

factors.⁴⁶ For the flavin-linked porphyrins the one-electron redox potentials are not correlated to the log k^{2nd} , but we assume that geometrical factors play an important role. The methylene chain length considerably affects the chemical shifts in the ¹H NMR spectra, which reflect the geometry of the flavin-linked porphyrin. In kinetic studies, we used the polar and protic solvent ethanol for practical reasons. In this solvent the flavin moiety is probably partly solvated, and the stability of the stacked conformation decreases with an increase of the flexible methylene chain length. The intermediate state clearly reflects the initial conformation. $Fl_{ox}C_1(TPP)Mn^{III}Cl$, which has little freedom around the methylene spacer, is in a more folded conformation than **1b** and **1c**,

and the reaction should proceed via a ternary complex $[PyH_2...Fl_{ox}...(TPP)Mn^{III+}]$. It has been well-known that the redox reaction between flavin and a 1,4-dihydropyridine proceeds via a preequilibrium charge-transfer-type complex $[PyH_2...Fl_{ox}]$.⁴⁶ In the proposed ternary complex, one electron can be rapidly transferred to the near manganese(III) porphyrin. The reaction of **1b**, **1c**, **1d**, and **1e** proceeds only partly via this ternary complex and mostly via its open form. The proposed reaction mechanism is summarized in Scheme VI.

Conclusion. Novel flavin-linked porphyrins have been synthesized. The key step, the condensation of the flavin carboxylic acid and the o-NH₂TPPH₂, which was carried out via the flavin acid chloride, proceeds in good yield. Spectrophotometric studies revealed that the flavin and the porphyrin moieties are in close proximity in the all-oxidized form. Electrochemical studies suggest an interaction of the chromophores in redox reactions. Especially, the potentials of the Fl_{ox}/Fl⁻ and Fl⁻/Fl²⁻ couples are significantly shifted to more positive values. The flavin-catalyzed 2e/1e electron-transfer reactions between NADH model compounds and (TPP)Mn^{III}Cl were investigated in intermolecular systems (Fl_{ox} + PyH₂ + (TPP)Mn^{III}Cl) as well as in intramolecular systems (Fl_{ox} C_n(TPP)Mn^{III}Cl + PyH₂). Reaction rates were accelerated by the intramolecular effect, and this acceleration was strongly affected by the methylene spacer length and the linking position.

Synthesis, Structure, and Alkylation of Chiral Vinylrhenium Complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CX=CHR)$ (X = H, OCH₃). A Mechanistic Study of 1,3-Asymmetric Induction from Rhenium to Carbon

Gerardo S. Bodner,¹ Danny E. Smith,¹ William G. Hatton,¹ Poh Choo Heah,¹ Savas Georgiou,¹ Arnold L. Rheingold,^{*2} Steven J. Geib,² John P. Hutchinson,¹ and J. A. Gladysz^{*1}

Contribution from the Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and University of Delaware, Newark, Delaware 19716. Received March 17, 1987

Abstract: Reaction of alkylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHCH_2R)]^+PF_6^-(1-PF_6^-; a, R = H; b, R = CH_3;$ c, R = CH₂CH₂CH₃; d, R = CH₂C₆H₅) with DBU or t-BuO⁻K⁺ gives vinyl complexes (E)-(η^{5} -C₅H₅)Re(NO)(PPh₃)(CH=CHR) ((E)-2a-d; 72-86%). Complexes (E)-2b-d equilibrate to 84-92:16-8 E/Z mixtures in solution. Complex (E)-2b reacts with CF_3SO_3H and CH_3OSO_2F to give ethylidene complex 1b- $CF_3SO_3^-$ and isobutylidene complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3) (=CHCH(CH_3)_2)]^+FSO_3^-$ (3-FSO₃⁻; ca. 65%) and with CF₃SO₃D and CD₃OSO₂F to give mainly (SR,RS)-1b- β -d-CF₃SO₃⁻ and (SS,RR)-[$(\eta^{5}-C_{3}H_{3})Re(NO)(PPh_{3})(=CHCH(CH_{3})(CD_{3}))$]⁺FSO₃⁻. However, experimental problems hinder quantification of the 1,3-asymmetric induction. Reaction of 3-FSO₃⁻ and t-BuO⁻K⁺ gives isobutenyl complex (η^5 -C₅H₅)Re(NO)(PPh₃)-(NO)(PPh₃)(CH=CHCPh₃) (74%). Reactions of methoxycarbene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C(OCH_3)-C(OCH_3))]$ $[CH_2R]^+PF_6^-$ with NaH or DBU give α -methoxyvinyl complexes (Z)-(η^5 -C₅H₅)Re(NO)(PPh₃)(C(OCH₃)=CHR) ((Z)-10a,b,d,e) $(R = C_6H_5)$) in high yields. These are more nucleophilic than (E)-2a-d and react with alkyl iodides R'I to give methoxycarbene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C(OCH_3)CHRR')]^+I^-$ that readily demethylate to acyl complexes $(\eta^5-C_5H_5)Re^{-2}$ (NO)(PPh₃)(COCHRR'). Thus, (Z)-10b and C₆H₅CH₂Br react to give $(SR,RS)-(\eta^5-C_5H_5)Re(NO)(PPh_3)(COCH-(CH_3)(CH_2C_6H_5))$ ((SR,RS)-13; 71%), and (Z)-10d and CH₃I react to give (SS,RR)-13 (88%; both diastereomers of \geq 98% purity). Crystal structures of (E)-2d and (Z)-10d and extended Hückel MO calculations on Re-C_{α} rotamers of (η^5 - C_5H_5 Re(NO)(PH₃)(CX=CH₂) (X = H, OH) are also described. Data are consistent with the following model for 1,3asymmetric induction: electrophiles attack a Re- C_{α} rotamer with the ON-Re- C_{α} - C_{β} torsion angle (θ) close to 0° and on the C=C face opposite the bulky PPh_3 ligand.

Transition-metal complexes containing vinyl, or alkenyl, ligands, $L_nMCR=CR'R''$, have been known for some time and extensively

studied.³⁻⁸ However, as suggested by the paucity of review literature,⁸ only recently have they attracted attention as a class

(1) University of Utah.

(2) University of Delaware.

of compounds per se. This interest derives in part from the fundamental importance of substituent effects upon C=C double-bond properties and reactivity. For example, numerous synthetically useful organic reactions require appropriate C=C polarization. Since there are many $L_n M$ systems that are electron donating, electron withdrawing, and chiral, metal substituents should enable a variety of useful modifications of C=C doublebond properties. Furthermore, the study of isolable vinyl complexes can afford insight into processes in which they are reactive intermediates, such as metal-catalyzed coupling reactions of vinyl halides and triflates9 and acetylene hydrogenations.10

Vinyl complexes of electron-donating or electron-"rich" metals should have two important resonance contributors, I and II, as shown in eq i. Such vinyl complexes should, like enamines,11 be nucleophilic at C_{β} and thus reactive toward electrophiles. De-

protonated chiral imines, $RCH=C(R')\ddot{N}R_{asym}]^{-}$, and related compounds have been shown to undergo efficient C_{β} asymmetric alkylation.¹² It occurred to us that attack of an electrophile E⁺ upon a chiral vinyl complex, $L_nMCH=CHR$ (M = chiral metal)

 L.; Klaeren, S. A.; Lebioda, L. Organometallics 1986, 5, 1072.
 (4) (a) Bodnar, T.; Cutler, A. R. J. Organomet. Chem. 1981, 213, C31.
 (b) Casey, C. P.; Miles, W. H.; Tukada, H.; O'Connor, J. M. J. Am. Chem. Soc. 1982, 104, 3761. (c) Kremer, K. A. M.; Kuo, G.-H.; O'Connor, E. J.; Helquist, P.; Kerber, R. C. *Ibid.* 1982, 104, 6119. (d) Grötsch, G.; Malisch, W. J. Organomet. Chem. 1983, 246, C42 and C49. (e) Grötsch, G.; Malisch, W. Ibid. 1984, 262, C38.

(5) (a) Baird, G. J.; Davies, S. G.; Jones, R. H.; Prout, K.; Warner, P. J. Chem. Soc., Chem. Commun. 1984, 745. (b) Curtis, P. J.; Davies, S. G. Ibid. 1984, 747.

(6) Bruce, M. I.; Duffy, D. N.; Humphrey, M. G.; Swincer, A. G. J. Organomet. Chem. 1985, 282, 383.

