were found at 3397–3402 cm^{-1[27–33]} also, the ν (C=O) was found at 1599–1615 cm⁻¹.

A group of new bands with different intensities was found which characteristics for ν (M-N). The ν (M-N) bands observed at 544, 492 cm⁻¹ for Zr(IV)-L₁, 638, 539 cm⁻¹ for Zr (IV)-L₂ and 593 and 543 cm⁻¹ for Zr(IV)-L₃, which are absent in the spectra of L₁, L₂ and L₃.^[27-34] From the above mentioned result the coordination of L₁, L₂, and L3 was done through two C=N and N-H groups (Scheme 2).

3.2 | UV–Vis. spectra

From the UV–Visible data of the ligands (L₁, L₂, and L₃) and their Zr(IV) chelates in the wavelength interval from 200 to 800 nm were recorded (Table S1 and Figure 1). The spectra of the three ligands was absorbed by three absorption bands at 245, 283 and 282 nm. Which attributed to π - π ^{*}(phenyl ring) transition also, the three bands at

330 nm are assigned to $n-\pi^*$ (-C=O,-NH and -C=N) transition, in case of unsaturated hydrocarbons obtained by cyanide and ketone group,^[26] occur slightly shifted to lower values (hypsochromic shift) and wavelength (bathochromic shift), when ligands and metal cheated new bands appear in reflection spectra of complexes refer to the metal complexes were formed these new bands shown in the range from 375 to 487 nm which may be assigned to the ligand to metal charge-transfer.^[35,36]

3.3 | Nuclear magnetic resonance (¹HNMR)

The ¹H NMR spectra of L_1 and their metal complex (Figure S2 (A, B)) confirm the suggested structures. The proton of –NH signal for ligand observed at δ : 11.15 ppm (s, 1H, -NH, exchange with D_2O) showed no observed it in complex. This enhances the hypothesis that -NH is the coordinating group. The new signal are observed in δ : 3.42 ppm due to presence of H₂O molecule in complex. On the other hand, the values of protons of -CH aliphatic (methyl) observed in δ : 1.978 ppm (s, 3H, -CH₃), that of aromatic ring are in δ : 8.11 ppm (d, 3H, Aromatic–H) and the proton of (=CH-Ar) group observed in δ : 6.75 ppm (S, 1H, =CH-Ar) increased and the intensity of signals is increased, as shown in Table 2.^[37] From ¹HNMR and FT-IR results, it was proposed that the L₁ coordinated to the central metal ion as bidentate ligand through the two nitrogen atom of pyrazolone group.^[35]

The ¹HNMR spectra of L₂ and their metal complex (Figure S2 (C, D)) confirm the suggested structures. The proton of -NH signal for ligand observed at δ : 8.64 ppm (s, 1H, -N<u>H</u>, exchange with D₂O) showed no observed it in complex. This enhances the hypothesis that -NH is the coordinating group. The new signalare observed in δ : 3.46 ppm due to presence of H₂O molecule in complexes. On the other hand, the values of protons of -CH aliphatic (methyl) observed in δ : 1.88 ppm (s, 3H, -C<u>H</u>₃), that of aromatic ring are in δ : 7.39 ppm (m, 4H, Aromatic-<u>H</u>) and the proton of (=CH-Ar) group observed in δ : 6.51 ppm (S, 1H, =CH-Ar) increased and the intensity of signals is increased, as shown in

TABLE 2 Selected ¹HNMR data of L₁, L₂, L₃ and their diamagnetic complexes

Compounds	δ H; H ₂ O	δ H; -CH aliphatic (methyl)	δ H; -CH aromatic	δH ; =CH aromatic	δ H;-N (CH ₃) ₂	δ H; -NH hydrazid
L_1	-	1.978	8.105	6.75		11.159
$L_1/Zr(IV)$	3.418	2.49	8.155	6.641		
L_2	-	1.88	7.37–7.39	6.513		8.64
$L_2/Zr(IV)$	3.469	2.074	7.307	7.33		
L ₃	-	1.91	7.51-7.603	6.505	3.718	8.97
$L_3/Zr(IV)$	3.400	1.84	7.453	7.640	2.11-2.54	

FIGURE 2 Mass spectra diagrams for (A) L_1 , (B) [ZrO (L_1)₂Cl]Cl•H₂O, (C) L_2 , (D) [ZrO (L_2)₂Cl]Cl•H₂O, (E) L_3 and (F) [ZrO (L_3)₂Cl]Cl•H₂O

Table 2. From ¹HNMR and FT-IR results, it was proposed that the L_2 coordinated to the central metal ion as bidentate ligand through the two nitrogen atom of pyrazolone group.^[28]

The ¹HNMR spectra of L₃ and their metal complex (Figure S2 (E, F)) confirm the suggested structures. The proton of –NH signal for ligand observed at δ : 8.97 ppm (s, 1H, -NH, exchange with D_2O) showed no observed it in complex. This enhances the hypothesis that -NH is the coordinating group. The new signal are observed in δ : 3.40 ppm due to presence of H₂O molecule in complex. On the other hand, the values of protons of -CH aliphatic (methyl) observed in δ : 1.91 ppm (s, 3H, -CH₃), that of aromatic ring are in δ : 7.51–7.60 ppm (m, 4H, Aromatic-H), the proton of (=CH-Ar) group observed in δ : 6.51 ppm (S, 1H, =CH-Ar) and protons of (N $(CH_3)_2$) group observed in δ : 3.71 ppm (s, 6H, -N (CH₃)₂) increased and the intensity of signals is increased, as shown in Table 2. From ¹HNMR and FT-IR results, it was proposed that the L₃ coordinated to the central metal ion as bidentate ligand through the two nitrogen atom of pyrazolone.[30]

