Literatur

- 1 1. Mitt.: K. K. Mayer, Th. Poettinger und W. Wiegrebe, Arch. Pharm. (Weinheim) 314, 481 (1981).
- 2 B. Ciocca und C. Ravazzoni, Boll. Chim. Farm. 85, 161 (1946); C. A. 40, 6756² (1946).
- 3 N. Maxim, Ann. Chim. (Paris) 9, 55 (1928); C. A. 22, 2153 (1928).
- 4 O. Bayer in Houben-Weyl, Methoden der organischen Chemie, Band 7/1 S. 285, Georg Thieme Verlag, Stuttgart 1954.
- 5 E. Mosettig, Org. React. 4, 362.
- 6 A. Einhorn, Justus Liebigs Ann. Chem. 300, 163 (1898).
- 7 Y. Miyazaki, Jpn. Pat. 178.114; ref. C. A. 45, 8556i (1961).

[Ph 331]

Arch. Pharm. (Weinheim) 314, 674-685 (1981)

Ortho-Effekte in 1-(o-Aminomethylaryl)-(buten(1)-3-onen und ihren Hydrierungsprodukten, 3. Mitt.¹⁾

o-Aminomethyl-benzalacetone und ihre Hydrierungsprodukte, Teil 2

Thomas Burgemeister, Klaus K. Mayer, Theodor Poettinger und Wolfgang Wiegrebe *

Fakultät für Chemie und Pharmazie der Universität Regensburg, Universitätsstraße 31, 8400 Regensburg 2 Eingegangen am 28. Oktober 1980

Die Herstellung der Benzalacetone und ihrer (deuterierten) Hydrierungsprodukte (Verbindungen 2-28) wird beschrieben; Anomalitäten in einigen ¹³C-NMR-Spektren werden durch Inkrementrechnungen erklärt.

Ortho-effects in 1-(2-Aminomethylaryl)-1-buten-3-ones and Their Hydrogenation Products, III: 2-(Aminomethyl)phenylmethylenacetones and Their Hydrogenation Products, II

The preparations of the phenylmethylenacetones and their (deuterated) hydrogenation products (compounds 2-28) are described; anomalies in some of the ¹³C-NMR spectra are explained by increment calculations.

0365-6233/81/0808-0674 \$ 02.50/0

C Verlag Chemie GmbH, Weinheim 1981

^{**} Herrn Prof. Dr. Oelschläger in freundschaftlicher Verbundenheit zum 60. Geburtstag gewidmet.

Aus Gründen, die in den Mitt. 4 und 5 dieser Reihe^{***)} erläutert werden, reichten die MS-Daten der in Mitt. 2 beschriebenen Verbindungen²⁾ nicht aus, um die unerwarteten Fragmentierungen des Alkaloids Vinceten und seines Dihydroderivates³⁾ zu erklären. Wir haben daher die nachstehend beschriebenen Verbindungen hergestellt.

Die Synthesen mit Opiansäure (2,3-Dimethoxy-6-formyl-benzoesäure (1)) als Edukt verliefen im allgemeinen günstiger als die in der 2. Mitt.²⁾ beschriebenen Darstellungen.

Bei der Umsetzung von 1 mit SOCl₂ isolierten wir 2 statt 2,3-Dimethoxy-6-formyl-benzoylchlorid als hellbraune kristalline Substanz vom Schmp. 88° (Rohprodukt). Das IR-Spektrum zeigt bei 1775 cm⁻¹ eine intensive CO-Bande, die für eine cyclische Struktur (Fünfring-Lacton) spricht. Damit stimmt die Lage des ArCHCI-O-Singuletts bei $\delta = 7.10$ ppm überein, zugleich werden damit die früher beobachteten⁴) Pseudo-Ester der Opiansäure erklärt. *Buu-Hoï* et al.⁵) untersuchten Opiansäure NMR-spektroskopisch und stellten fest, daß das Gleichgewicht zwischen Hydroxylacton-Form und offenkettigem Tautomer vom Lösungsmittel abhängt. Ihre Befunde stützen die Struktur 2.

Die Umsetzung mit SOCl₂ gelang nicht mit aus Ethanol umkristallisierter Opiansäure, da sich dabei lt. NMR-Spektrum zum Teil das Acetal bildet.

^{***} Arch. Pharm. (Weinheim) 314, 712, 722 (1981).

2 wurde als Rohprodukt mit Diethylamin zum o-Formyl-benzamid 3 umgesetzt; bei dessen Aldolkondensation mit Aceton trat neben dem gewünschten Butenon-benzamid 4 als Nebenprodukt 2,3-Dimethoxy-N,N-diethyl-phthalsäure-diamid (5) auf. Wir haben dafür keine plausible Erklärung; beide Produkte wurden spektroskopisch charakterisiert. - Aus dem Amidketon 4 wurden mehrere Modellsubstanzen dargestellt, die durch NMRund Massenspektroskopie (s. 4. und 5. Mitt.) untersucht wurden:

Die Reduktion mit NaBH₄ bzw. NaBD₄ in Methanol lieferte die Hydroxybuten(1)-yl-benzamide 6 bzw. 7 in guter Ausbeute. Die Reduktion von 4 zum 3-Hydroxybutenyl-benzylamin 8 bzw. zum dreifach deuterierten 1-(3'-Deutero-3'-hydroxybutenyl)-2-(N,N-diethylamino-dideuteromethyl)-3,4-dimethoxy-benzol (9) gelang nach Borch^{6,7,8)}.

Versuche, die ungesättigten Amid-Alkohole 6 und 7 in gleicher Weise in die Amine zu überführen, waren erfolglos. Bei der Reduktion von 6 und 7 mit LiAlH₄ bzw. LiAlD₄ erhielten wir die unterschiedlich deuterierten 3-Hydroxybutyl-benzylamin-Derivate 10, 11, 12 und 13. Die Reduktion der Doppelbindung hatten wir unter unseren Bedingungen nicht erwartet, vielmehr wollten wir 6 und 7 mit LiAlH₄ zu den ungesättigten Alkoholen mit o-ständiger Benzylaminogruppe reduzieren und anschließend die Doppelbindung katalytisch hydrieren. Bei der Auswertung der ¹H-NMR-Spektren wurde aber durch die Abwesenheit eines AMX- bzw. eines AB-Systems deutlich, daß die Doppelbindung durch LiAlH4 angegriffen worden war. Derartige Reaktionen beobachtete Brown erstmalig an Zimtalkoholen^{9,10,11)}: Für den Verlauf der Reaktion wird angenommen, daß das Hydrid zunächst rasch mit dem Alkohol reagiert und unter H2-Entwicklung ein Lithiumaluminiumalkoholat bildet. Es entsteht dann mit mäßiger Geschwindigkeit ein spirocyclischer Komplex, in dem der Wasserstoff an das eine, das Aluminium an das andere vordem ungesättigte C-Atom gebunden ist. Das zum Hydrieren der Doppelbindung erforderliche zweite H stammt aus der Hydrolyse der Kohlenstoff-Aluminium-Bindung. In Übereinstimmung damit fanden wir für 12 bei der ms-Untersuchung M⁺ bei m/z 298, so daß die Substanz nur drei D-Atome enthalten konnte, und für 13 M⁺ bei m/z 299, entsprechend vier D-Atomen.