(7) See, inter alia, the following papers and references cited therein: (a) (7) See, inter alia, the following papers and references cited therein: (a) Booth, B. L.; Hargreaves, R. G. J. Organomet. Chem. 1971, 33, 365. (b) Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521. (c) Huggins, J. M.; Bergman, R. G. Ibid. 1981, 103, 3002. (d) Yoshida, T.; Negishi, E. Ibid. 1981, 103, 1276. (e) Allen, S. R.; Green, M.; Norman, N. C.; Paddick, K. E.; Orpen, A. G. J. Chem. Soc., Dalton Trans. 1983, 1625. (f) Grötch, G.; Malisch, W. J. Organomet. Chem. 1983, 258, 297. (g) Cariou, M.; Kubicki, M. M.; Kergoat, R.; Gomes de Lima, L. C.; Scordia, H.; Guerchais, L. F. K.; Chem. Chem. 1987, 105. (h) M. S. C. Scordia, H.; Guerchais, L. F. K.; Chem. Chem. 1987, 105. (h) M. S. Scordia, H.; Guerchais, M.; Kubicki, M. M.; Kergoat, R.; Gomes de Lima, L. C.; Scordia, H.; Guerchais, M.; K. S. Scordia, H.; Guerchais, M.; K. S. Scordia, H.; Guerchais, M.; K. Schwart, S. Scordia, M.; Kubicki, M. M.; Kergoat, R.; Gomes de Lima, L. C.; Scordia, H.; Guerchais, M.; K. Scordia, H.; Guerchais, M.; K. Scordia, H.; Guerchais, M.; Kubicki, M. M.; Kergoat, R.; Guerchais, M.; K. Scordia, H.; Guerchais, M.; Kubicki, M. M.; Kergoat, R.; Guerchais, M.; Kubicki, M. M. J. E. Inorg. Chim. Acta 1985, 104, 185. (h) Kubicki, M. M.; Kergoat, R.; Gomes de Lima, L. C.; Cariou, M.; Scordia, H.; Guerchais, J. E.; L'Haridon, P. Ibid. 1985, 104, 191. (i) Clark, H. C.; Ferguson, G.; Goel, A. B.; Janzen, E. G.; Ruegger, H.; Siew, P. Y.; Wong, C. S. J. Am. Chem. Soc. 1986, 108, 6961. (j) For vinyl complexes that undergo nucleophilic attack at C_{g} , see: Liu, J.-C.; Boyar, E.; Deeming, A. J.; Donovan-Mtunzi, S. J. Chem. Soc., Chem. Commun. 1984, 1182.

Commun. 1984, 1182.
(8) Seyferth, D. Prog. Inorg. Chem. 1962, 3, 129.
(9) (a) Walborsky, H. M.; Banks, R. B. J. Org. Chem. 1981, 46, 5074, and references therein.
(b) Negishi, E. Acc. Chem. Res. 1982, 15, 340.
(c) Baillargeon, V. P.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 452.
(d) Kowalski, M. H.; Stang, P. J. Organometallics 1986, 5, 2392.
(10) Burch, R. R.; Shusterman, A. J.; Muetterties, E. L.; Teller, R. G.; Williams, J. M. J. Am. Chem. Soc. 1983, 105, 3546.
(11) (a) Whitesell, J. K.; Whitesell, M. A. Synthesis 1983, 517.
(b) Hickmott, P. W. Tetrahedron 1982, 38, 1975, 3363.
(c) Eades, R. A.; Weil, D. A.; Douplass, C. H.

D. A.; Ellenberger, M. R.; Farneth, W. E.; Dixon, D. A.; Douglass, C. H., Jr. J. Am. Chem. Soc. 1981, 103, 5372.

(12) See, inter alia: (a) Méa-Jacheet, D.; Horeau, A. Bull. Soc. Chim. (1) Sec, Inter and. (a) Massacheet, D., Horda, A. Bah, Soc. Cam.
 Fr. 1968, 4571. (b) Davenport, K. G.; Eichenauer, H.; Enders, D.; Newcomb,
 M.; Bergbreiter, D. E. J. Am. Chem. Soc. 1979, 101, 5654. (c) Meyers, A.
 I.; Williams, D. R.; Erickson, G. W.; White, S.; Druelinger, M. Ibid. 1981, 103, 3081. (d) Evans, D. A.; Ennis, M. D.; Mathre, D. J. Ibid. 1982, 104, 1737. (e) Enders, D. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: Orlando, 1984; Vol. 3, Chapter 4. (f) Pfau, M.; Revial, G.; Guingant, A.; d'Angelo, J. J. Am. Chem. Soc. 1985, 107, 273. (g) Whitesell, J. K. Acc. Chem. Res. 1985, 18, 280.

could give an alkylidene complex $L_n M^+$ =CHCHRE in which the new C_{β} chiral center CHRE might be formed with appreciable 1,3-asymmetric induction (eq ii).

Chiral rhenium complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(L)]^{n+1}$ undergo a number of remarkably stereospecific ligand-based transformations¹³⁻¹⁸ and are easily obtained in optically pure form.¹⁹ Furthermore, the $(\eta^5 - C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)^+$ fragment has a high-lying rhenium-centered d orbital HOMO, shown in III, and hence is a powerful π -donor substituent.^{13a,d} Accordingly,

we set out to synthesize and probe the reactivity of chiral vinylrhenium complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CX=CHR)$. In this paper, we describe (1) the facile, high-yield synthesis of vinyl complexes $(\eta^5 - C_5 H_5) Re(NO)(PPh_3)(CX = CHR)$ by deprotonation of alkylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=$ CXCH₂R)]⁺PF₆⁻, (2) X-ray crystal structures of two vinyl complexes and an extended Hückel MO analysis of the $Re-C_{\alpha}$ conformations found, (3) reactions of these vinyl complexes with a variety of alkylating agents in which efficient 1,3-asymmetric induction occurs, and (4) a mechanistic model for the 1,3-asymmetric induction. A portion of this study has been communicated.20

Results

1. Synthesis of Vinyl Complexes $(E) - (\eta^5 - C_5 H_5) Re(NO) -$ (**PPh**₃)(**CH=CHR**). Ethylidene complex $[(\eta^5-C_5H_5)Re(NO) (PPh_3)(=CHCH_3)]^+PF_6^-(1a-PF_6^-)^{13c}$ exists as a (90 ± 2):(10 \pm 2) equilibrium mixture of *ac/sc* Re=C geometric isomers,^{21–23}

(13) (a) Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, Strouse, C. E.; Eisenstein, O.; Gradysz, J. A. J. Am. Chem. Soc. 1982, 104, 4865. (b) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. Ibid. 1983, 105, 4958. (c) Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. Organometallics 1984, 3, 879. (d) Georgiou, S.; Gladysz, J. A. Tetrahedron 1986, 42, 1109. (e) O'Connor, E. J.; Kobayashi, M.; Floss, H. G.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 4837.

(14) (a) Wong, A.; Gladysz, J. A. J. Am. Chem. Soc. **1982**, 104, 4948. (b) Senn, D. R.; Wong, A.; Patton, A. T.; Marsi, M.; Strouse, C. E.; Gladysz, (15) Merrifield, J. H.; Lin, G.-Y.; Kiel, W. A.; Gladysz, J. A. J. Am.

Chem. Soc. 1983, 105, 5811.

(16) (a) Crocco, G. L.; Gladysz, J. A. J. Am. Chem. Soc. 1985, 107, 4103. (b) Crocco, G. L.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1986, 1154.

(17) Heah, P. C.; Patton, A. T.; Gladysz, J. A. J. Am. Chem. Soc. 1986, 108, 1185.

(18) Fernández, J. M.; Emerson, K.; Larsen, R. H.; Gladysz, J. A. J. Am. Chem. Soc. 1986, 108, 8268; J. Chem. Soc., Chem. Commun., in press. (19) (a) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics

1982, 1, 1204. (b) O'Connor, E. J.; Fernández, J. M.; Patton, A. T.; Gladysz,

J. A., submitted for publication in *Inorg. Synth.*(20) (a) Hatton, W. G.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 6157.
This study was initiated at UCLA. (b) Smith, D. E.; Gladysz, J. A. Organometallics 1985, 4, 1480.

(21) In synclinal (sc) Re= C_{α} isomers, the highest priority²² ligands on Re $(\eta^5-C_5H_5)$ and C_a (R) define a 60 ± 30° torsion angle; in anticlinal (*ac*) isomers, the highest priority ligands define a 120 ± 30° torsion angle: *Pure Appl. Chem.* **1976**, 45, 11; see section E-5.6, p 24.