3.4 | Thermal studies

The most commonly used thermal analysis techniques are thermogravimetry (TG) for the characterization of both organic and inorganic materials. TG measurements give fundamental information about the thermal properties of the chelates. Representative thermogravimetric curves are shown in Figure 2. The maximum temperature values, $T_{max}/^{\circ}C$, together with the corresponding weight loss for each step of decomposition of the compounds together with theoretical percentage mass losses are given in Table 3 (Figure 3).

The thermal decomposition for the ligand (L₁) started at 44°C and finished at 601°C with two stages. The first stage of degradation takes place at maximum temperature of 133, 276 and 532°C is accompanied by a total weight loss of 83.134%, close to the calculated value 83.33%. Corresponding to loss of $4C_2H_2 + CO + N_2$ molecule and activation energy of 105.29 KJ mol⁻¹ (endothermic). The second step of decomposition occurs at maximum 544°C and the actual weight loss from these step is 16.866%, close to the calculated value 16.66% corresponding to value of S.

The thermal degradation of $[ZrO(L_1)_2Cl]Cl \cdot H_2O$ complex occurs in two degradation stages, the first stage of decomposition occurs at maximum 94°C and is accompained by a weight loss of 3.10% corresponding to loss of H₂O with an activation energy 47.06 KJ mol⁻¹. The second step of decomposition occurs at different temperatures and is accompanied by a weight loss of 81.17%; corresponding to thevalue of $8C_2H_2 + 2CO + 2 N_2 + Cl_2 + S_2O$ theoretically, the weight loss in this step 81.69%. The experimental value of 15.72% corresponding to Zr agrees with the calculated value 15.22%.

The thermal degradation for the ligand (L₂) started at 43°C and finished at 642°C with one stage. This stage is accompanied by total weight loss of 90.185%, close to the calculated value 89.115%. Corresponding to loss of $4C_2H_2 + HCl + CO + N_2$ molecule and

TABLE 3 Thermogravimetric data of L₁, L₂, L₃ and their metal complexes

			% Estimated (calculated)	Assignment
Compounds	Decomposition	DTG _{max} (°C)	Mass loss	Total mass loss	Lost species
L ₁ 192, C ₉ H ₈ ON ₂ S	First step Residue	133,276,532,544	83.134 (83.33) 16.866 (16.66)	83.134 (83.33)	$\begin{array}{c} 4C_2H_2 + CO + N_2 \\ S \end{array}$
$[ZrO(L_1)_2Cl]Cl \bullet H_2O$ 580.22, $ZrC_{18}H_{18}N_4O_4S_2Cl_2$	First step Second step Residue	94 281,422,744,809	3.10 (3.08) 81.17 (81.69) 15.72 (15.22)	84.27 (84.77)	H_2O 8C ₂ H ₂ + 2CO + 2 N ₂ + Cl ₂ + S ₂ O Zr
L ₂ 220.5, C ₁₁ H ₉ N ₂ OCl	First step Residue	237,642	90.185 (89.115) 9.815 (10.88)	90.185 (89.115)	$4C_{2}H_{2} + HCl + CO + N_{2}$ $2C$
$[ZrO(L_2)_2Cl]Cl \bullet H_2O$ 637.22, $ZrC_{22}H_{20}O_4N_4Cl_4$	First step Second step Residue	78 286,557,660	2.82 (2.78) 80.97 (80.30) 16.198 (16.66)	83.79 (83.08)	$\begin{array}{c} H_2O\\ 9C_2H_2+2\ N_2+3CO+2Cl_2\\ Zr+C \end{array}$
L ₃ 229.14, C ₁₃ H ₁₅ ON ₃	First step	323,568,901	100 (99.82)	100 (99.82)	$6C_2H_2 + CO + NH_3 + N_2$
$[ZrO(L_3)_2Cl]Cl \bullet H_2O$ 654.5, $ZrC_{26}H_{32}O_4N_6Cl_2$	First step Second step Residue	80 192,299,563,551,873	2.75 (2.60) 83.31 (83.16) 13.93 (13.33)	86.06 (85.76)	$\begin{array}{c} \mathrm{H_2O}\\ 11\mathrm{C_2H_2}+2\mathrm{C_2H_4}+\mathrm{Cl_2}+3\mathrm{N_2O}\\ \mathrm{Zr} \end{array}$

FIGURE 3 TGA and DTG diagrams for (a) L₁, (b) [ZrO(L₁)₂Cl]Cl•H₂O, (c) L₂, (d) [ZrO(L₂)₂Cl]Cl•H₂O, (e) L₃ and (f) [ZrO(L₃)₂Cl]Cl•H₂O

activation energy of 14.07 KJ mol⁻¹ (endothermic). The Residue value decomposition occurs at maximum 642°C and the actual weight loss from these step is 9.815%, close to the calculated value 10.88% corresponding to 2C.

