nate. We have found that alkylamides of aromatic carboxylic acids 1 react with chlorocarbonyl isocyanate (2) under mild conditions (in dry benzene at 20 °C) to give at first, probably, unstable adducts 3 which evolve hydrogen chloride at the boiling point of the reaction mixture to give *N*-alkyl-*N*-aroylaminocarbonyl isocyanates 4 in good yields.

The isocyanates 4 are colourless, viscous liquids which are stable in dry air (Table). Their structure is confirmed by microanalysis, I.R., ¹H-N.M.R., and mass spectroscopic data

Alkylamides of aliphatic carboxylic acids also react with chlorocarbonyl isocyanate under similar conditions; however we failed to isolate individual products because the reaction mixture polymerizes on heating or on treatment with triethylamine in the cold. *N*-Alkylamides of trichloro- and trifluoroacetic acid do not react with chlorocarbonyl isocyanate under these conditions.

The Synthesis of N-Alkyl-N-aroylaminocarbonyl Isocyanates

V. I. GORBATENKO*, L. F. LUR'E

Institute of Organic Chemistry, Academy of Sciences of Ukrainian S.S.R., 252094 Kiev, U.S.S.R.

Chlorocarbonyl isocyanate (2) has become an important reagent in organic synthesis¹. Of particular interest is the use of this compound for the synthesis of the new types of isocyanates. Previously, some carbamoyl isocyanates were obtained by treatment of *N*-alkylcarbamates², or *N*-alkylamides of phosphoric³ and sulfonic⁴ acids with chlorocarbonyl isocyanates

$$Ar - \stackrel{0}{C} - NH - R + CI - \stackrel{0}{C} - N = C = 0 \longrightarrow$$
1 2

$$\begin{bmatrix} 0 & R & 0 & 0 \\ II & I & II & II \\ Ar - C - N - C - NH - C - CI \end{bmatrix} \xrightarrow{\nabla} Ar - C - N - C - N = C = 0$$
3

N-Alkyl-N-aroylaminocarbonyl Isocyanates 4; General Procedure:

A solution of the carboxylic acid alkylamide 1 (0.03 mol) in dry benzene (25 ml) is added dropwise to a stirred solution of chlorocarbonyl isocyanate (2; 3.5 g, 0.033 mol) in benzene (25 ml) at room temperature. The reaction mixture is boiled under reflux for 3-4 h, until the evolution of hydrogen chloride ceases. The solvent is removed and the residue is distilled in vacuo to afford the pure compound 4 (Table).

Received: April 22, 1982

Table. N-Alkyl-N-aroylaminocarbonyl Isocyanates 4 prepared

Product Yield ^a b.p. [°C]				b.p. [°C]/	Molecular	I.R. (CCl ₄)	¹ H-N.M.R. (CCl ₄ /TMS)	M.S.
No.	R	Ar	[%]	torr	formula [†]	ν [cm ⁻¹]	δ [ppm]	m/e (M ⁺)
4a	CH ₃	C ₆ H ₅	65	86°/0.2	C ₁₀ H ₈ N ₂ O ₃ (204.2)	2260, 1730, 1690	7.5-8.1 (m, 5 H); 3.6 (s, 3 H, CH ₃)	204
4b	<i>i</i> -C ₃ H ₇	C_6H_5	55	96°/0.2	$C_{12}H_{12}N_2O_3$ (232.2)	2260, 1720, 1700	7.5-8.4 (m, 5H); 4.3-5.0 (m, 1H, CH); 1.73 (d, 6H, <i>J</i> =7 Hz, CH ₃)	232
4c	CH ₃	<i>p</i> -H ₃ C—C ₆ H ₄	70	95°/0.2	$C_{11}H_{10}N_2O_3$ (218.2)	2270, 1730, 1690	7.3-8.0 (m, 4H); 3.58 (s, 3H, CH ₃); 2.74 (s, 3H, CH ₃)	218
4d	<i>i</i> -C ₃ H ₇	<i>p</i> -H ₃ CC ₆ H ₄	48	86°/0.08	$C_{13}H_{14}N_2O_3$ (246.3)	2270, 1730, 1690	7.3-8.0 (m, 4H); 4.4-5.0 (m, 1H, CH); 2.71 (s, 3 H, CH ₃); 1.71 (d, 6 H, <i>J</i> =7 Hz, CH ₃)	246
4e	CH ₃	<i>p</i> -ClC ₆ H ₄	60	106°/0.2	$C_{10}H_7CIN_2O_3$ (238.6)	2260, 1730, 1690	7.6-8.0 (m, 4H); 3.61 (s, 3H, CH ₃)	238
4 ſ	<i>i</i> -C ₃ H ₇	<i>p</i> -Cl—C ₆ H ₄	65	100°/0.1	$C_{12}H_{11}C1N_2O_3$ (266.7)	2260, 1720, 1690	7.6-8.0 (m, 4H); 4.5-5.1 (m, 1H, CH); 1.76 (d, 6H, <i>J</i> =7 Hz, CH ₃)	266

[&]quot; Yield of pure, isolated product.

¹ H. Hagemann, Angew. Chem. 89, 789 (1977); Angew. Chem. Int. Ed. Engl. 16, 743 (1977).

² V. I. Gorbatenko, L. F. Lur'e, Synthesis 1980, 112.

³ V. I. Gorbatenko, L. F. Lur'e, L. I. Samarai, Zh. Obshch. Khim. 47, 2388 (1977); C. A. 88, 22061 (1978).

⁴ H. Hagemann, Ger. Offen. (DOS) 2449 365, Bayer AG (1976); C. A. 85, 32660 (1976).

^b All compounds gave satisfactory microanalyses (C ± 0.35 , H ± 0.15 , N ± 0.2).