(22) Absolute configurations are assigned according to the Baird/Sloan modification of the Cahn-Ingold-Prelog priority rules. The $\eta^5-C_5H_5$ ligand is considered to be a pseudoatom of atomic number 30, which gives the following sequence: $\eta^5-C_5H_5 > PPh_3 > NO > COR$, =CXR, C(X)=CRR. Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1975, 97, 6598. Sloan, T. E. Top. Stereochem. 1981, 12, 1.

^{(3) (}a) Reger, D. L.; McElligott, P. J. J. Am. Chem. Soc. 1980, 102, 5923. (3) (a) Reger, D. L.; McElligott, P. J. J. Am. Chem. Soc. 1980, 102, 5923.
(b) Reger, D. L.; McElligott, P. J.; Charles, N. G.; Griffith, E. A. H.; Amma, E. L. Organometallics 1982, 1, 443. (c) Reger, D. L.; Belmore, K. A.; Mintz, E.; Charles, N. G.; Griffith, E. A. H.; Amma, E. L. Ibid. 1983, 2, 101. (d) Reger, D. L.; Belmore, K. A.; Atwood, J. L.; Hunter, W. E. J. Am. Chem. Soc. 1983, 105, 5710. (e) Reger, D. L.; Belmore, K. A.; Mintz, E.; McElligott, P. J. Organometallics 1984, 3, 134. (f) Reger, D. L.; Swift, C. A. Ibid. 1984, 3, 876. (g) Reger, D. L.; Belmore, K. A. Ibid. 1985, 4, 305. (h) Reger, D. L.; Mintz, E.; Lebioda, L. J. Am. Chem. Soc. 1986, 108, 1940. (i) Reger, D. L.; Mintz, E.; Lebioda, L. J. Am. Chem. Soc. 1986, 5 1072.

Figure 1. Analysis of the mechanism of 1,3-asymmetric induction in electrophilic attack upon vinyl complexes (η^5 -C₅H₅)Re(NO)(PPh₃)(CX=CRR').

the general structures of which are given in Newman projections IV and V. Note that the alkylidene ligand adopts conformations that maximize overlap of the C_{α} acceptor p orbital with the d orbital HOMO shown in III and that the alkyl substituent of the less stable isomer resides between the bulky PPh₃ and mediumsized η^5 -C₅H₅ ligands. Also, these complexes are octahedral, with the η^5 -C₅H₅ ligand occupying three coordination sites, so the ON-Re-PPh₃ bond angle is close to 90°.

Reaction of ethylidene complex $1a-PF_6^-$ with the base DBU^{23c} gave ethenyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH=CH_2)$ (2a) in 78% yield after workup (eq iii). Propylidene complex [$(\eta^5$ -

 C_5H_5 $Re(NO)(PPh_3)(=CHCH_2CH_3)^+PF_6^-$ (1b-PF_6^-) and complex $[(\eta^5 - C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(=$ pentylidene CHCH₂CH₂CH₂CH₃)]⁺PF₆⁻ (1c-PF₆⁻), also ca. 90:10 equilibrium mixtures of *ac/sc* Re=C geometric isomers,^{13b} similarly gave propenyl complex (E)- $(\eta^5$ - $C_5H_5)Re(NO)(PPh_3)(CH=CHCH_3)$ ((E)-2b) and pentenyl complex (E)- $(\eta^5$ -C₅H₅)Re(NO)(PPh₃)-(CH=CHCH₂CH₂CH₃) ((E)-2c) in 79% and 85% yields after CH₂Cl₂/hexanes recrystallization. Importantly, these compounds crystallized as >97:3 mixtures of E/Z C=C geometric isomers. However, (E)-2b and (E)-2c equilibrated to (84 ± 2) : (16 ± 2) and (92 ± 2) : $(8 \pm 2) E/Z$ mixtures, respectively, over the course of 3 h at 25 °C in CDCl₃. The deprotonation of 2a-c could also be effected with *t*-BuO⁻K⁺ in comparable yields.

Complexes 2a-c (and all other vinyl complexes) were characterized by ¹H, ¹³C, and ³¹P NMR (Table I) and by IR, mass spectrometry, and microanalysis (Experimental Section). The ¹H NMR chemical shifts of the η^5 -C₅H₅ ligands (Table I) and the IR $\nu_{N=0}$ (KBr, 1641 cm⁻¹) were characteristic of neutral

 $(\eta^5-C_5H_5)Re(NO)(PPh_3)(L)$ complexes but were slightly shifted in a "cationic direction" from those found in alkyl complexes $(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})(CH_{2}R)$ (¹H NMR δ 4.89–4.92, C₅H₅; IR $\nu_{N=0}$ 1614–1624 cm⁻¹).^{13b} The ¹H NMR spectra showed the C_{β} vinyl protons to be *upfield* of those of the C_{α} vinyl protons (Table I), as found with other alkenes bearing electron-donating substituents.^{24a} A ¹H-coupled ¹³C NMR spectrum showed the $C_{\alpha}^{-13}C$ NMR resonance in ethenyl complex 2a to be downfield of the C_{β} resonance. However, for C_{β} -substituted vinyl complexes such as **2b** and **2c**, C_{α} was found upfield of C_{β} . In all cases, $J_{C_{\alpha}P}$ was significantly greater than $J_{C_{\beta}P}$ (Table I). The E/Z assignments were based upon the magnitude of $J_{H_{\alpha}H_{\beta}}^{24b}$ and were confirmed in one case (below) by an X-ray crystal structure.

The new alkylidene complex $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=$ $CHCH_{2}CH_{2}C_{6}H_{5})]^{+}PF_{6}^{-} (1d-PF_{6}^{-}) \text{ was prepared in 90\% yield} from alkyl complex } (\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3}) (CH_2CH_2CH_2C_6H_5)^{25}$ and $Ph_3C^+PF_6^-$. When this reaction was monitored by ¹H and ³¹P NMR at -78 °C, exclusive formation of the less stable product Re=C isomer, sc-1d-PF₆, was observed as expected.¹³ When the solution was warmed to room temperature, isomerization to a (90 ± 2) : (10 ± 2) equilibrium mixture of $ac-1d-PF_6^-/sc-1d-PF_6^-$ occurred. A control experiment, of importance below, showed that this isomerization was not catalyzed by CF_3SO_3H (0.1 equiv, -78 °C, 1 h). Reaction of 1d- PF_6^- with DBU as above gave, after CH_2Cl_2 /hexanes recrystallization, solvated phenylpropenyl complex $(E)-(\eta^5-C_5H_5)Re(NO) (PPh_3)(CH = CHCH_2C_6H_5) \cdot CH_2Cl_2$ ((E)-2d·CH_2Cl_2, 86%; eq iii). Over the course of 3 h at 25 °C in $CDCl_3$, (E)-2d equilibrated to a (92 ± 2) : $(8 \pm 2) E/Z$ mixture.

2. Reactions of Vinyl Complexes $(E) - (\eta^5 - C_5 H_5) Re(NO)$ -(PPh₁)(CH=CHR). 1,3-Asymmetric Induction. Reactions of vinyl complexes 2a-d with 1.1 equiv of CF₃SO₃H in CD₂Cl₂ were monitored by ¹H NMR at -78 °C. Alkylidene complexes 1ad-CF₃SO₃⁻ rapidly formed (<4 min; eq iii) in spectroscopically quantitative yields as (71 ± 2) : (29 ± 2) , (90 ± 2) : (10 ± 2) , (88 \pm 2):(12 \pm 2), and (90 \pm 2):(10 \pm 2) mixtures of *ac/sc* Re=C isomers, respectively. As will be rationalized in the Discussion, the ac and sc isomers are visualized as arising from transition states VI and VII in Figure 1.

Interestingly, addition of 1.03 equiv of $CHCl_2CO_2H$ ($pK_a(H_2O)$) = 1.29)²⁶ to propenly complex (E)-2b in CD₂Cl₂ at -68 °C gave a (66 \pm 2):(34 \pm 2) equilibrium mixture of 1b-CHCl₂CO₂⁻ ((90

⁽²³⁾ Additional nomenclature conventions are as follows: (a) Compounds not specified as specific geometric isomers (Re—C, ac/sc; C—C, E/Z) are equilibrium mixtures of isomers. (b) In complexes with more than one chiral center, the rhenium configuration is specified first. (c) DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

⁽²⁴⁾ Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Appendix d, p 227; (b) Appendix f, p 235. (25) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.; Constable, A. G.; Gladysz, J. A. Organometallics **1983**, 2, 1852.

⁽²⁶⁾ Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd ed.; Harper and Row: New York, 1981; p 274.