Da für unsere ms-Untersuchungen (s. 4. und 5. Mitt.) die Stellung der D-Atome in der Butylseitenkette von entscheidender Bedeutung war, wollten wir durch spektroskopische Methoden zusätzlich sichern, daß die D-Atome in der Butyl-Seitenkette an C-2' und nicht an C-1' lokalisiert sind. Die Massenspektren von 12 und 13 konnten hier keine eindeutige Klärung liefern, da nicht auszuschließen war, daß neben der zu erwartenden α -Spaltung der Butylseitenkette auch o-Effekte¹² der Dideuteromethylaminogruppe auftraten, die eine Interpretation fraglich gemacht hätten.

Durch ¹H-NMR-Spektroskopie (vgl. Tab. 1) konnte mit Sicherheit festgestellt werden, daß C-3' in 13 ein D-Atom trägt, da die endständige Methylgruppe der Butylseitenkette in 11 und 13 ein Singulett bildet, während das Signal bei den an C-3 undeuterierten Substanzen 10 und 12 zum Dublett aufgespalten ist. Ebenfalls war sicher, daß 12 und 13 an den den Stickstoff tragenden Methylengruppen zweifach deuteriert sein mußten, da in deren Spektren im Gegensatz zu denen von 10 und 11 kein Signal für die \emptyset -CH₂-N<-Gruppe auftrat.

Die Auswertung des Integrals im Bereich der aliphatischen Protonen sprach für eine Lokalisierung. der fraglichen D-Atome an C-2', doch schien uns die Zuordnung der Signale aufgrund der Komplexizität der Spektren in diesem Bereich nicht zweifelsfrei.

Protonen	10 (D ₀); R=H R′≈H	11 (D ₁); R=D R'=H	12 (D ₃); R=H R'=D	13 (D ₄);R=D R'=D
-CR(OH)-CH 3	1.09(d); J=8; 3H	1.08(s);; 3H	1.08(d); J=7.8; 3H	1.08(s);; 3H
-N-CH2-CH3	1.11(t); J=8.5; 6H	1.10(t); J=9.0; 6H	1.10(t); J=9.0;6H	1.10(t); J=8.5; 6H
-OH	1.43(s) 1H	1.43(s) 1H	1.43(s) 1H	1.43(s) 1H
$\phi - CH_2 - CHR'N - CH_2 - Und$	1.68-1.88(m)	1.69-1.88(m) 2H	1.26-1.71(m) 1H	1.67-1.88(m) 1H
ф-СH2-CH2-	2.30-2.94(m) 6H	2.30-2.98(m) 6H	2.30-2.91(m) 6H	2.28-2.89(m) 6H
-CR(OH)-	3.34-3.40(m) 1H		3.18-3.30(m) 1H	
$\phi - \overline{CH}_2 - N <$	3.31,3.71(AB) 2H J=14.5	3.52,3.73(AB) 2H J=15.0		
¢−CH3	3.80,3.85(s) 6H	3.79,3.85(s) 6H	3.79,3.85(s) 6H	3.79,3.85(s) 6H
φ-H	6.83,6.96(AB) 2H J=10.2	6.83,6.97(AB) 2H J=10.5	6.83,6.97(AB) 2H J=10.2	6.83,6.97(AB) 2H J=10.2

Tab. 1: ¹H-90 MHz-Spektren von 10, 11, 12, 13 in δ (ppm)

*: "fragliches" deuteriertes C-Atom

Mit Hilfe der ¹³C-NMR-Spektroskopie wollten wir diese Frage eindeutig klären: Wenn unsere Annahme, daß die fraglichen D-Atome an C-2' lokalisiert sind, richtig war, so mußte das Signal bei δ (ppm) = 40.43 in den ¹³C-Spektren C-2' zugeordnet werden und das bei δ (ppm) = 25.97 C-1'. Diese ungewöhnliche Lage der Signale (benzylisches C-Atom bei wesentlich höherem Feld als aliphatisches C-Atom) sprach gegen die nach Lit. ¹³⁾ und den ¹H-NMR-Spektren zu erwartende Stellung des D-Atoms an C-2'.

Position	δ (ppm) 10	δ (ppm) 13	Broad- band-Dec.	Off Resonance	
4 tert. aromat.	150.22	150.18	S	S	
C-Atome	148.50	148.45	S	s	
	134.90	134.85	S	s	
	130.50	130.46	S	s	
2 sek. aromat.	124.52	124.47	S	quin.	
C-Atome	112.01	112.01	S	quin.	
-CR(OH)*	62.88	62.88	t	t	
2 x OCH ₃	60.69	60.69	S	q	
-	55.71	55.71	S	q	
φ-CR2-N< *	47.91	47.91	quin.	quin.	
2 -N-CH ₂ -	46.28	46.24	s	t	
$\phi - CH_2 - CHR* -$	40.98	40.43	t	q	
$\phi - CH_2 - CHR * -$	26.11	25.97	S	t	
CR(OH)CH3*	23.25	23.12	S	q	
$2 - N - CH_2 - CH_3$	10.38	10.43	•s	q	

Tab. 2: 22.63 MHz ¹³C-Spektren von 10 und 13 (CDCl₃)

*: 10: R = H; 13: R = D

Für das bezüglich der Butylseitenkette in etwa den Verbindungen **10–13** vergleichbare 3-(m-Methoxyphenyl)-propanol(1) sind folgende Daten angegeben¹⁴:

1' 3'	
С 200	C-1': 32.2 ppm
Ŷ.	С-2': 34.2 ррт
ÓСН _З	C-3': 61.8 ppm

Der geringe Unterschied von nur 2 ppm zwischen C-1' und C-2' dieser Verbindung gegenüber ca. 14.5 ppm bei 13 zeigt, daß neben dem Einfluß des O-Atoms auch die Substituenten am Benzolring und die endständige Methylgruppe der Butylseitenkette in die Überlegungen einbezogen werden müssen.

Durch den Einfluß der zur Butylseitenkette p-ständigen Methoxygruppe ergibt sich für das betr. aromat. C-6 eine höhere Elektronendichte und damit eine Verschiebung nach höherem Feld um ca. -8.1 ppm^{15} . Der Wert des Inkrements für die m-ständige Methoxylgruppe beträgt +0.9 ppm und ist damit praktisch zu vernachlässigen. Durch die erhöhte Elektronendichte an C-6 des Benzolkerns wird auch C-1' der Butylseitenkette verstärkt abgeschirmt; das bewirkt eine Hochfeldverschiebung. Hinzu kommt der γ -Effekt des Sauerstoffs an C-3', der ebenfalls eine Verschiebung von C-1' nach höherem Feld bewirkt (-6.2 ppm^{15}). Für den γ -Effekt der endständigen Methylgruppe der Butylseitenkette ist ebenfalls ein Inkrement von -2.5 ppm^{15} zu addieren. Durch Berücksichtigung der genannten Einflüsse auf C-1' ist die ungewöhnliche Lage bei δ (ppm) = 25.97 für dieses C-Atom gut zu erklären, und die Ergebnisse der ¹³C-NMR-Spektren stehen damit im Einklang mit der Lit. und den ¹H-NMR-Spektren.