The thermal degradation of $[ZrO(L_2)_2Cl]Cl \cdot H_2O$ complex takes place in two degradation stages, the first stage of decomposition occurs at maximum 78°C and is accompained by a weight loss of 2.82% corresponding to loss of H₂O with an activation energy 25.91 KJ mol⁻¹. The second step of decomposition occurs at different temperatures is 286, 557, 660°C and is accompanied by a weight loss of 80.97%; corresponding to the value of 9C₂H₂ + 3CO + 2 N₂ + Cl₂ theoretically, the weight loss in this step 80.30%. The experimental value of 16.198% corresponding to Zr + 2C agrees with the calculated value 16.66%.

The thermal decomposition for the ligand (L₃) started at 47°C and finished at 901°C with one stage. This stage is accompanied by a total weight loss of 100%, close to the calculated value 99.82% corresponding to loss of $6C_2H_2 + NH_3 + CO + N_2$ molecule and an activation energy of 75.13 KJ mol⁻¹ (endothermic).

The thermal degradation of $[ZrO (L_3)_2Cl]Cl \cdot H_2O$ complex occurs in two degradation stages, the first stage of decomposition occurs at maximum 80°C and is accompained by a weight loss of 2.75% corresponding to loss of H_2O with an activation energy 46.32KJ mol⁻¹.

The second step of decomposition happens at different temperatures is 192, 299, 551, 563, 873°C and is accompanied by a weight loss of 83.31%; corresponding to the value of $11C_2H_2 + 2C_2H_4 + 3N_2O + Cl_2$ theoretically, the weight loss in this step 83.16%. The experimental value of 13.93% corresponding to Zr agrees with the calculated value 13.33%.

3.5 | Kinetic data

Activation energies, E^* , entropies, ΔS^* , enthalpies, ΔH^* , and Gibbs free energies, ΔG^* below to kinetic thermodynamic parameters. The Coats-Redfern (CR) and Horowitz-Metzger (HM) relationships used to estimate graphically by employing for the decomposition.^[37,38] Their parameters were detected using the above mentioned methods by graphical means and they are listed in Table 4. The activation energies of decomposition were found to be in the range 35.33-137.93 kJ mol⁻¹. The maximum values of the activation energies refer to the thermal stability of the complexes, while the negative values of entropy of activation indicate that all complexes with decomposition reactions proceeded with a lower rate than the normal ones (Figure 4). From the kinetic data obtained DTG curves, all the chelates had negative entropy, which refer that activated complexes have more ordered systems than reactants.

TABLE 4 Thermal behavior and kinetic parameters determined using the Coats–Redfern (CR) and Horowitz–Metzger (HM) operated for L_1 , L_2 , L_3 and their complexes

				Parameter	r					
Compounds	Decomposition Range (K)	T _s (K)	Method	E [*] (KJ/mol)	A (s ⁻¹)	ΔS [*] (KJ/mol. K)	ΔH [*] (KJ/mol)	ΔG [*] (KJ/mol)	R ^a	SD ^b
L_1 (C _o H _s N ₂ OS)	672-873	805	CR HM	105.296 137.726	368.535×10^{3} 107.982×10^{3}	-446.853 -436.647	98.597 131.033	458.319 482.533	0.885 0.933	0.433 0.177
	876–1029	939	CR HM	249.270 268.430	7.022×10^{6} 1.531×10^{6}	-469.744 -457.413	241.463 260.623	682.865 690.133	0.938 0.923	0.283 0.170
$[ZrO (L_1)_2Cl]Cl \cdot H_2O$ $(ZrC_1_2H_1_2N_4O_4S_2Cl_2)$	473-603	554	CR HM	47.065 59 294	21.787×10^{3} 44.212×10^{3}	-426.446 -432.329	42.459 54 688	278.710 294 198	0.912	0.266
(21018110140402012)	625-807	695	CR HM	95.414 99.884	6.276×10^{5} 3.904×10^{6}	-452.502 -467.701	89.635 94.105	404.124 419.157	0.968 0.958	0.185 0.117
$(C_{11}H_0N_2OCI)$	316-689	510	CR HM	14.076 24.303	8.267×10^{3} 8.633×10^{3}	-476.509 -419.466	9.835 20.06	252.853 233.990	0.972 0.956	0.126 0.117
(-119-2)	709–997	915	CR HM	94.210 117.980	13.481×10^{3} 45.024×10^{4}	-418.283 -447.453	86.600 110.372	469.331 519.792	0.944 0.984	0.308 0.072
$[ZrO (L_2)_2Cl]Cl \cdot H_2O$ (ZrC_22H_20N_4O_4Cl_4)	292-429	351	CR HM	25.910 30.666	4.968×10^{3} 5.354×10^{3}	-417.949 -418.573	22.991 27.747	169.691 174.666	0.948 0.935	0.243 0.145
	720-898	830	CR HM	108.755 127.947	357.423×10^{3} 323.088	-446.344 -445.504	101.854 121.047	472.319 490.814	0.980 0.982	0.165 0.077
L_3 (C ₁₂ H ₁₅ N ₂ O)	533-721	596	CR HM	75.131 74.134	157.916×10^{3} 385.385×10^{3}	-442.306 -449.724	70.225 69.178	333.840 337.211	0.802 0.795	0.574 0.286
<-15 15 ·5 ·7	779–981	841	CR HM	144.306 144.632	25.408×10^{3} 115.609×10^{3}	-424.253 -436.850	137.310 137.639	494.110 505.030	0.921 0.925	0.329 0.152
$[ZrO (L_3)_2Cl]Cl \cdot H_2O$ $ZrC_2 \cdot H_{22} N_2O_4Cl_2$	317–521	465	CR HM	46.320 54.193	73.252×10^{3} 180.209×10^{3}	-437.983 -445.467	42.453 50.326	246.116 257.469	0.982 0.990	0.115 0.0432
- 20 52 - 0 - 4 - 2	537-687	572	CR HM	87.957 87.266	7.145×10^{3} 14.597 × 10 ³	-416.911 -422.850	83.201 82.510	321.674 324.380	0.802 0.790	0.496 0.243