Scheme I. Formation and Reactions of Isobutylidene Complex $ac - [(\eta^5 - C_5H_5)Re(NO)(PPh_3)(=CHCH(CH_3)_2)]^+X^- (ac - 3 - X^-)$

 \pm 2):(10 \pm 2) ac/sc) and 2b ((82 \pm 2):(18 \pm 2) E/Z). Thus, the β -hydrogens of propylidene complex 1b are acidic enough to be appreciably abstracted by the weak base CHCl₂CO₂⁻. Casey has previously shown that, in THF, neutral Fischer-type carbene complexes such as $(CO)_5Cr=C(OCH_3)CH_3$ have H_β acidities comparable to the OH acidities of phenols.²⁷

When propenyl complex (E)-2b was treated with 0.25 equiv of CHCl₂CO₂H in CD₂Cl₂ at \leq -75 °C, equilibration to a (84 ± 2):(16 \pm 2) (E)-2b/(Z)-2b mixture (as well as partial protonation to 1b-CHCl₂CO₂) immediately occurred. Hence, the E/Zisomerization of 2b is catalyzed by mild acids. When (E)-2b was similarly treated with 0.25 equiv of the strong acid CF₃SO₃H, partial protonation to 1b-CF₃SO₃⁻ occurred without starting material E/Z equilibration.

The feasibility of effecting 1,3-asymmetric induction by electrophilic attack upon propenyl complex (E)-2b was investigated. Reaction of (E)-2b with 1.03 equiv of CF₃SO₃D in CD₂Cl₂ was monitored by ¹H NMR at -75 °C. Propylidene complexes ac- $1b-\beta-d_x-CF_3SO_3^-$ and $sc-1b-\beta-d_x-CF_3SO_3^-$ formed in a (87 ± 2):(13 \pm 2) ratio. The areas of the two diastereotopic H_{β} resonances of $ac-1b-\beta-d_1-CF_3SO_3^-$ indicated a $(76 \pm 5):(24 \pm 5)$ ratio of diastereomers. However, analysis was complicated by the presence of the other Re=C geometric isomer, $sc-1b-\beta-d_1-CF_3SO_3$, and some dideuteriated product, $1b-\beta-d_2-CF_3SO_3^-$ (ca. 20%; measured by integration). Hence, we sought to assay for 1,3asymmetric induction via a carbon-carbon bond-forming reaction.

Reaction of propenyl complex (E)-2b with 10 equiv of CH₃O-SO₂F at -25 °C gave, after careful workup, isobutylidene complex $ac-[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHCH(CH_3)_2)]^+FSO_3^-(ac-3 FSO_3^{-}$) as a thermally unstable oil of ca. 95% purity by ¹H NMR (Scheme I). Experiments conducted in the presence of an internal standard indicated a vield of $\geq 65\%$. Only one Re=C geometric isomer was detected, and the two diastereotopic methyl groups exhibited different ¹H and ¹³C NMR resonances.

Spectroscopically pure isobutylidene complex 3-BF₄⁻ could be generated via a two-step procedure (Scheme I). First, treatment of crude ac-3-FSO₃⁻ with t-BuO⁻K⁺/t-BuOH gave stable isobutenyl complex $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(CH = C(CH_3)_2)$ (4) in 60% overall yield from (E)-2b. This deprotonation could also be effected with DBU. Reaction of 4 with HBF₄·Et₂O at -78 °C cleanly gave 3-BF₄⁻ as a (90 \pm 2):(10 \pm 2) mixture of ac and sc Re=C isomers. Isobutenyl complex 4 also readily reacted with CH₃OSO₂F. Neopentylidene complex ac-[(η^{5} -C₅H₅)Re(NO)- $(PPh_3) = CHC(CH_3)_3 + FSO_3 (ac-5-FSO_3)$ was subsequently

isolated in 90% yield (Scheme I). Only one Re=C isomer was detected.

Two factors complicated the preparation of isobutylidene complex ac-3 from (E)-2b. First, as in enolate and enamine chemistry,^{4d,11,28} polyalkylation/proton transfer side reactions occurred under all but the most careful conditions. This was best illustrated by the ¹H NMR monitored reaction of ethenyl complex 2a with 1.0 equiv of CH₃OSO₂F in CD₂Cl₂, which gave (between 2 and 22 °C) ethylidene complex 1b-FSO₃⁻, propenyl complex (E)-2b, isobutylidene complex ac-3-FSO₃, isobutenyl complex 4, and neopentylidene complex ac-5 (identified by the ¹H NMR chemical shifts of the CH₃, =CHR, and η^5 -C₅H₅ resonances), as well as other products. Second, when isobutylidene complex ac-3-FSO₃⁻ was warmed to between 0 and 25 °C, it underwent clean rearrangement to isobutylene complex $[(\eta^5 - C_5 H_5)Re$ - $(NO)(PPh_3)(H_2C=C(CH_3)_2)]^+FSO_3^- (6-FSO_3^-; Scheme I)$. This chemistry will be described in a separate publication.²⁹

The methylation of propenyl complex (E)-2b was reexamined with 10 equiv of CD₃OSO₂F in CD₂Cl₂ at -25 °C. Initial equilibration, presumably due to traces of acid, of the starting material to a $(84 \pm 2):(16 \pm 2) (E)-2b/(Z)-2b$ mixture was observed. Methylation occurred over the course of ca. 20 min at -25 °C. Integration of the diastereotopic CH₃ ¹H NMR resonances of the resulting isobutylidene complex $ac-3-\gamma-d_3$ -FSO₃ indicated a (92 ± 2) : (8 ± 2) ratio of diastereomers. Hence, both protonation and alkylation of (E)-2b occur with appreciable 1,3-asymmetric induction. The configurations of the major diastereomers (see Scheme I) were assigned as described in the Discussion.

The reaction of ethenyl complex 2a with $Ph_3C^+PF_6^-$ was briefly examined in hopes of effecting α -hydride abstraction to give the vinylidene complex¹⁴ $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C=CH_2)]^+$ PF_6^- or β -hydride abstraction to give the unknown acetylene complex $[(\eta^5 - C_5H_5)Re(NO)(PPh_3)(HC \equiv CH)]^+PF_6^-$. Instead, clean alkylation to give alkylidene complex $[(\eta^5-C_5H_5)Re (NO)(PPh_3)(=CHCH_2CPh_3)]^+PF_6^-(7-PF_6^-)$ occurred (eq iv).

When this reaction was monitored by ${}^{1}H$ NMR at -71 °C, a (76 \pm 2):(24 \pm 2) ratio of two Re=C geometric isomers, ac-7-PF₆ and sc-7-PF₆, was noted. Product crystallized from CH₂Cl₂/ hexane as a solvate of the more stable isomer, $ac-7-PF_6-CH_2Cl_2$ (81%). Reaction of $7-PF_6^-$ and $t-BuO^-K^+$ gave vinyl complex $(E)-(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH=CHCPh_3)$ ((E)-8, 74%), which was a single C=C isomer both in solution and as a solid.

3. Syntheses of α -Methoxyvinyl Complexes $(Z) - (\eta^5 - C_5 H_5)$ -Re(NO)(PPh₃)(C(OCH₃)=CHR). We sought vinyl complexes that would be more reactive toward alkylating agents than those above and whose alkylation products would not be as prone to rearrangements such as $ac-3-X^- \rightarrow 6$ (Scheme I). Methoxy substituents are known to enhance the C_{β} nucleophilicity of alkenes, and methoxycarbene complexes $[L_n M = C(OCH_3)R]^+$ are less electrophilic at C_{α} and thus less prone to 1,2 proton shifts.³⁰ Hence, we set out to synthesize and study the reactivity of α methoxyvinyl complexes of the formula $(\eta^5-C_5H_5)Re(NO)$ - $(PPh_3)(C(OCH_3)=CHR)$. These should have three important resonance contributors, X-XII, as shown in eq v. While this work was in progress, similar studies involving related iron complexes

(30) See, for example, iron alkylidene and α -alkoxycarbene complexes: Brookhart, M.; Tucker, J. R.; Husk, G. R. J. Am. Chem. Soc. 1983, 105, 258.

⁽²⁸⁾ House, H. O. Modern Synthetic Reactions, 2nd ed.; Benjamin: Menlo Park, CA, 1972; pp 546-586.
(29) Bodner, G. S.; Gladysz, J. A., to be submitted for publication.