Durch ¹³C-NMR Untersuchung der Substanzen 15 und 16 sicherten wir obige Überlegungen experimentell: die benzylische CH₂-Gruppe war ebenfalls nach höherem Feld verschoben.

Dimethoxybenzol - Derivate

Ph 332.2

Zusätzlich zu den NMR-Untersuchungen an 10–13 bzw. 15 und 16 wollten wir geeignete Modellsubstanzen ms auf die Lokalisation der D-Atome prüfen; das aus o-Chlorbenzaldehyd analog zugängliche 2-Chlor-(3'-hydroxybutyl)-benzol (18) bzw. die entspr. deuterierte Verbindung 19 sind dafür geeignet.

Chlorbenzol-Derivate

Positionen	16 δ (ppm)	Broad- Band- Dec.	Off- Reso- nance	15 δ (ppm)	Broad- Band- Dec.	Off- Reso- nance
3 tert, aromat.	148.93	s	s	148.93	s	S
C-Atome	147.21	S	S	147.21	S	S
	134.93	S	s	134.93	s	S
3 sek. aromat.	120.20	S	d	120.20	s	đ
C-Atome	112.05	S	d	112.05	S	d
	111.60	S	d	111.60	S	đ
CR(OH)- *	66.63	t	t	67.23	S	d
2 x OCH ₃	55.91	S	q	55.91	s	q
-	55.82	S	q	55.82	s	q
ϕ -CH ₂ -CHR- *	40.46	t	q	40.96	s	t
ϕ -CH ₂ -CHR-*	31.58	S	t	31.67	s	t
$-CR(OH)-CH_3 *$	23.23	S	q	23.51	S	q

Tab. 3: 23.63 MHz ¹³C-Spektren von **15** und **16** (CD₂Cl₂):

*: 16: R = D; 15: R = H

Bei der ms-Untersuchung dieser Substanzen zeigte sich, daß das "fragliche" D-Atom an C-2' lokalisiert ist: In den 70eV-Spektren *beider* Verbindungen tritt m/z 125 auf, das durch Abspaltung von CH₂-CH(OH)-CH₃ bzw. von CHD-CD(OH)-CH₃ aus M^+ herrührt¹). Außerdem finden sich Signale bei m/z 45 bzw. m/z 46, CH₃CH= $\stackrel{\bigcirc}{O}$ H bzw. CH₃CD= $\stackrel{\bigcirc}{O}$ H, die die Bindungeines D-Atoms an das die Hydroxylgruppe tragende C-Atom belegen.

Die ¹³C-NMR-Spektren entsprechen den Erwartungen. Zwar erscheint auch bei **18** und **19** C-1' bei höherem Feld als C-2', doch ist aufgrund der fehlenden OCH₃-Gruppen der Unterschied in der chemischen Verschiebung mit ca. 9 ppm deutlich geringer ausgeprägt als bei **10** bzw. **13** mit ca. 15 ppm.

Da wir bei der Herstellung der Substanzen 10–13 nicht von dem α , β -ungesättigten Keton 4, sondern von den ungesättigten Alkoholen 6 und 7 ausgegangen waren, waren die Ergebnisse der ms-Untersuchungen an 18 und 19 nur übertragbar, wenn bewiesen werden konnte, daß bei der Reduktion von 17 mit LiAlD₄ die unges. Alkohole 20 und 21 als Intermediate auftreten. Anderenfalls hätte etwa durch eine Michael-analoge Reaktion $|D^{\ominus}$ an C-1' eintreten können. Daher reduzierten wir 17 mit NaBH₄ bzw. NaBD₄ zu 20 und 21. Diese sollten dann mit LiAlH₄ bzw. LiAlD₄ behandelt werden. Wenn dabei 18, 19, 22 und 23 entstanden, wären damit 20 und 21 als Intermediate der Reduktion von 17 mit LiAlH₄ (LiAlD₄) zu 18 und 19 sehr wahrscheinlich gemacht.

Das bei der Reduktion von 20 mit LiAlH₄ erhaltene Produkt war nach dem MS 18. Das MS stimmt mit dem Spektrum des durch LiAlH₄-Reduktion von 17 erhaltenen 18 überein. Die Reduktion von 20 mit LiAlD₄ ergab erwartungsgemäß das einfach deuterierte Produkt 22. Das Auftreten von m/z 125 (62 %) beweist auch hier, daß das D-Atom nicht an der benzylischen CH₂-Gruppe lokalisiert ist. 21 schließlich liefert bei der Reduktion mit LiAlH₄ 23. Auch hier tritt m/z 125 (67 %) auf. 19 erhielten wir durch LiAlD₄-Reduktion von 21. Das MS von 19 war identisch mit dem des bei der Reduktion von 17 mit LiAlD₄ erhaltenen 19. Damit war wahrscheinlich, daß 20 und 21 bei der Reduktion von 17 mit LiAlH₄ bzw. LiAlD₄ zu 18 bzw. 19 als Intermediate auftreten, und die Ergebnisse dieses Reaktionsweges mit der Herstellung von 10–13 vergleichbar sind.

Als abschließendes Experiment zur Sicherung der Deuterierung reduzierten wir das α,β -ungesättigte Keton 4 direkt mit LiAlH₄ und erhielten dabei ein Produkt, das mit 10 übereinstimmt.

Wir verfolgten den Reaktionsablauf de und stellten fest, daß die Reduktion von 4 zum Allylalkohol 6 sehr rasch verläuft. Damit war die denkbare Michael-analoge Reaktion erwartungsgemäß ausgeschlossen. Schon nach wenigen sek. ist 4 fast nicht mehr nachweisbar. Die Amidfunktion wird sehr viel langsamer angegriffen. Erst nach 1 h ist 8 de nachweisbar. Die Doppelbindung wird erst zum Schluß und nur in der Hitze reduziert. Nach 2,5 h ist nur mehr 10 vorhanden. Damit waren die Strukturen von 10–13 eindeutig geklärt.

Dimethylamide (vgl. Abb. 1)

Da wir bei den ms-Untersuchungen von **10–13** feststellten, daß das uns besonders interessierende Ion¹⁶ M⁺⁻ – 73 mu sowohl vom Zerfall M⁺⁻ – HNEt₂ (ca. 90% des Totalionenstromes bei m/z 222 in **10**) als auch von dem Ion M⁺⁻ – C₄H₉O (ca. 10%) herrühren konnte, wurde es notwendig, die analogen Dimethylamino-Verbindungen zu untersuchen, bei denen diese Komplikationen nicht auftreten konnten.