^a= correlation coefficients of the Arrhenius plots and

^b= standard deviation

3.6 | Mass spectra

Mass spectrometry was found benefit as a complementary method. Mass spectrum of the L₁ is in a good agreement with the suggested structure (Scheme 3), (Figure 2). The L₁ showed molecular ion peak (M^{+}) with m/z = 192 (71.00%) and M^{+1} at m/z = 193 (7.1%). The molecular ion peak [a] losses C₄H₃S to give fragment [b] at m/z = 109 (99.9%), molecular ion peak [b] lossesCH₃O to give fragment [c] at m/z = 78 (83.3%) and this [c] losses CH to give fragment [d] at m/z = 65 (7.2%). Also it losses [O] to give fragment [E] at m/z = 176 (9.1%). The molecular ion peak [a] losses CH₃O to give fragment [F] at m/z = 161 (6%).

The mass spectra of Zr(IV) complex displayed molecular peak at m/z = 580 (20.2%), suggesting that the molecular weight of the assigned product matching with elemental and thermogravimetric analyses (Scheme 4), (Figure 2).

Fragmentation pattern of the complex $[ZrO(L_1)_2Cl]$ Cl•H₂O is given as an example in Scheme S1. The molecular ion peak [a] was appeared at m/z = 580 (20.2%) lossed $C_{10}H_8S_2$ to give [b] at m/z = 388 (16.43%). The molecular ion peak [a] losses $C_9H_9O_2S_2$ to give [C] at m/z = 367 (6.3%) and it losses $[C_{10}H_{12}S_2]$ to give [d] at m/z = 384 (10%).

Applied Organometallic-Chemistry 9 of 16

The mass spectrum of the L₂ displayed molecular structure is given as an example in (Scheme S2), (Figure 2). The molecular ion peak [a] appeared at m/z = 220 (96.1%), it lose C₆H₄Cl to give [b] at m/z = 109 (28%), Then a molecular ion peak [b] lossed CH₃Oto give [c] at m/z = 78 (6.5%) and molecular ion peak [c] loss CH to give fragment [d] at m/z = 65 (24.3%) also the molecular ion peak [a] loss [O] to give [e] at m/z = 204 (4.5%) then [e] loss CH₃ to give [f] at m/z = 189 (1.6%) and it loss C₇H₅Cl to give fragment [g] at m/z = 96 (2.4%) then a molecular ion peak [g] loss CH₃ to give [h] at m/z = 81 (35.9%).

Fragmentation pattern of the complex $[ZrO(L_2)_2Cl]$ Cl•H₂O is given as an example in (Scheme S3), (Figure 2). The molecular ion peak [a] appeared at m/z = 637 (21.5%) it loss C₁₂H₈Cl₂ to give fragment [b]

FIGURE 4 The diagrams of kinetic parameters of L_1 , [ZrO (L_1)₂Cl]Cl•H₂O, L_2 , [ZrO (L_2)₂Cl]Cl•H₂O, L_3 and [ZrO (L_3)₂Cl]Cl•H₂O using Coats-Redfern (CR) and Horowitz-Metzger (HM) equations

at m/z = 414 (31.2%), then molecular ion peak [b] loss $C_2H_6O_2$ to give [c] at m/z = 352 (14%) then [c] losses C_2H_2 to give [d] at m/z = 326 (18%).

The mass spectrum of the L_3 displayed molecular structure is given as an example in (Scheme S4), (Figure 2). The molecular ion peak [a] appeared at m/z = 229 (78.3%), it

SCHEME 3 Fragmentation pattern of L_1

lose N (CH₃)₂ to give [b] at m/z = 185 (99%), Then a molecular ion peak [b] lossed C₆H₄ to give [c] at m/z = 109 (7%), molecular ion peak [c] loss CH₃O to give fragment [d] at

-WILEY-Organometallic 11 of 16 Chemistry

m/z = 78 (5.5%) and ion [d] loss CH to give [e] at m/z = 65 (12.5%) also the molecular ion peak [a] loss $C_9H_{11}N$ to give [F] at m/z = 96 (25%) then [f] loss [O] to give [g] at m/z = 80 (1.4%) and molecular ion peak [g] loss CH₃ to give [h] at m/z = 65 (12.5%).