(H ₁)d ₁₆) 21.0(s)	21.4 (s)	Ч	21.2 (s)	Ч	21.5 (s)	22.0 (s)
	p-PPh ₃	130.1 (s)	130.0 (s)	ų	(s) (s)	ч	129.9 (s)	130.2 (s)
	o/m-PPh ₃	133.3 (d, J = 10); J = 10); J = 10)	133.7 (d, J = 11); 128.1 (d, J = 11)	ų	133.6 (d, J = 10); 128.0 (d, J = 10); J = 10)	ų	133.6 (d, J = 11); 128.1 (d, J = 11) J = 11)	134.1 (d, J = 9); 128.4 (d, J = 9)
mq	<i>i</i> -PPh ₃	135.2 (d, J = 56)	136.0 (d, J = 54)	h	136.1 (d, J = 53)	ų	136.1 (d, J = 54)	136.3 (d, J = 52)
¹³ C ^{[1} H] NMR, ⁶ p	other		25.1 (s, C ₇)	20.5 (s, C ₇)	42.2 (s, C,); 24.1 (s, C,); 13.8 (s, C,)	37.3 (s, C,); 23.6 (s, C ₆); 14.3 (s, C)	46.7 (s, CH ₂); CC ₆ H ₃ at: L43.6 (s, ipso), 128.5 (s), 128.8 (s, para) 124.8 (s, para)	30.3 (s, C,); 24.9 (s, C,)
	$Re-C_{\beta}$	121.1 (s) ^g	132.0 (d, J = 3)	ų	J = 3) (d, J = 3)	140.3 (d, J = 3)	J = 5) J = 5)	139.7 (d, <i>J</i> = 3)
	Re—C _a	139.2 (d, J = 10)≰	J = 13) J = 13)	ų	J = 12) J = 12)	123.6 (d, J = 11)	125.5 (d, J = 11)	J = 11) J = 11)
	C ₅ H ₅	7.16 (s)	91.0 (s)	90.7 (s)	91.2 (s)	90.5 (s)	91.4 (s)	90.6 (s)
	other	7.39 (m, 3 C ₆ H ₅)	$\begin{array}{l} T.39 \ (m, 3 \ C_{0}H_{5}); \\ 1.71 \ (dt, ^{3}_{HH} = \\ 6, ^{4}_{HH} = 1, ^{5}_{H}_{HP} \\ = 1, \ CH_{3} \right)_{dx} \end{array}$	1.86 (dm, ${}^{3}J_{\rm HH} = 6$, CH ₁)	7.39 (m, 3 $C_{e}H_{5}$); 1.98 (m, CH ₄ H ₄); 0.97 (m, CH ₄ H ₈), ⁴ (m, CH ₄ H ₈), ⁴ 0.65 (dd, ³ J _{4H} = 7, 7, ³ J _{4H} = 7, CH ₃)	ų	7.30 (m, 3 C ₆ H ₅); 7.02 (m, C ₆ H ₅); 3.36–3.16 (m, CH ₂)	7.39 (m, 3 C ₆ H ₃); 1.87 (br s, CH ₃); 1.82 (br s, CH ₃)
¹ H NMR, ^a ppm	Re-C-C-H _B	$\begin{array}{l} 5.75 (\text{dm.}^{J}\text{J}_{\text{HH}} = 12, \\ ^{2}\text{J}_{\text{HH}} = 4, ^{4}\text{J}_{\text{HP}} = 3, \\ 3. H_{\text{BS}}^{2,\text{cd}} = 4.86 \\ (\text{ddd.}^{J}\text{J}_{\text{HH}} = 18, \\ ^{J}\text{HH} = 4, ^{4}\text{J}_{\text{HP}} = 2, \\ ^{J}\text{H}_{\text{BS}} = 2, H_{\text{BZ}} \end{array}$	$5.00 (m, 3)_{HH} = 16, 31_{HH} = 6, 4)_{HP} = 3)4,4_{4,7}$	$6.17 \text{ (m, }^{3}J_{\text{HH}} = 6,$ $^{3}J_{\text{HH}} = 6)$	5.08 (m, ^J / _{НН} = 16) [¢]	ų	6.67 (m, ³ / _{нн} = 16)	
	Re-C-H _a	8.41 (ddd, ³ унн = 18, ³ унн = 12, ¹ ин = 12, ¹ Инр = 2)	$3_{HH}^{3} = 16,$ $3_{HH}^{3} = 16,$ $4_{HH}^{3} = 1,$ $3_{HP}^{3} = 3)_{dx}^{3}$	ų	7.58, (dm, ³ J _{HH} = 16, ³ J _{HP} = 3) ^{dx}	ų	$\begin{array}{l} 7.68 \text{ (dm,} \\ {}^{J}_{JHH} = 16, \\ {}^{J}_{JHP} = 2) \end{array}$	$_{3}J_{\rm HP} = 8$)
	C ₅ H,	5.08 (s)	5.03 (s)	5.04 (s)	5.02 (s)	ų	4.92 (s)	5.01 (s)
	compound	C		= 2-2b	Contraction of the second seco	<u>Z</u> .2c	O CH26,0H3 CH26,0H3 EE2d	Hacon

Table I. NMR Characterization of New Vinylrhenium Complexes

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Here the second	4.99 (s)	$J_{HP} = 17, J_{HP} = 17, J_{HP} = 3$	9.10 (ud. ⁷ нн = 17, ⁴ /н _Р = 2)	CeH4)		(6 = f	(br s)	CC ₆ H ₅ at: 149.5 (s, ipso), 131.3 (s), 127.8 (s), 125.9 (s, para)	J = 53)	J = 11); 128.9 (d, J = 11)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ocH ₃	5.07 (s)		4.47 (s, H _{<i>BE</i>}); 3.93 (s, H _{<i>BZ</i>})	7.48-7.36 (m, 3 C ₆ H ₃): 2.99 (s, OCH ₃)	91.0(s)	168.6 (d, J = 12)	93.4 (s)	54.8 (s, OCH,)	137.0 (d, J = 52)	134.4 (d, J = 10); 128.5 (d, J = 10)	130.4 (s)	22.2 (s) ^j
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A Coch3	5.07 (s)		4.76 (q, ³ Ј _{НН} = 6)	7.48-7.36 (m, 3 С ₆ H.): 2.80 (s, ОСН ₃): 1.91 (d, ³ У _{НН} = 6, СН ₃)	90.4 (s)	162.6 (d, J = 11)	102.9 (s)	54.8 (s, OCH ₃); 17.3 (s, CH ₃)	137.4 (d, J = 53)	J = 11; J = 11;	130.3 (s)	23.0 (s)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.06 (s)		4.86 (dd, ³ J _{HH} = 7, ³ J _{HH} = 7)	7.55–7.13 (m, 4 C,b,H); 3.74 (dd, $y_{HH} = 7, y_{HH} =$ 7, CH ₃); 2.82 (s, OCH ₃)	90.5 (s)	162.6 (d, J = 11)	109.4 (s)	54.2 (s, OCH ₃); 39.1 (s, CH ₃); CC ₆ H ₅ at: 146.2 (s, ipso), 129.1 (s), 128.5 (s, para)	137.1 (d, J = 53)	134.3 (d, J = 10); 128.5 (d, J = 10)	130.3 (s)	22.4 (s)
\overline{F} -10e 5.28 (s) 4.67 (s) 3.76 (s, OCH ₃) 91.4 (s) 170.4 (d, J = 10) 92.9 (s) 59.5 (s, OCH ₃): 136.2 (d, J = 10); 130.8 (d, J = 2) 20.2 (s) $J = 10$ $J = 10$ $I = 0.3$ $J = 10$; $J = 2$ $J = 233$ $J = 10$; $J = 2$ $I = 103$ $I = 0.3$ $I = 0.3$ $I = 0.3$ $I = 2.9$ $J = 2.0$ $I = 103$ $I = 0.3$ $I = 0.3$ $I = 10$ $I = 10$ $I = 10$ $I = 122.5$ $I = 10$ $I = 12.2$ $I = 10$ $I = 10$ $I = 10$ $I = 2.2$ $I = 2.3$ $I = 10$ $I = 12.2$ $I = 10$ $I = 10$	Z-10e	5.14 (s)		5.89 (s)	7.55-7.37 (m, 3 C ₆ H ₃); 7.27-7.00 (m, C ₆ H ₃); 3.01 (s, OCH ₃)	91.0 (s)	170.9 (d. J = 11)	112.4 (s)	55.3 (s. OCH ₃); CC ₆ H ₅ at: 143.5 (s. ipso), 129.9 (s), 127.9 (s), 123.4 (s. para)	136.4 (d, J = 54)	134.4 (d. J = 10); 128.5 (d. J = 9)	J = 2) 4 (d, J = 2)	23.3 (s)
	E-10e	5.28 (s)		4.67 (s)	3.76 (s, OCH ₃)	91.4 (s)	170.4 (d, J = 10)	92.9 (s)	59.5 (s, OCH ₃); CC ₆ H ₅ at: 140.3 (s, ipso), 127.2 (s), 123.2 (s, para)	136.2 (d, J = 53)	134.6 (d, J = 10); 128.9 (d, J = 10)	130.8 (d, J = 2)	20.2 (s)