Opiansäure (1) wurde wie bei 2 und 3 angegeben mit $SOCl_2$ und Dimethylamin umgesetzt und der daraus resultierende Amid-Aldehyd 24 mit Aceton zu 25 kondensiert. Die unterschiedliche chemische Verschiebung der N-Methylgruppen im ¹H-NMR-Spektrum von 25 steht im Einklang mit der Ethylverbindung 4.

Die Reduktion von 25 mit LiAlH₄ bzw. LiAlD₄ führte zu den 10 bzw. 13 analogen Verbindungen 26 und 27. Die ¹H-NMR-Spektren stimmen gut mit den für 12 und 13 der 2. Mitt.²⁾, sowie 10, 11, 12 und 13 dieser Arbeit ermittelten Daten überein (s. exp. Teil).

Experimenteller Teil

Allgemeine Angaben s.¹⁾²⁾

1-Chlor-4,5-dimethoxy-isobenzofuran-3-on (2) und 2,3-Dimethoxy-6-formylbenzoesäure-(N,N-diethyl)-amid (3)

10,5 g 1 (,,Opiansäure" Merck) in 150 ml absol. CHCl₃ wurden mit 17,5 g SOCl₂ 3 h unter Rückfluß erhitzt. CHCl₃ und überschüssiges SOCl₂ wurden i.Vak. abdestilliert. Zu dem hellbraunen kristallinen Rückstand (Schmp. 88°) wurden 50 ml frisch dest. Diethylamin in 200 ml CHCl₃ getropft, dann wurde erneut 2 h zum Sieden erhitzt. Nach Erkalten wurde die CHCl₃-Phase mit verd. HCl und Wasser gewaschen, über Na₂SO₄ getrocknet und eingedampft. Der braunrote, zählfüssige Rückstand wurde im Kugelrohr destilliert (Sdp._{0,4} 250°, Luftbadtemp.): 7,2 g hellgelbes, zähes Öl. Bei der DC an SiO₂/EtOAc (Detektion UV₂₅₄ und Dinitrophenylhydrazin) zeigten sich noch einige zusätzliche nicht anfärbbare Flecke. Daher wurde die Gesamtmenge über eine 75 cm Säule (Ø 3 cm) an SiO₂/EtOAc gereinigt und erneut im Kugelrohr destilliert. Ausb. 6,1 g (50%) hellgelbes Öl, das in der Kälte kristallisierte. Schmp. 67–69°.

2: IR (KBr): 1775 cm⁻¹ (CO, Fünfringlacton). ¹H-NMR (CDCl₃): δ (ppm) = 3.92, 4.10 (s; 6H, \emptyset -OCH₃), 7.10 (s; 1H, \emptyset -CH₂Cl-), 7.42 (s; 2H, \emptyset -H)

3: C₁₄H₁₉NO₄ (265.1) Ber. C 63.4 H 7.17 N 5.3 Gef. C 62.8 H 7.11 N 5.1.

IR (KBr): 1685 (CO), 1632 cm⁻¹ (Amid). MS (70 eV): m/e 265 (8 % M⁺), 236 (100 %, *210.17), 193 (74%), 165 (26 %, *141.06). ¹H-NMR (CDCl₃): δ (ppm) = 1.00, 1.32 (t; J = 7 Hz, 6H,

2 N-CH₂-CH₃), 3.10, 3.65(q; J = 7 Hz, 4H, 2N-CH₂-), 3.87, 3.98(s; 6H, 2 \emptyset -OCH₃), 7.03, 7.72 (AB; J = 9 Hz, 2H, \emptyset -H), 9.89 (s; 1H, -CHO).

2,3-Dimethoxy-6-(buten(1)-on(3)yl)-N,N-diethyl-benzoesäureamid (4)

10 g 3 in 600 ml MeOH und 50 ml Aceton wurden bei Raumtemp. langsam mit 10 g NaOH in 100 ml H_2O versetzt und 18 h gerührt. Aufarbeitung wie bei 11 der 2. Mitt.²⁾.

DC an SiO₂/EtOAc zeigte eine dinitrophenylhydrazin-positive Substanz RF 0.53 und eine nicht anfärbbare RF 0.33. Nach Abdestillieren des Ethers wurden die Verbindungen an einer 60 cm Säule (\emptyset 3 cm) mit SiO₂/EtOAc getrennt. Die Verbindung mit höherem RF erwies sich als 4. Das fast farblose ölige Produkt kristallisierte in der Kälte. Ausb. 6.2 g (54%), Schmp. 90–92°.

IR (KBr): 1690 (CO), 1628 cm⁻¹ (Amid). MS (70 eV): $C_{17}H_{23}NO_4$ m/e 305 (11 % M⁺), 290 (3 %), 262 (100 %, *225.06), 234 (7 %), 218 (8 %), 205 (10 %), 191 (43 %), 176 (12 %). ¹H-NMR (CDCl₃): δ (ppm) = 1.05, 1.31 (t; J = 7 Hz, 6H, 2 N-CH₂-C<u>H₃</u>), 2.30 (s; 3H, -COCH₃), 3.09, 3.55 (q; J = 7 Hz, 2N-C<u>H₂-</u>), 3.79, 3.91 (s; 6H, 2 Ø-OCH₃), 6.55, 7.36 (AB; J = 16 Hz, 2H, -CH=CH-), 6.91, 7.43 (AB; J = 8 Hz, 2H, Ø-H).

Die hellgelbe Verbindung mit niedrigem RF war 2,3-Dimethoxy-(N,N-diethyl)-phthalsäure-<u>di</u>amid (5), Schmp. 45-47° (Rohprodukt).

IR (KBr): 1628 cm^{-1} (Amid). MS (70 eV): $C_{18}H_{28}N_2O_4$ m/e 336 (33 % M⁺), 305 (12 %, *276.86), 265 (58 %) 264 (100 %, *207.42), 236 (89 %, *210.96), 208 (11 %).

¹H-NMR (CDCl₃): δ (ppm) = 1.10, 1.31 (t; J = 7 Hz, 12H, 4N-CH₂-CH₃), 3.14, 3.56 (q; J = 7 Hz, 8H, 4N-CH₂-), 3.86, 3.91 (s; 6H, 2 \emptyset -OCH₃), 6.90, 7.45 (AB; J = 8 Hz, 2H, \emptyset -H).

2,3-Dimethoxy-6-(3'-hydroxybuten(1)yl)-N,N-diethyl-benzoesäureamid (6)

200 mg 4 in 20 ml absol. MeOH wurden bei Raumtemp. mit 200 mg NaBH₄ versetzt. Die Reaktion wurde dc verfolgt (SiO₂/EtOAc, Detektion Dinitrophenylhydrazin). Nach 5 min war kein Edukt mehr nachzuweisen. Da 6 in Ether und CHCl₃ schlecht löslich ist, wurde die Reaktionsmischung mit 100 ml H₂O verdünnt und 6 h mit Ether perforiert. Die org. Phase wurde über MgSO₄ getrocknet und eingeengt: 182 mg (90%) farbloser, öliger Rückstand, der durch NMR und MS als 6 identifiziert wurde.