Fragmentation pattern of the complex $[ZrO(L_3)_2Cl]$ Cl•H₂O is given as an example in (Scheme S1), (Figure 2). The molecular ion peak [a] appeared at m/z = 654 (20%) it loss C₁₆H₂₀N₂ to give fragment [b] at m/z = 414 (10.2%), then molecular ion peak [b] loss C₂H₄O to give [c] at m/z = 370 (5.2%) and molecular ion peak [c] loss C₂H₄O to give [d] at m/z = 326 (57.8%). Then a molecular ion peak [a] losses C₁₉H₂₅N₂O to give [E] at m/z = 357 (9%).

3.7 | Antimicrobial efficiency

In this experiment, the antimicrobial potency of the free ligands (L_1 , L_2 , L_3) and their complexes, this studies were carried out on, *E. Coli* ATCC11229, *Coliform* ATCC8729, *S. aureus* ATCC6538, and *Salmonella typhi* ATCC14028 and antifungal screening was studied against two species, *Aspergillus niger* and *Pencillum expansum*, and detected by measuring size of the inhibitions zone (Table 5) according to the results of the antimicrobial study of the three ligands and their metal complexes have inhibitory action against all types of organism (Figure 5).

The $Zr(IV) - (L_1)_2$ complex showed a significant difference against *E. Coli* ATCC11229 than its free ligand.

SCHEME 4 Fragmentation pattern of $[Zr (L_1)_2a]a \cdot H_2O$

TABLE 5	The inhibitation	diameter ze	one values	(mm)	for L	1, L ₂ ,	L ₃ and	their	complexes
---------	------------------	-------------	------------	------	-------	---------------------	--------------------	-------	-----------

		Microbial sp	ecies				
		Bacteria				fungi	
Compoun	ıds	E. coli	Coliform	S. aureus	Salmonella typhi	A.niger	P.expansum
L_1		$9.3^{+1} \pm 0.67$	$9.3^{+1} \pm 0.88$	$29^{+3} \pm 2.2$	$9.3^{+1} \pm 0.91$	NA	$18^{+2} \pm 1.6$
L_1/Zr (Γ	V)	$28^{+3} \pm 2.7$	$15.3^{+2} \pm 1.3$	NA	$21^{+3} \pm 2.4$	NA	NA
L ₂		$15^{+1} \pm 1.2$	$7.4^{+1} \pm 0.8$	$21^{+2} \pm 2.5$	$9.3^{+1} \pm 1.1$	$11.3^{+1} \pm 0.85$	$15.3^{+1} \pm 0.78$
L ₂ /Zr (Г	V)	$22^{+2} \pm 25$	$14^{+2}\pm1.3$	$26^{+3} \pm 2.2$	$15^{+2} \pm 1.1$	NA	NA
L ₃		$14^{+1} \pm 1.3$	$9.3^{+1} \pm 0.56$	$15^{+1} \pm 1.1$	$12.6^{+1} \pm 1.5$	NA	NA
L ₃ /Zr (Г	V)	$22^{+2} \pm 2.1$	$12^{+1} \pm 1.1$	$30.3^{+3} \pm 2.6$	$20.6^{+3} \pm 2.6$	$20^{+3} \pm 1.9$	NA
ZrOCl ₂ .8H	[₂ 0	00	00	00	00	00	00
Control (E	OMF)	00	00	00	00	00	00
Standard	Nystain	00	00	00	00	11 ± 1.2	00
	Fluconazole	00	00	00	00	00	00
	Amoxycillin/Clavulanic	17 ± 1.2	14 ± 0.96	19 ± 1.1	00	00	00
	Cetaxime	00	00	00	00	00	00

Statistical significance $P^{NS} - P$ not significant, P > 0.05; $P^{+1} - P$ significant, P < 0.05; $P^{+2} - P$ highly significant, P < 0.01; $P^{+3} - P$ very highly significant, P > 0.001; Student's t-test (Paired).

FIGURE 5 Statistical representation for biological activity of L₁, L₂, L₃ and their metal complexes

While the $Zr(IV) - (L_2)_2$ and $Zr(IV) - (L_3)_2$ chelates recorded the same result (22 mm) with the same strain and the free ligand achieved the lower result than their complexes. For *Coliform* ATCC8729 showed that highly significant for the complex of $Zr(IV) - (L_1)_2$ than its ligand. The complexes of other ligands $Zr(IV) - (L_2)_2$ and $Zr(IV) - (L_3)_2$ represented high results compared to other ligands respectively. Gram-positive bacteria *S. aureus* ATCC6538 recorded the best result with the complex of $Zr(IV) - (L_3)_2$ recording (30) followed by L_1 that recording (29) although its complex for Zr(IV), for L_2 obtained result higher its ligand. *Salmonella typhi* ATCC14028, that represent gram-negative bacteria, The complex of Zr (IV) – $(L_1)_2$ showed a significant difference that showed the highly results followed by complex Zr(IV) – $(L_3)_2$, then complex Zr(IV) – $(L_2)_2$,. So that the results ensured that, the three ligands recoding lower results than its complexes. The effect of different ligands and other complexes on the two testes fungal strains, *A. niger* recorded that Zr(IV) – $(L_3)_2$ showed a significant difference the highly results while the result of free its ligand showed result less than its complex. Others showed no any activity against tested fungi. The activity of different ligands and other complexes on *P. expansum* showed the highest broad spectrum of activity on L₁ followed by L₂.