were reported by Malisch^{4d,e} and Davies.⁵

By analogy to eq iii, deprotonations of α -methoxycarbene complexes $[(\eta^5 - C_5H_5)Re(NO)(PPh_3)(=C(OCH_3)CH_2R)]^+PF_5^-$ (9-PF₆⁻) were examined. The α -methoxycarbene complexes either had been previously reported²⁵ or were prepared by alkylation of the corresponding acyl complexes $(\eta^5 - C_5 H_5) Re(NO)(PPh_3)$ -(COCH₂R) with $(CH_3)_3O^+PF_6^-$. Reaction of $[(\eta^5-C_5H_5)Re^ (NO)(PPh_3)(=C(OCH_3)CH_3)]^+PF_6^-$ (9a-PF₆) with NaH in THF gave, after workup, α -methoxyvinyl complex (η^5 -C₅H₅)-Re(NO)(PPh₃)(C(OCH₃)=CH₂) (10a) in 75% yield (eq vi).

Reactions of α -methoxycarbene complexes $[(\eta^5-C_5H_5)Re (NO)(PPh_3)(=C(OCH_3)CH_2CH_3)]^+PF_6^-$ (9b-PF₆⁻), [(η^5 - C_5H_5 Re(NO)(PPh₃)(=C(OCH₃)CH₂CH₂C₆H₅)]⁺PF₆⁻ (9d- PF_{6}^{-} , and $[(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})(=C(OCH_{3})CH_{2}C_{6}H_{5})]^{+}$ PF_6^- (9e- PF_6^-) with DBU in CH_2Cl_2 or THF gave, after workup and recrystallization, α -methoxyvinyl complexes (Z)-(η^5 -C₅H₅)- $Re(NO)(PPh_3)(C(OCH_3)=CHR)$ ((Z)-10: b, R = CH₃; d, R = $CH_2C_6H_5$; e, R = C_6H_5) in 72-83% overall yields from the corresponding acyl complexes. The assignment of these compounds as Z C==C geometric isomers was based upon several pieces of evidence. First, both (Z)-10b and (Z)-10d exhibited a $33 \pm 5\%$ ¹H NOE enhancement^{31,32} of the vinyl hydrogen resonance upon irradiation of the α -methoxy resonance,^{5a} as would be expected of Z geometric isomers. Second, the structure of (Z)-10d was verified by X-ray crystallography, as described below. As with the other vinyl complexes, α -methoxyvinyl complexes 10 were characterized by ¹H, ¹³C, and ³¹P NMR (Table I) and by IR, mass spectrometry, and microanalysis (Experimental Section).

Interestingly, when the reactions of $9b-PF_6^-$, $9d-PF_6^-$, and 9e-PF₆⁻ with DBU were monitored by ³¹P NMR at -78 °C, transients assigned as E geometric isomers were observed. Typical kinetic ratios were as follows. (Z/E)-10d: CH₂Cl₂, (44 ± 2) :(56 \pm 2); THF, (23 \pm 2):(77 \pm 2). (Z/E)-10e: CH₂Cl₂, (53 \pm 2):(47 \pm 2); THF, (32 \pm 2):(68 \pm 2). Both 10b and 10d equilibrated over the course of a few hours in CH₂Cl₂ at room temperature to (98 ± 1) : $(2 \pm 1) Z/E$ mixtures. However, 10e equilibrated only to a (62 ± 2) : $(38 \pm 2) Z/E$ mixture, and some data on E-10e are included in Table I.

4. Reactions of α -Methoxyvinyl Complexes (Z)-(η^5 -C₅H₅)-Re(NO)(PPh₃)(C(OCH₃)=CHR). 1,3-Asymmetric Induction. The α -methoxyvinyl complex 10a (0.8 M in CH₂Cl₂) and CH₃I (3 equiv) reacted over the course of 4 h at room temperature. Workup gave propionyl complex $(\eta^5 - C_5H_5)Re(NO)(PPh_3)$ - (COCH₂CH₃) (11; eq vii)²⁵ in 82% yield. However, when the

reactants were more concentrated (or less rigorously purified) appreciable quantities of acetyl complex $(\eta^5 - C_5 H_5) Re(NO)$ - $(PPh_3)(COCH_3)^{25}$ and the dimethylation product, isobutyroyl complex $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(COCH(CH_3)_2)$ (12, a new compound; vide infra), were also produced. The structures of these products were confirmed by isolation and comparison to independently synthesized samples. The diastereotopic methyl groups in 12 were readily differentiated in ¹H and ¹³C NMR spectra.

The conversion $10a \rightarrow 11$ was observed to proceed via an intermediate with spectroscopic properties very similar to those of methoxycarbene complex 9b-PF₆⁻: ¹H NMR (δ , CD₂Cl₂, -35 °C, two Re-C isomers) 5.71, 6.01 (s, C₅H₅); 3.70, 4.15 (s, OCH_3 ; 0.79, 1.11 (t, CCH_3). The structure of this intermediate was therefore assigned as 9b-I⁻, $[(\eta^5 \cdot C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(=C \cdot C_5 H_5) \text{Re}(\text{NO})((C \cdot C_5 H_5)) \text{Re}(\text{NO})((C \cdot$ $(OCH_3)CH_2CH_3)$ ⁺I⁻ (eq vii). Iodide ion then effects a wellprecedented O-demethylation³³ to give the acyl complex product. Since chiral metal acyl complexes are in themselves useful compounds and their diastereomeric purities can be readily assayed, 17,34 we made no attempt to block or avoid this dealkylation process.

Side-by-side reactions of CH_3I (3 equiv, CH_2Cl_2) with α -methoxyvinyl complex 10a and ethenyl complex 2a were conducted at room temperature. Complex 10a was 55% consumed after 0.5 h, but 2a was <5% consumed. Complex 10a was >98% consumed after 3 h, but 2a was only 40% consumed after 24 h. Hence, the α -methoxy substituent significantly enhances the nucleophilicity of the vinyl ligand.

We next examined the effectiveness of substituted α -methoxyvinyl complexes in 1,3-asymmetric induction reactions. First, treatment of complex (Z)-10b with CH_3I (CH_2Cl_2 , 24 h) gave isobutyroyl complex 12 in 88% yield. Analogous reaction of (Z)-10b with CD_3I gave (eq viii) labeled isobutyroyl complex $(\eta^5 - C_5H_5)$ Re(NO)(PPh₃)(COCH(CH₃)CD₃) (12- γ -d₃). Analysis by ¹H and ¹³C NMR showed the label to be present chiefly on one methyl group. Integration indicated a (96 ± 2) : (4 ± 2) ratio of diastereomers.

Complex (Z)-10b was likewise treated with $C_6H_5CH_2Br$. Acyl complex (SR,RS)- $(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})(COCH(CH_{3}) CH_2C_6H_5$) ((SR,RS)-13) was subsequently isolated in 71% yield (eq viii). Product stereochemistry was assigned from a crystal structure of a solvate of (SR,RS)-13, as described elsewhere.^{20b,35} By analogy, the predominant isomer of $12 - \gamma - d_3$ prepared above was assigned SR,RS stereochemistry. Complex (Z)-10d was similarly treated with CH₃I (eq ix). The opposite acyl complex diastereomer, (SS,RR)-13, was subsequently isolated in 88% yield. Diastereomers (SR,RS)-13 and (SS,RR)-13 showed no tendency

⁽³¹⁾ Noggle, J. H.; Shirmer, R. E. The Nuclear Overhauser Effect; Academic: New York, 1971.

^{(32) (}a) Hall, L. D.; Sanders, J. K. M. J. Am. Chem. Soc. 1980, 102, 5703. (b) Sanders, J. K. M.; Mersh, J. D. Prog. Nucl. Magn. Reson. Spectros. 1983, 15, 353. (c) Hunter, B. K.; Baird, M. C. Organometallics 1985, 4, 1481.