IR (Film): 3600-3200 (OH), 1620 cm^{-1} (Amid). MS (70 eV): $C_{17}H_{25}NO_4$ m/e 307 ($34 \% M^+$), 292 (5 %, *277.73), 290 (8 %), 276 (13 %, *248.13), 264 (36 %, *227.02), 262 (36 %), 218 (9 %), 191 (100 %, *138.19).

¹H-NMR (CDCl₃): δ (ppm) = 1.00, 1.23 (t; J = 7 Hz, 6H, 2N-CH₂-CH₃), 1.24 (d; J = 6 Hz, 3H, -CH(OH)-CH₃), 3.19, 3.49 (q; J = 7 Hz, 4H, 2N-CH₂-), 3.80, 3.87 (s; 6H, 2Ø-OCH₃), 4.34 (m; 1H, -CH(OH)-), 6.03, 6.46 (ABX; J = 16/2 Hz, 2H, -CH=CH-), 6.86, 7.28 (AB; J = 9 Hz, 2H, Ø-H).

2,3-Dimethoxy-6-(3'-deutero-3'-hydroxybuten(1)yl)-N,N-diethyl-benzoesäureamid (7)

200 mg 4 wurden wie bei 6 angegeben mit 200 mg NaBD₄ reduziert. Aufarbeitung wie 6, doch wurde nach Abdestillieren des Ethers 2mal in MeOH aufgenommen und wieder abdestilliert, um OD gegen OH auszutauschen. Ausb. 170 mg (84 %) ölige Substanz.

IR (Film): 3600–3200 (OH), 1620 cm^{-1} (Amid). MS (70 eV): $C_{17}H_{24}DNO_4$ m/e 308 (44 % M⁺), 293 (5 %, *278.73), 291 (10 %, *274.93), 277 (18 %, *249.12), 265 (41 %, *288.00), 262 (66 %), 218 (15 %), 192 (100 %, *139.11), 191 (91 %, *137.66), 177 (11 %), 176 (20 %).

¹H-NMR (CDCl₃): δ (ppm) = 0.95, 1.23 (t; J = 7 Hz, 6H, 2N-CH₂-CH₃), 1.20 (s; 3H, -CD(OH)-CH₃), 3.03, 3.40 (q; J = 7 Hz, 4H, 2N-CH₂-), 3.78, 3.83 (s; 6H, 2 \odot -OCH₃), 5.93, 6.32 (AB; J = 16 Hz, 2H, -CH=CH-), 6.80, 7.20 (AB; J = 9 Hz, 2H, \odot -H).

2,3-Dimethoxy-6-(3'-hydroxybuten(1)yl)-N,N-diethyl-benzylamin (8) und 1-(3'-Deutero-3'-hydroxybuten(1)yl)-2-(N,N-diethylamino-dideuteromethyl)-3,4-dimethoxybenzol

(9)

1,22 g (4 mmol) 4 wurden in 50 ml absol. CH_2Cl_2 unter Feuchtigkeitsausschluß und N_2 mit 836 mg (4,4 mmol) Triethyl-oxoniumtetrafluoroborat versetzt. Es wurde 24 h bei Raumtemp. gerührt, das Lösungsmittel i.Vak. abdestilliert und der Rückstand in 50 ml absol. Ethanol aufgenommen. Diese Lösung wurde bei 0° unter N_2 mit 450 mg (12 mmol) NaBH₄ 18 h bei Raumtemp. gerührt, mit 200 ml Wasser versetzt und mit Ether ausgeschüttelt. Nach Trocknen über MgSO₄ wurde der Ether abdestilliert und das Produkt durch SC (Al₂O₃/EtOAc) gereinigt (Fraktionen zu 15 ml). Die Fraktionen 10–22 enthielten 650 mg Rohprodukt, das durch erneute SC (Al₂O₃/EtOAc) als farbloses Öl rein erhalten werden konnte; RF 0.71.

8: MS (70 eV): $C_{17}H_{27}NO_3$ m/e 293 (8 % M⁺), 278 (11 %), 264 (5 %), 262 (11 %), 248 (14 %), 220 (36 %), 205 (20 %, *191.02), 202 (26 %), 191 (11 %), 189 (14 %), 177 (100 %), 165 (15 %), 162 (44 %). ¹H-NMR (CDCl₃): δ (ppm) = 0.95 (t; J = 7 Hz, 6H, 2 N-CH₂-C<u>H₃</u>), 1.18 (d; J = 6.5 Hz, 3H, -CH(OH)-C<u>H₃</u>), 2.37 (q; J = 7 Hz, 4H, 2N-C<u>H₂-</u>), 3.45 (s; 2H, \emptyset -CH₂-N<), 3.54, 3.60 (s; 6H, 2 \emptyset -OCH₃), 4.28 (m; 1H, -C<u>H</u>(OH)-), 5.85, 6.94 (ABX; J = 16/6, 2H, -CH=CH-), 6.66, 7.10 (AB; J = 9 Hz, 2H, \emptyset -H).

9 wurde analog mit NaBD₄ erhalten.

MS (70 eV): $C_{17}H_{24}D_3NO_3$ m/e 296 (25 % M⁺), 281 (20 %), 267 (5 %), 265 (9 %), 250 (21 %), 222 (21 %), 207 (15 %), 192 (13 %), 179 (100 %), 164 (40 %). ¹H-NMR (CDCl₃): δ (ppm) = 0.95 (t; J = 7 Hz, 6H, 2N-CH₂-CH₃), 1.18 (s; 3H, -CD(OH)-CH₃), 2.39 (q; J = 7 Hz, 4H, 2N-CH₂-), 3.62, 3.72 (s; 6H, 2 0-OCH₃), 5.86, 6.97 (AB; J = 16 Hz, 2H, -CH=CH-), 6.67, 7.12 (AB; J = 9 Hz, 2H, 0-H).