Antimicrbial potency of standared antibiotics (AMC, CTX, NS, FU). The AMC mixture and NS recorded a less inhibitory activity than the synthesis ligands and its complexes on the tested microorganisms.

Finally, bacterial strains showed a varied response to the three free ligands and its complexes antimicrobial activity but the results ensured that the highly activity of the complexes better than its free ligands. The two fungal strains more resistance than bacterial strains on the synthesis ligands and its complexes.^[39,40]

3.8 | Determination of MIC for the most sensitive organisms

The antimicrobial potency of the synthetic ligands and their complexes were determined against the most sensitive bacteria and fungi (Table (6A-6B-6C-6D) and Figure 6). The lowest MIC for *E. coli* against the ligands and their complexes recorded that L_3 and its complex at

concentration 0.02 mg/100 ml followed by L₂ at conc. 0.05 mg/100 ml then the complex Zr(IV) for L₁ at conc. 0.07 mg/100 ml. Finally, L_1 and the complex of Zr(IV)for L₂ recorded MIC at the conc. 0.1 mg/ 100 ml. The lowest MIC for Coliform against the ligands and their complexes recorded that L₂ and their complexes at concentration 0.02 mg/100 ml then followed by the complex of Zr(IV) for L₁ at conc. 0.05 mg/100 ml while the complex of Zr(IV) for L₃ at conc. 0.07 mg/100 ml recorded the best MIC. Finally, L1 recorded MIC at the conc. 0.1 mg/100 ml. The MIC for Salmonella typhi showed that, the best results of ligands and their complexes L_3 and their complex also the complexe of Zr(IV) for L_2 at conc. 0.02 mg/100 ml. On the other hand, the ligands L_1 and L₂ recorded the MIC at conc. 0.07 mg/ 100 ml while the complex of Zr(IV) for L_1 showed the MIC at 0.1 mg/100 ml. The determination of MIC for S. aureus recorded the lowest conc. 0.02 mg/ 100 ml for the complex Zr(IV) for L₂ while the Ligand (L₃) and their complexes showed the MIC at conc. 0.07 mg/100 ml. Other ligands as L₁ and L₂ recorded MIC at 0.1 mg/100 ml while the complex of Zr(IV) for L_1 shows no activity for *S. aureus*.

TABLE 6A Of One-way ANOVA: E. coli versus MIC Compounds

Grouping Information Using the Fisher LSD Method						
Compounds	Ν	Mean	Grouping			
L ₃	3	0.02	А			
Zr (IV)- L ₃	3	0.02	А			
L ₂	3	0.05	В			
Zr (IV)- L ₁	3	0.07	В			
L_1	3	0.10	С			
Zr (IV)- L ₂	3	0.10	С			

Means that do not share a letter are significantly different Fisher 95% Simultaneous Confidence Intervals

 TABLE 6B
 Of One-way ANOVA: Coliform versus MIC

 Compounds
 Compounds

Grouping Information Using the Fisher LSD Method						
Compounds	Ν	Mean	Grouping			
Zr (IV)- L ₁	3	0.02	А			
Zr (IV)- L ₂	3	0.02	А			
L ₃	3	0.05	В			
Zr (IV)- L ₃	3	0.05	В			
L ₂	3	0.07	С			
L ₁	3	0.10	D			

Means that do not share a letter are significantly different Fisher 95% Simultaneous Confidence Intervals

Data in Table (6E-6F) and Figure 7 showed that the lowest MIC for the two tested strains at conc. 0.02 mg/100 ml at the L₂ then Zr(IV) for L₃ at conc. 0.02 mg/100 ml. The ligand L₁, its complex, L₃ and the complex of Zr(IV) for L₂ showed no activity against the tested strains. These results ensured that the activity of synthetic ligands and their complexes

TABLE 6COf One-way ANOVA: S. aureus versus MICCompounds

Grouping Information Using the Fisher LSD Method							
Compounds	Ν	Mean	Grouping				
Zr (IV)- L ₂	3	0.02	А				
L_3	3	0.07	В				
Zr (IV)- L ₃	3	0.07	В				
L_1	3	0.10	С				
L_2	3	0.10	С				
Zr (IV)- L ₁	3	0.00	D				

Means that do not share a letter are significantly different Fisher 95% Simultaneous Confidence Intervals

 TABLE 6D
 of One-way ANOVA: Salm. typhi versus MIC

 Compounds
 Compounds

Grouping Information Using the Fisher LSD Method						
Compounds	Ν	Mean	Grouping			
L_1	3	0.02	А			
Zr (IV)- L ₂	3	0.02	А			
L ₃	3	0.02	А			
Zr (IV)- L ₃	3	0.02	А			
L ₂	3	0.07	В			
Zr (IV)- L ₁	3	0.10	С			

Means that do not share a letter are significantly different Fisher 95% Simultaneous Confidence Intervals

FIGURE 6 MIC for the most sensitive bacteria of L_1 , L_2 , L_3 and their complexes

on the pathogenic bacteria and fungi and showed the most sensitive pathogens dedicated the minimum inhibitory concentration (MIC).