^{(33) (}a) Davison, A.; Reger, D. L. J. Am. Chem. Soc. 1972, 94, 9237. (b)
Cutler, A. R. Ibid. 1979, 101, 604.
(34) See references in: (a) Liebeskind, L. S.; Welker, M. E.; Fengl, R. W.
J. Am. Chem. Soc. 1986, 108, 6328. (b) Davies, S. G.; Easton, R. J. C.;
Walker, J. C.; Warner, P. Tetrahedron 1986, 42, 175.

⁽³⁵⁾ Bodner, G. S.; Patton, A. T.; Smith, D. E.; Georgiou, S.; Tam, W.; Wong, W.-K.; Strouse, C. E.; Gladysz, J. A. Organometallics 1987, 6, 1954.

to interconvert under the workup conditions employed. HPLC analyses of both crude products before workup indicated diastereomer ratios of $(99 \pm 1):(1 \pm 1)$.

Finally, complex (Z)-10e was treated with $(CH_3)_3O^+PF_6^-$ (CH₂Cl₂, 0.5 h) and then iodide source Ph₃PCH₃+1⁻. The more reactive alkylating agent was used to minimize Z/E equilibration of (Z)-10e on the time scale of the reaction. Acyl complex (SS,RR)-(η^5 -C₅H₅)Re(NO)(PPh₃)(COCH(CH₃)C₆H₅) ((SS, RR)-14) was isolated in 61% yield (74% based upon recovered (Z)-10e). HPLC of the crude product indicated a (98 ± 1):(2 ± 1) ratio of diastereomers. The opposite diastereomer, (SR, RS)-14, was prepared earlier by an enolate methylation reaction.¹⁷

5. Structures of Vinyl and α -Methoxyvinyl Complexes. A knowledge of the orientations of the vinyl and α -methoxyvinyl ligands about the Re- C_{α} bond is critical for interpreting the stereochemistry of the above reactions. To facilitate analysis, θ will be used to represent the ON-Re- C_{α} - C_{β} torsion angle throughout this paper. This angle is easily viewed in Newman projection format. Note also that α -methoxyvinyl complexes can exhibit isomerism about the C_{α} -OCH₃ bond, as shown by XIII (s-cis) and XIV (s-trans) in eq x. The s-cis isomer is the more stable for most organic methyl vinyl ethers.³⁶

We encountered considerable difficulty in obtaining suitable single crystals for X-ray analysis, so vinyl ligand orientations were first probed by extended Hückel molecular orbital (EHMO) calculations on the model complexes $(\eta^5-C_5H_5)Re(NO)(PH_3)-(CH=CH_2)$ and $(\eta^5-C_5H_5)Re(NO)(PH_3)(C(OH)=CH_2)$. Figure 2 shows the variation in E_{total} as the Re-C_{α} bond was rotated in these complexes. The PH₃ ligand was held in the Re-P conformation earlier found to be optimum for ethyl complex $(\eta^5-C_5H_5)Re(NO)(PH_3)(C(CH)=CH_2), 1^{3d}$ and the hydroxyl group of $(\eta^5-C_5H_5)Re(NO)(PH_3)(C(CH)=CH_2)$ was held in the s-cis conformation. Variation of the PH₃ and hydroxyl geometries did not significantly affect E_{total} . Local minima were found at $\theta = 30-35^\circ$ and 180° , closely corresponding to isomers observed for alkylidene ligands in $[(\eta^5-C_5H_5)Re(NO)(PH_3)(-CCHR)]^+$ complexes (see IV and V above). With $(\eta^5-C_5H_5)Re(NO)(PH_3)-(CH=CH_2)$, the minimum at $\theta = 30^\circ$ was particularly broad and shallow.

The θ dependence of the HOMO of model complex (η^{5} -C₅H₅)Re(NO)(PH₃)(CH=CH₂) was examined. At the E_{total} minima at $\theta = 30^{\circ}$ and 180°, the HOMO was an antibonding combination of the (η^{5} -C₅H₅)Re(NO)(PH₃)⁺ fragment d orbital HOMO (see III) and the H₂C=CH fragment π orbital, as is usual for donor-atom-substituted ethylenes.^{37a,b} The H₂C=CH π and π^* orbitals are both of appropriate symmetry to mix with the d orbital shown in III. However, the π orbital is 1.07 eV lower in

Figure 2. Variation in E_{total} as the vinyl ligands are rotated in (A) $(\eta^5-C_5H_5)\text{Re}(\text{NO})(\text{PH}_3)(\text{CH}=\text{CH}_2)$ and (B) $(\eta^5-C_5H_5)\text{Re}(\text{NO})-(\text{PPh}_3)(\text{C}(\text{OH})=\text{CH}_2)$ (calculated every 5° by the extended Hückel method with weighted H_{ij} formula).

Figure 3. Qualitative MO diagram for $\text{Re-}C_{\alpha}-C_{\beta}\pi$ bonding in vinyl complexes $(\eta^5-C_5H_3)\text{Re}(\text{NO})(\text{PR}_3)(\text{CH}==\text{CHR})$.

energy than the d orbital, whereas the π^* orbital is 4.10 eV higher in energy. Hence, mixing of the π and d orbitals dominates. This is shown schematically in Figure 3. At $\theta = 90^\circ$ and 270°, where the fragment frontier orbitals³⁸ are orthogonal, the HOMO of

^{(36) (}a) Owen, N. L.; Sheppard, N. Trans. Faraday Soc. 1964, 60, 634.
(b) Owen, N. L.; Seip, H. M. Chem. Phys. Lett. 1970, 5, 162. (c) Samdal,
S.; Seip, H. M. J. Mol. Struct. 1975, 28, 193. (d) Bernardi, F.; Epiotis, N. D.; Yates, R. L.; Schlegel, H. B. J. Am. Chem. Soc. 1976, 98, 2385. (e) Durig, J. R.; Compton, D. A. C. J. Chem. Phys. 1978, 69, 2028.
(37) (a) Houk, K. N. Acc. Chem. Res. 1975, 8, 361. (b) Albright, T. A.;

⁽³⁸⁾ We use the definition of frontier orbitals and frontier MO theory summarized in: Kahn, S. D.; Pau, C. F.; Overman, L. E.; Hehre, W. J. J. Am. Chem. Soc. **1986**, 108, 7381.

Figure 4. Molecular structure of α -methoxyvinyl complex (Z)-(η^5 -C₅H₅)Re(NO)(PPh₃)(C(OCH₃)=CHCH₂C₆H₅) ((Z)-10d): top, Newman-type projection down the C_{α}-Re bond; bottom, numbering scheme.

 $(\eta^5-C_5H_5)Re(NO)(PH_3)(CH=CH_2)$ resembled the d orbital shown in III. The HOMO energy was at a minimum at $\theta = 80^\circ$, contrary to expectations from Walsh's rule.^{37c}

Further analysis of the EHMO data revealed important *non-frontier* MO interactions. Four additional occupied orbitals of the $(\eta^5-C_5H_5)Re(NO)(PH_3)^+$ fragment exhibited energies close to or above that of the H₂C=CH fragment π orbital (0.515 and 0.308 eV above π ; 0.045 and 0.082 eV below π). In conformations with $\theta = 90^\circ$ and 270°, the latter two were of appropriate symmetry and ideal energy to strongly mix with the π orbital. The energies of the molecular orbitals resulting from this mixing showed the greatest variation with θ (0.22 and 0.14 eV vs 0.12 eV for the HOMO).

The LUMO of $(\eta^5 \cdot C_5H_5)Re(NO)(PH_3)(CH=CH_2)$ was mainly an antibonding combination of metal d and NO π^* orbitals, and its energy showed less θ dependence (0.08 eV). Orbitals essentially equivalent to those described above were found in model α -hydroxyvinyl complex $(\eta^5 \cdot C_5H_5)Re(NO)(PH_3)(C(OH)=CH_2)$. The θ dependences of the orbital energies were similar to those of $(\eta^5 \cdot C_5H_5)Re(NO)(PH_3)(CH=CH_2)$ in phase but differed somewhat in amplitude.

X-ray data were first obtained for α -methoxyvinyl complex (Z)- $(\eta^5-C_5H_5)Re(NO)(PPh_3)(C(OCH_3)=CHCH_2C_6H_5)$ ((Z)-10d) under the conditions summarized in Table II. Refinement, described in the Experimental Section, yielded the structure shown in Figure 4. Positional parameters, bond distances, and bond angles are summarized in Tables III-V. The torsion angle θ was found to be 47°, in reasonable agreement with one of the minima predicted in Figure 2B, and the methoxy group adopted the s-cis conformation.