2,3-Dimethoxy-6-(3'-hydroxybutyl)-N,N-diethyl-benzylamin (10),

2,3-Dimethoxy-6-(3'-deutero-3'-hydroxybutyl)-N,N-diethyl-benzylamin (11),

1-(2'-Deutero-3'-hydroxybutyl)-2-(N,N-diethylamino-dideuteromethyl)-3,4-dimethoxybenzol (12)

und 1-(2',3'-Dideutero-3'-hydroxybutyl)-2-(N,N-diethylamino-dideuteromethyl)-3,4-dimethoxybenzol (13)

Zur Darstellung von 10 wurden 500 mg 6 mit 150 mg LiAlH₄ in 50 ml absol. THF 5 h unter Rückfluß erhitzt. Nach Hydrolyse mit wenig H₂O wurde filtriert, der Rückstand mit Ether gewaschen und das Lösungsmittel i.Vak. abdestilliert. Der gelbliche ölige Rückstand wurde in Ether aufgenommen und durch Ausschütteln mit 0,5 N-HCl, anschließendes Alkalisieren der HCl-Phase und Ausschütteln mit Ether gereinigt. Nach Trocknen über Na₂SO₄ und Abdestillieren des Ethers wurde durch SC an Al₂O₃/Ether gereinigt: 315 mg farbloses Öl.

$$\begin{split} & \mathsf{MS}\,(70\,\mathrm{eV})\colon \mathsf{C_{17}H_{29}NO_3}\,\text{m/e}\,295\,(25\,\%),\,280\,(4\,\%),\,266\,(4\,\%),\,251\,(4\,\%),\,250\,(4\,\%),\,237\,(20\,\%),\,236\,\\ & (9\,\%),\,222\,(47\,\%),\,205\,(15\,\%),\,204\,(16\,\%),\,189\,(29\,\%),\,179\,(18\,\%),\,178\,(45\,\%),\,177\,(14\,\%),\,173\,\\ & (11\,\%),\,165\,(100\,\%),\,164\,(14\,\%),\,163\,(16\,\%),\,^1\text{H-NMR}\,(90\,\,\text{MHz},\,\text{CDCl}_3)\colon\delta\,(\text{ppm})\\ & = 1.09\,(d;\,J=8\,\text{Hz},\,3H,\text{-CH}(\text{OH})\text{-CH}_3),1.11\,(t;\,J=8.5\,\text{Hz},\,6H,\,2\,\text{N-CH}_2\text{-CH}_3),1.43\,(s;\,1H,\,\text{OH}),\\ & 1.68\text{-}1.88\,(\mathrm{m};\,2H,\,0\text{-}\text{CH}_2\text{-}\text{CH}_2\text{-}),2.30\text{-}2.94\,(\mathrm{m};\,6H,\,2\,\text{N-CH}_2\text{-}\text{CH}_2\text{-}),3.34\text{-}3.40\,(\mathrm{m};\,1H,\,-\text{CH}(\text{OH})\text{-}),\,3.51,\,3.71\,(\text{AB};\,J=14.5\,\text{Hz},\,2H,\,\text{O-CH}_2\text{-}\text{N<}),\,3.80,\,3.85\,(s;\,6H,\,2\,\%\text{-OCH}_3),\,6.83,\,6.96\,\\ & (\text{AB};\,J=10.2\,\text{Hz},\,2H,\,0\text{-H}). \end{split}$$

Zur Darstellung von 11 wurden 500 mg 7 mit 150 mg LiAlH₄ analog reduziert: 297 mg 11.

MS (70 eV): $C_{17}H_{28}DNO_3$ m/e 296 (28 % M⁺), 281 (5 %), 267 (6 %), 251 (4 %), 250 (5 %), 238 (10 %), 237 (3 %), 223 (60 %), 205 (21 %), 190 (28 %), 179 (11 %), 178 (19 %), 166 (100 %), 165 (52 %), 164 (12 %), 163 (20 %). ¹H-NMR (90 MHz, CDCl₃): δ (ppm) = 1.08 (s; 3H, -CD(OH)-C<u>H₃</u>), 1.10 (t; J = 9 Hz, 6H, 2 N-CH₂-C<u>H₃</u>), 1.43 (s; 1H, -OH), 1.69–1.88 (m; 2H, \emptyset -CH₂-C<u>H₂-), 2.30–2.98</u>

(m; 6H, 2N-C<u>H</u>₂- und \emptyset -C<u>H</u>₂-CH₂-), 3.52, 3.73 (AB; J = 15 Hz, 2H, \emptyset -CH₂-N<), 3.79, 3.85 (s; 6H, 2 \emptyset -OCH₃), 6.83, 6.97 (AB; J = 10.5 Hz, 2H, \emptyset -H).

12 wurde durch Reduktion von 500 mg 6 mit 150 mg LiAlD_4 in einer Ausb. von ca. 300 mg erhalten.

MS (70 eV): $C_{17}H_{26}D_3NO_3$ m/e 298 (15 % M⁺), 283 (3 %), 269 (5 %), 254 (4 %), 253 (6 %), 239 (11 %), 225 (37 %), 206 (14 %), 205 (15 %), 192 (15 %), 191 (20 %), 182 (15 %), 181 (37 %), 180 (17 %), 168 (25 %), 167 (100 %), 166 (30 %). ¹H-NMR (90 MHz, CDCl₃): δ (ppm) = 1.08 (d; J = 7.8 Hz, 3H, -CH(OH)-CH₃), 1.10 (t; J = 9 Hz, 6H, 2N-CH₂-CH₃), 1.43 (s; 1H, -OH), 1.26–1.71 (m; 1H, \emptyset -CH₂-CHD-), 2.30–2.91 (m; 6H, 2N-CH₂- und \emptyset -CH₂-CHD-), 3.18–3.30 (m; 1H, -CH(OH)-I, 3.79, 3.85 (s; 6H, 2 \emptyset -OCH₃), 6.83, 6.97 (AB; J = 10.2 Hz, 2H, \emptyset -H).

13 wurde durch Reduktion von 500 mg 7 mit 150 mg LiAlD₄ erhalten: Ausb. 280 mg.

MS (70 eV): $C_{17}H_{25}D_4NO_3$ m/e 299 (26 % M⁺), 284 (5%), 270 (4%), 254 (2%), 253 (5%), 240 (10%), 226 (55%), 207 (15%), 205 (11%), 192 (27%), 183 (12%), 182 (11%), 181 (48%), 180 (19%), 169 (15%), 168 (100%), 167 (37%), 166 (25%). ¹H-NMR (90 MHz, CDCl₃): δ (ppm) = '1.08 (s; 3H, -CD(OH)-C<u>H₃</u>), 1.10 (t; J = 8.5 Hz, 6H, 2 N-CH₂-C<u>H₃</u>), 1.43 (s; 1H, -OH), 1.67–1.88 (m; 1H, Ø-CH₂-C<u>H</u>D-), 2.28–2.89 (m; 6H, 2 N-CH₂- und Ø-C<u>H₂</u>-CHD-), 3.79, 3.85 (s; 6H, 2 Ø-OCH₃), 6.83, 6.97 (AB J = 10.2 Hz, 2H, Ø-H).

3,4-Dimethoxy-(3'-hydroxybutyl)-benzol (15) und 3,4-Dimethoxy-(2',3'-dideutero-3'-hydroxybutyl)-benzol (16)

20-OCH₃), 6.72-7.00 (ABX; 3H, 0-H).

1 g 14¹⁷⁾ wurde in 100 ml absol. THF mit 1 g LiAlH₄ bzw. LiAlD₄ 3 h unter Rückfluß erhitzt. – Die Produkte wurden sc an SiO₂/EtOAc gereinigt (RF 0.67), Ausb. je ca. 750 mg Öl.