TABLE 6EOf One-way ANOVA: A.niger versus MICCompounds

14 of 16

Grouping Information Using the Fisher LSD Method							
Compounds	Ν	Mean	Grouping				
L ₂	3	8.00	В				
Zr (IV)- L ₃	3	10.00	С				
L ₃	3	0.00	D				
Zr (IV)- L ₂	3	0.00	D				
Zr (IV)- L ₁	3	0.00	D				
L_1	3	0.00	D				

Means that do not share a letter are significantly different Fisher 95% Simultaneous Confidence Intervals

TABLE 6FOf One-way ANOVA: P.expansum versus MICCompounds

Grouping Information Using the Fisher LSD Method						
Compounds	Ν	Mean	Grouping			
L_1	3	8.0	А			
L ₂	3	7.0	А			
Zr (IV)- L ₁	3	0.0	В			
Zr (IV)- L ₂	3	0.0	В			
L ₃	3	0.0	В			
Zr (IV)- L ₃	3	0.0	В			

Means that do not share a letter are significantly different Fisher 95% Simultaneous Confidence Intervals

FIGURE 7 MIC for the most sensitive fungi of L_1 , L_2 , L_3 and their complexes

3.9 | Cytotoxic activity

The *in vitro* growth inhibitory activity of the prepared compounds was tested using crystal violet colorimetric viability assay (Doxorubicin standard drugs). Generated data were carried to plot a dose–response curve, which the concentration of prepared compounds required to kill 50% of cell population (IC_{50}) had measured and the results showed that all the tested compounds have inhibitory activity in a tumor cell lines in a concentration dependent manner. Cytotoxic activity was referring to the mean IC_{50} of three independent experiments. The results are shown in Table 7 and Figure 8 showing that

TABLE 7 The *in vitro* inhibitory activity of free three ligands and their metal complexes against tumor cell line expressed as IC_{50} values (μ g/ml) \pm standard deviation from six replicates

	Tumor cell lines	
Tested compounds	HCT-116	S.D. (±)
L_1	148.0	0.6
$[ZrO (L_1)_2Cl]Cl \bullet H_2O$	53.2	0.7
L ₂	110.0	1.1
$[ZrO (L_2)_2Cl]Cl \bullet H_2O$	46.9	0.2
L_3	60.8	0.2
$[ZrO (L_3)_2Cl]Cl \bullet H_2O$	28.3	0.4
Doxorubicin standard	0.46	0.1
5-Flurouracil standard	3.9	0.1

FIGURE 8 The dose response curve showing the *in vitro* inhibitory activity of free three ligands and its metal complexes against human colon carcinoma (HCT-116) cell line

free three ligand (L₁, L₂ and L₃), the parent compound showed inhibitory activities with IC₅₀ values of 148.0, 110.0 and 60.8 µg/ml against colon cell line, respectively. The tested compounds showed high inhibitory activities against a human colon carcinoma (HCT-116) cell line. [ZrO(L₃)₂Cl]Cl•H₂O was the most active against HCT-116 followed by [ZrO(L₂)₂Cl]Cl•H₂O and [ZrO(L₁)₂Cl] Cl•H₂O with IC₅₀ values 28.3, 46.9 and 53.2 µg/ml, respectively.

4 | CONCLUSION

The preparation and characterization of three novel complexes of some substituted pyrazole derivatives as ligands (4-[2-vinylthiophene]-3-methyl pyrozolin-5(4H) - one (L₁), 4-[4-chloro benzylidine]-3-methyl pyrozolin-5(4H) - one (L_2) and 4-[4-dimethylnitro benzylidine]-3methylpyrozolin-5(4H)- one (L₃)) with Zr (IV) metal ion have been achieved with physicochemical and spectroscopic methods. In the resultant complexes, L₁, L₂, and L₃ were bound to metal ion via the two nitrogen atoms of ν (C=N) and ν (N-H). The kinetic parameters of thermogravimetric and its differential were evaluated using Coats-Redfern and Horowitz-Metzger equations for three ligands and their complexes. The metal complexes exhibits higher inhibition against all microorganisms tested and on the pathogenic bacteria and fungi and showed the most sensitive pathogens dedicated the minimum inhibitory concentration (MIC) as well as [ZrO $(L_3)_2Cl$ Cl·H₂O complex exhibited a higher antitumor activity than other complexes compared to free L_1 , L_2 , and L_3 ligands.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the Central Laboratory of Medicine Ministry for performing the antimicrobial measurements. The authors are thankful to Zagazig University, Egypt for the support of this research work.

CONFLICT OF INTEREST

This research holds no conflict of interest and is not funded through any source.

ORCID

Walaa H. El-Shwiniy D http://orcid.org/0000-0002-7577-8090

REFERENCES

[1] H. Chen, Z. Li, Y. Han, J. Agric. Food Chem. 2000, 48, 5312.