15: MS (70 eV): $C_{12}H_{18}O_3$ m/e 210 (63 % M⁺), 192 (14 %, *175.54), 177 (27 %, *163.17), 168 (18 %, *134.40), 165 (15 %), 161 (21 %), 152 (95 %, *110.02), 151 (100 %), 139 (18 %), 137 (30 %, *123.48. *89.38), 121 (29 %, *96.32).

MS (12 eV): m/e 210 (100 %), 192 (6 %), 168 (19 %), 152 (17 %). ¹H-NMR (CDCl₃): δ (ppm) = 1.28 (d; J = 6 Hz, 3H, -CH(OH)-CH₃), 1.61–2.02 (m; 2H, Ø-CH₂-CH₂-), 2.52–2.90 (m; 2H, Ø-CH₂--CH₂-), 3.91 (s; 6H, 2 Ø-OCH₃), 4.50–4.70 (m; 1H, -CH(OH)-), δ .70–7.05 (ABX; 3H, Ø-H). 16: MS (311 A, 80 eV): C₁₂H₁₆D₂O₃ m/e 212 (40 % M⁺), 194 (7 %), 179 (20 %), 166 (11 %), 163 (26 %), 153 (84 %), 152 (28 %), 151 (100 %), 138 (32 %). ¹H-NMR (CDCl₃): δ (ppm) = 1.25 (s; 3H, -CD(OH)-CH₃), 1.52–2.01 (m; 1H, Ø-CH₂-CHD-), 2.50–2.82 (m; 2H, Ø-CH₂-CHD-), 3.90 (s; 6H,

2-Chlor-(3'-Hydroxybuten(1)yl)-benzol (20) und 2-Chlor-(3'-deutero-3'-hydroxybuten(1)yl)-benzol (21)

1 g 17⁽⁸⁾ wurde in 50 ml MeOH gelöst und mit 400 mg NaBH₄ bzw. NaBD₄ während 30 min reduziert. Übliche Aufarbeitung, Ausb. ca. 900 mg.

20: ¹H-NMR (CDCl₃): δ (ppm) = 1.37 (d; J = 6Hz, 3H, -CH(OH)-CH₃), 2.95 (s; 1H, -OH), 4.22–4.80 (m; 1H, -CH(OH)-), 6.20, 6.91 (ABX; J = 16/7 Hz, 2H, -CH=CH-), 7.01–7.62 (m; 4H, \mathcal{O} -H).

21: ¹H-NMR (CDCl₃): δ (ppm) = 1.37 (s; 3H, -CD(OH)-C<u>H₃</u>), 3.97 (s; 1H, -OH), 6.21, 6.92 (AB; J = 16Hz, 2H, -CH=CH-), 7.00-7.59 (m; 4H, \emptyset -H).

2-Chlor-(3'-hydroxybutyl)-benzol (18) und 2-Chlor-(2',3'-dideutero-3'-hydroxybutyl)-benzol (19)

500 mg **17**¹⁸⁾ wurden in 20 ml absol. THF gelöst und mit 250 mg LiAlH₄ unter Eiskühlung versetzt. Nach 1 h Rühren bei 0° wurde 2 h unter Rückfluß erhitzt. Übliche Aufarbeitung mit H₂O. Der Rückstand wurde sc (Säule 20 cm, \emptyset 2 cm) an SiO₂/CH₂Cl₂ gereinigt: 320 mg farbloses Öl. IR (Film): 3360 cm^{-1} (OH). MS (70 eV): $C_{10}H_{13}$ ClO m/e 184 (11 % M⁺), 166 (53 %), 151 (29 %), 142 (20 %), 131 (100 %), 125 (68 %). ¹H-NMR (CDCl₃): δ (ppm) = 1.20 (d; J = 6Hz, 3H, -CH(OH)-CH₃), 1.30-1.90 (m; 2H, \emptyset -CH₂-CH₂-), 2.66-3.01 (m; 2H, \emptyset -CH₂-CH₂-), 3.67-4.08 (m; 1H, -CH(OH)-), 7.09-7.44 (m; 4H, \emptyset -H).

19 wurde analog aus 500 mg 17 mit 250 mg LiAlD₄ erhalten.

IR (Film): 3360 cm^{-1} (OH). MS (70 eV): $C_{10}H_{11}\text{ClD}_2\text{O}$ m/e 186 (17 % M⁺), 168 (55 %), 153 (30 %), 143 (8%), 133 (100%), 125 (47%). ¹H-NMR (CDCl₃): δ (ppm) = 1.21 (s; 3H, -CD(OH)-C<u>H</u>₃), 1.34-1.67 (m; 1H, Ø-CH₂-C<u>H</u>D-), 2.60-3.00 (m; 2H, Ø-C<u>H</u>₂-CHD-), 7.05-7.45 (m; 4H, Ø-H). 22 wurde analog 12 aus 20 mit LiAlD₄, 23 analog 11 aus 21 mit LiAlH₄ erhalten.

2,3-Dimethoxy-6-formyl-benzoesäure-(N,N-dimethyl)-amid (24)

25 g 1 wurden entspr. 2 und 3 mit SOCl₂ und Dimethylamin umgesetzt. Reinigung des Produkts durch SC an SiO₂/EtOAc, anschließend Destillation im Kugelrohr. Ausb. 11,5 g farbloses Öl (Sdp._{0.01} 240°, Luftbadtemp.).

IR (Film): 1685 (CO), 1630 cm⁻¹ (Amid). ¹H-NMR (CDCl₃): δ (ppm) = 2.79, 3.18 (s; 6H, 2N-CH₃), 3.87, 3.96 (s; 6H, 2 \mathcal{O} -OCH₃), 7.04, 7.72 (AB; J = 9Hz, 2H, \mathcal{O} -H), 9.87 (s; 1H, CHO).

2,3-Dimethoxy-6-(buten(1)-on(3)yl)-benzoesäure-(N,N-dimethyl)-amid (25)

4g 24 wurden analog 3 umgesetzt, sc Reinigung an SiO₂/EtOAc. Ausbeute 3,1g leicht gelbliches Öl.

IR (Film): 1687 (CO), 1635 cm⁻¹ (breit, Amid). ¹H-NMR (CDCl₃): δ (ppm) = 2.32 (s; 3H, -COCH₃), 2.80, 3.19 (s; 6H, 2 N-CH₃), 3.88, 3.95 (s; 6H, 2Ø-OCH₃), 6.58, 7.40 (AB; J = 17 Hz, 2H, -CH=CH-), 6.97, 7.32 (AB; J = 9 Hz, 2H, Ø-H).

2,3-Dimethoxy-6-(3'-hydroxybutyl)-(N,N-dimethyl)-benzylamin (26) und 1-(2', 3'-Dideutero-3'-hydroxybutyl)-2-(N,N-dimethylamino-dideuteromethyl)-3,4-dimethoxybenzol (27)

500 mg 25 wurden in 50 ml absol. THF mit 500 mg LiAlH₄ bzw. LiAlD₄ 3 h unter Rückfluß erhitzt. Übliche Aufarbeitung. Der Rückstand wurde sc an Al_2O_3/Et_2O gereinigt. Ausb. 390 mg farbloses Öl.