- [2] G. Meaza, F. Bettarini, L. P. Porta, P. Piccardi, E. Signorini, D. Portoso, L. Fornara, *Pest Manag. Sci.* 2004, 60, 1178.
- [3] H. Dai, S. S. Ge, J. Guo, S. Chen, M. L. Huang, J. Y. Yang, S. Y. Sun, Y. Ling, *Eur. J. Med. Chem.* **2018**, 143,1066.
- [4] M. G. Prabhudeva, S. Bharath, A. D. Kumar, S. Naveen, N. K. Lokanath, B. N. Mylarappa, K. A. Kumar, *Bioorg. Chem.* 2017, 73, 109.
- [5] H. Dai, S. S. Ge, G. Li, J. Chen, Y. J. Shi, L. Y. Ye, Y. Ling, Bioorg. Med. Chem. Lett. 2016, 26, 4504.
- [6] H. Dai, W. Yao, Y. Fang, S. Y. Sun, Y. J. Shi, J. Chen, G. Q. Jiang, J. Shi, *Molecules* 2017, 22, 2000.
- [7] H. Dai, G. Li, J. Chen, Y. J. Shi, S. S. Ge, C. G. Fan, H. B. He, *Bioorg. Med. Chem. Lett.* **2016**, *26*, 3818.
- [8] H. Dai, J. Chen, H. Li, B. J. Dai, Y. Fang, Y. J. Shi, *Molecules* 2016, 22, 276.
- [9] H. Dai, J. Chen, G. Li, S. S. Ge, Y. J. Shi, Y. Fang, Y. Ling, Bioorg. Med. Chem. Lett. 2017, 27, 950.
- [10] G. P. Ouyang, Z. Chen, X. J. Cai, B. A. Song, P. S. Bhadury, S. Yang, L. H. Jin, W. Xue, D. Y. Hu, S. Zeng, *Bioorg. Med. Chem.* **2008**, *16*, 9699.
- [11] L. Clemens, Heterocycles 2007, 71, 1467.
- [12] J. A. Marsella, K. G. Moloy, K. G. Kaulton, J. Org. Chem. 1980, 201,389.
- [13] L. Knorr, Ber. Dtsch. Chem. Ges. 1883, 16, 2597.
- [14] E. Knovenagel, Ber. Dtsch. Chem. Ges. 1898, 31, 2596.
- [15] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Patchel, *Vogel's Textbook of Practical Organic Chemistry*, 5th ed. Vol. 136, Longman Singapore Publishers Pvt. Ltd. **1996**, 23.
- [16] J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures, 4th ed., John Wiley & Sons, Inc., New York 1992, 937.
- [17] G. Mariappan, B. P. Saha, L. Sutharson, A. Singh, S. Garg, L. Pandey, D. Kumar, *Saudi Pharm. J.* 2011, 19, 115.
- [18] G. Mariappan, B. P. Saha, L. Sutharson, A. S. Garg, L. D. Kumar, A. Review, J. Pharm. Res. 2010, 3, 2856.
- [19] O. A. Georgewill, U. O. Georgewill, R. N. P. Nwankwoala, Int. J. Pharmacol. 2009, 7, 6.
- [20] H. G. Aslan, Z. Onal, Med. Chem. Res. 2014, 23, 2596.
- [21] S. A. Sadeek, S. M. Abd El-Hamid, W. H. El-Shwiniy, Res. Chem. Interm. 2016, 42, 3183.
- [22] Y. Saintigny, R. J. Monnat Jr., Sci. Aging Knowledge Environ. 2004, 13, 1.
- [23] W. J. Geary, Coord. Chem. Rev. 1971, 7, 81.
- [24] K. Bürger, *Coordination Chemistry: Experimental Methods*, Butterworth, London **1973**.
- [25] M. S. Refat, J. Mol. Struct. 2007, 24, 842.
- [26] M. S. Refat, Spectrochim. Acta A 2007, 68, 1393.
- [27] E. M. Nour, I. S. Alnami, N. A. Alem, J. Phys. Chem. Solid 1992, 53, 197.
- [28] S. A. Sadeek, W. H. El-Shwiniy, J. Coord. Chem. 2010, 63, 347.
- [29] A. Syamal, P. O. Singhal, S. Banerjee, Synth. React. Inorg. Met.-Org. Chem. 1980, 243, 10.
- [30] M. Y. Nassar, W. H. El-Shwiniy, A. M. El-Sharkawy, S. I. El-Desoky, J. Iran. Chem. Soc. 2018, 15, 269.

16 of 16 WILEY Organometallic Chemistry

- [31] S. P. McGlynnm, J. K. Smith, W. C. Neely, J. Chem. Phys. 1961, 35, 105.
- [32] L. H. Jones, Spectrochim. Acta A 1958, 10, 395.
- [33] L. H. Jones, Spectrochim. Acta A 1959, 11, 409.
- [34] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. Vol. 230, Wiley, New York **1986**.
- [35] N. Sultana, M. S. Arayne, S. Gul, S. Shamim, J. Mol. Struct. 2010, 975, 285.
- [36] W. A. Zordok, W. H. El-Shwiniy, M. S. El-Attar, S. A. Sadeek, J. Mol. Struct. 2013, 267, 1047.
- [37] A. W. Coats, J. P. Redfern, Nature 1964, 68, 201.
- [38] H. W. Horowitz, G. Metzger, Anal. Chem. 1963, 35, 1464.
- [39] E. K. Efthimiadou, N. Katsaros, A. Karaliota, G. Psomas, Bioorg. Med. Chem. Lett. 2007, 17, 1238.
- [40] N. Dharmaraj, P. Viswanathamurthi, K. Natarajan, Transition Met. Chem. 2001, 26, 105.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: El-Shwiniy WH, Shehab WS, Mohamed SF, Ibrahium HG. Synthesis and cytotoxic evaluation of some substituted pyrazole zirconium (IV) complexes and their biological assay. *Appl Organometal Chem.* 2018;e4503. https://doi.org/10.1002/aoc.4503