26: MS (70 eV): $C_{15}H_{25}NO_3$ m/e 267 (11 % M⁺), 252 (1 %), 222 (19 %, *184.58), 209 (8 %, *163.60), 204 (6 %, *187.46), 189 (17 %, *175.10), 179 (22 %), 178 (54 %), 177 (22 %), 165 (100 %, *122.64), 164 (26 %), 163 (30 %). MS (11 eV): 267 (57 % M⁺), 222 (100 %), 209 (52 %), 204 (22 %), 189 (20 %). ¹H-NMR (CDCl₃): δ (ppm) = 1.10 (d; J = 6 Hz, 3H, -CH(OH)-C<u>H₃</u>), 1.48 (s; 1H, -OH), 1.52–2.02 (m; 2H, \emptyset -CH₂-CH₂-), 2.32 (s; 6H, -N(CH₃)₂), 2.60–3.00 (m; 2H, \emptyset -CH₂-CH₂-), 3.04–3.52 (m; 1H, -C<u>H</u>(OH)-), 3.58 (s; 2H, \emptyset -CH₂-N<), 3.72, 3.78 (s. 6H, 2Ø-OCH₃), 6.83, 7.00 (AB entartet; J = 9 Hz, 2H, \emptyset -H).

27: MS (70 eV): $C_{15}H_{21}D_4NO_3$ m/e 271 (37 % M⁺), 256 (4 %), 226 (80 %, *188.47), 212 (18 %), 207 (11 %), 205 (19 %), 192 (27 %), 183 (18 %), 181 (74 %), 180 (28 %), 168 (100 %), 167 (46 %), 166 (50 %). MS (12 eV): 271 (61 % M⁺), 226 (100 %), 212 (40 %), 207 (10 %), 192 (9 %). ¹H-NMR (CDCl₃): δ (ppm) = 1.10 (s; 3H, -CD(OH)-CH₃), 1.52 (s; 1H, -OH), 1.52-2.00 (m; 1H, \mathcal{O} -CH₂-CHD-), 2.32 (s; 6H, -N(CH₃)₂), 2.62-3.09 (m; 2H, \mathcal{O} -CH₂-CHD-), 3.73, 3.80 (s; 6H, 2 \mathcal{O} -OCH₃), 6.78, 7.01 (AB entartet; J = 9Hz, 2H, \mathcal{O} -H).

2,3-Dimethoxy-6-(3'-hydroxybuten(1)yl)-(N,N-dimethyl)-benzylamin (28)

200 mg **25** wurden wir bei **4** angegeben umgesetzt. Reinigung durch SC an Al_2O_3 /EtOAc: Fraktionen zu 8 ml, die Fraktionen 6–15 enthielten **28**, Ausb. 137 mg.

¹H-NMR (CDCl₃): δ (ppm) = 1.34 (d; J = 7 Hz, 3H, -CH(OH)-C<u>H₃</u>), 2.24 (s; 6H, -N(CH₃)₂), 3.00 (s; 1H, OH), 3.52 (s; 2H, \emptyset CH₂-N<), 3.83, 3.90 (s; 6H, 2 \emptyset -OCH₃), 4.20–4.72 (m; 1H, -C<u>H</u>(OH)-), 6.06, 7.01 (ABX; J = 16/7 Hz, 2H, -CH=CH-), 6.85, 7.32 (AB; J = 9 Hz, 2H, \emptyset -H).

Literatur

- 1,2 1. und 2. Mitt.: K. K. Mayer, Th. Poettinger und W. Wiegrebe, Arch. Pharm. (Weinheim), 314, 481, 669 (1981).
- 3 H. Budzikiewicz, L. Faber, E.-G. Herrmann, F.F. Perrollaz, U.P. Schlunegger und W. Wiegrebe, Justus Liebigs Ann. Chem. 1979, 1212.
- 4 A. Kirpal, Ber. Dtsch. Chem. Ges. 60, 382 (1927) und dort zit. Lit.
- 5 N.P. Buu-Hoi, M. Dufour und P. Jacquignon, Bull. Soc. Chim. Fr. 1970, 137.
- 6 R.F. Borch, Tetrahedron Lett. 1968, 61.
- 7 H. Meerwein, Org. Synth. 46, 113 (1966).
- 8 J. Zabicky, The Chemistry of Functional Groups, Band 8: The Chemistry of Amides, S. 798, Interscience Publishers, London 1970.
- 9 L. F. Fieser und M. Fieser, Organische Chemie, 2. Aufl., S. 272, Verlag Chemie, Weinheim 1968.
- 10 W.G. Brown, Org. React. 6, 481 (1951).
- 11 F.A. Hochstein und W.G. Brown, J. Am. Chem. Soc. 70, 3484 (1948).
- 12 H. Schwarz, Top. Curr. Chem. 73, 231 (1978).
- 13 Bruker ¹³C-Data Bank, Vol. 1, S. 159, Bruker Physik, Karlsruhe 1976.
- 14 W. Bremser, L. Ernst, B. Franke, R. Gerhards und A. Hardt, Carbon-13 NMR Spectral Data, Spektrennummer: 12727, Verlag Chemie, Weinheim 1979.
- 15 E. Breitmaier und G. Bauer, ¹³C-NMR-Spektroskopie, S. 61, 49 und 52, Georg Thieme Verlag, Stuttgart 1977.
- 16 W. Wiegrebe, U.P. Schlunegger, F.F. Perrollaz und P. Riedl, Arch. Pharm. (Weinheim) 311, 328 (1978).
- 17 A. Kaufmann und R. Radosević, Ber. Dtsch. Chem. Ges. 49, 678 (1916).
- 18 D. Vorländer, Justus Liebigs Ann. Chem. 294, 291 (1896).

Arch. Pharm. (Weinheim) 314, 685-690 (1981)

Zur Kinetik der Nicomorphin-Desacylierung in wäßrigem Medium

Wolfgang Lindner* und Hans-Jürgen Semmelrock

Institut für Pharmazeutische Chemie der Universität Graz, Schubertstraße 1, A-8010 Graz Eingegangen am 28. Oktober 1980

Mit Hilfe der HPLC wird eine Studie über die Nicomorphin-(Morphin-3,6-dinicotinat, MDN) und Heroin-(Morphin-3,6-diacetat, MDA) Hydrolyse in wäßrigen Lösungen in Abhängigkeit vom pH durchgeführt.

MDN bzw. MDA wird zunächst zu Morphin-6-nicotinat (MMN) bzw. Morphin-6-acetat (MMA) desacyliert und in einer wesentlich langsameren Folgereaktion zu freiem Morphin. Für beide Verseifungsschritte wird eine Reaktion erster Ordnung angenommen und die Reaktionsgeschwindigkeitskonstanten der MDN und MDA Desacylierung bestimmt.

0365-6233/81/0808-0685 \$ 02.50/0

C Verlag Chemie GmbH, Weinheim 1981

[Ph 332]