X-ray data were next obtained on phenylpropenyl complex $(E) \cdot (\eta^5 \cdot C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(\text{CH}=\text{CHCH}_2 C_6 H_5) \cdot \text{CH}_2 \text{Cl}_2$ -

Table II.	Summary	of Cryst	allographic	: Data	for V	Vinyl	Complexes
(E) - $(\eta^{5}-C)$	5H5)Re(N	O)(PPh ₃))(CH=CH	ICH ₂ C	6H3)	·CH ₂	Cl,
$((E)-2d\cdot C)$	H_2Cl_2) and	d		-		-	-

$\frac{(Z) \cdot (\eta^5 \cdot C_5 H_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)}{(2 + 1)^{1/2}}$	$C(OCH_3) = CHCH_2C_6$	$(H_5) ((Z)-10d)$
compd	(E)-2d-CH ₂ Cl ₂	(Z)-10d
molecular formula	C ₃₂ H ₂₉ NOPRe· CH ₂ Cl ₂	$C_{33}H_{31}NO_2PRe$
formula wt	745.63	690.80
cryst syst	monoclinic	triclinic
space group	$P2_1/c$	PĪ
a, Å	11.908 (3)	13,883 (3)
b, Å	10.356 (2)	9.369 (5)
c, Å	25.054 (7)	11.205 (4)
α , deg		105.90 (3)
β , deg	90.60 (2)	89.18 (3)
γ , deg		99.94 (3)
V, Å ³	3090 (1)	1380 (1)
Z	4	2
$d_{\rm calcd}, {\rm g/cm^3}$	1.60	1.66
$d_{\rm obsd}$, g/cm ³	1.60	1.65
cryst dimens, mm	$0.27 \times 0.31 \times 0.32$	$0.17 \times 0.26 \times 0.34$
diffractometer	Nicolet R3	Syntex P1
temp of collection, °C	22	22
radiation, Å	λ(Μο Κα) 0.71069	λ(Mo Kα) 0.71069
data collection method	ω	$\theta - 2\theta$
reflens measd	$\pm h, \pm k, \pm l$	$+h,\pm k,\pm l$
scan speed, deg/min ⁻¹	5–20 (variable)	3.0
2θ scan range, deg	$4 \le 2\theta \le 50$	$3 \le 2\theta \le 50$
scan range	$K\alpha_1 - 0.8$ to	$K\alpha_1 - 1.0$ to
	$K\alpha_2 + 0.8$	$K\alpha_2 + 1.0$
total bkgd time/scan time	1.0	1.0
no. of reflens between std	197	97
decay	≤2% variation	≤2% variation
total unique data	5442	4354
cutoff for obsd data	$4\sigma(F_{o})$	$2.5\sigma(I)$
obsd data	4276	3432
abs coeff (μ), cm ⁻¹	43.2	45.2
abs correction method	ψ scans	ψ scans
no. of reflens	7	3
method of refinement	block matrix	block matrix
a (m	least squares	least squares
$T_{\rm max}/T_{\rm min}$	1.72	2.33
no. of variables	469	343
$R = \sum_{c} (F_{c} - F_{c}) / \sum_{c} F_{c}$	0.0316	0.0547
$R_{w} = \sum_{r_{o}} (F_{o} - F_{c}) w^{1/2} / \sum_{r_{o}} (F_{o}) w^{1/2}$	0.0345	0.0567
goodness of fit	0.967	1.50
weighting factor, ω	$1/(\sigma^2(F_0) +$	$1/(\sigma^2(F_0) +$
- ·	$0.001/(F_{\rm o})^2)$	$0.0045(F_{o})^{2})$
Δ/σ (max)	0.075	0.099
$\Delta \rho$ (max), e Å ⁻³	0.53, 1.4 Å	2.55, 1.0 Å
	from Re	from Re

((E)-2d·CH₂Cl₂) under conditions summarized in Table II. This compound differs from (Z)-10d by a C_a methoxy substituent and the stereochemistry of the C_β benzyl substituent. Refinement, described in the Experimental Section, yielded the structure shown in Figure 5. Positional parameters, bond distances, and bond angles are given in Tables III-V. The torsion angle θ was found to be 175.5°, in good agreement with one of the minima predicted in Figure 2A, but opposite to the one found for (Z)-10d. A crystal of (E)-2d-CH₂Cl₂ was dissolved in CD₂Cl₂ at -78 °C, and a ¹H NMR spectrum was immediately recorded at -90 °C. The spectrum was identical with one where the sample was kept at room temperature before cooling to -90 °C.

Difference NOE ¹H NMR experiments³² were conducted on (*E*)-**2d** and selected model compounds in CD₂Cl₂. The η^5 -C₃H₅ resonance of (*E*)-**2d** was irradiated. Enhancements of 4.1% in the H_a vinyl proton and 0.9% in the H_β vinyl proton were observed. Analogous experiments were done with the *ac* and *sc* Re=C isomers of benzylidene complex $[(\eta^5-C_3H_5)\text{Re}(\text{NO})(\text{PPh}_3)(= \text{CHC}_6\text{H}_5)]^+\text{PF}_6^-$ (refer to VIII and IX, Figure 1).^{13a} Enhancements of 4.2% and 0.0%, respectively, were found in the H_α resonances (with the former being upfield of the latter). An identical experiment was conducted with methylidene complex $[(\eta^5-C_3H_3)\text{Re}(\text{NO})(\text{PPh}_3)(=CH_2)]^+\text{PF}_6^-$ (-30 °C),¹⁸ and enhancements of 1.9% and 0.0% were found in the upfield and downfield H_α resonances, respectively. These data suggest that, in solution, (*E*)-**2d** exists predominantly in a Re-C_α conformation

Figure 5. Molecular structure of vinyl complex (E)- $(\eta^5-C_5H_5)$ Re-(NO)(PPh₃)(CH=CHCH₂C₆H₅)·CH₂Cl₂ ((E)-**2d**·CH₂Cl₂): top, Newman-Type projection down the C_a-Re bond with one PPh₃ phenyl ring omitted; bottom, numbering scheme.

Figure 6. Views of (Z)-10d emphasizing the steric influence of the cyclopentadienyl ligand in the N-Re-P plane.

that has the H_{α} proton in a position similar to that in a *ac*-alkylidene complex (compare VI and VIII, Figure 1)—i.e., with θ near 0°. This contrasts with the crystal structure.

Discussion

1. Structure and Bonding about Rhenium. We analyze the structures of vinyl complexes (E)-2d and (Z)-10d first, since they have an important bearing upon the above reactions. Both compounds exhibit the ca. 90° P-Re-N, P-Re-C1, and N-Re-C1 bond angles expected for octahedral complexes (Table V). The acute C51-Re-C1 angles (88.0 (2)°, 82.6 (4)°) indicate that one of the cyclopentadienyl carbons extends into the C_{α} side of the N-Re-P plane. This feature is emphasized in the partial structures

Figure 7. Analysis of the direction of electrophilic attack upon α -methoxyvinyl complex (Z)-10b.

given in Figure 6. The metal-ligand bond distances in (E)-2d and (Z)-10d (Table IV) are identical within experimental error, even though the orientations of the vinyl ligands differ significantly.

As noted above, vinyl complexes 2 are expected to have two important resonance contributors, I and II (eq i). Their C_{β} nucleophilicity and apparently low thermal barriers to C=C bond isomerization³⁹ are expected consequences of alkylidene-like resonance contributor II. The α -methoxyvinyl complexes 10 should have a third type of resonance contributor, XII (eq v). Their enhanced C_{β} nucleophilicity is an expected consequence of this third contributor.

As expected from the above valence-bond analysis, the Re- C_{α} bonds in (E)-2d and (Z)-10d (2.123 (6) and 2.129 (10) Å) are shorter than those in rhenium alkyl complexes (-)-(R)- $(\pi^5$ - $C_5H_5)Re(NO)(PPh_3)(CH_2C_6H_5)$ (2.203 (8) Å)^{19a} and (SS, RR)- $(\pi^5$ - $C_5H_5)Re(NO)(PPh_3)(CH(CH_2C_6H_5)C_6H_5)$ (2.215 (4) Å).^{13a} This 0.08–0.09-Å difference is likely too large to attribute solely to sp²/sp³ hybridization effects.⁴⁰ The Re— C_{α} bonds are distinctly longer than the Re— C_{α} double bond in benzylidene complex ac- $[(\pi^5-C_5H_5)Re(NO)(PPh_3)(=CHC_6H_5)]^+PF_6^-$ (1.949 (6) Å).^{13a} They are also very slightly longer than the Re— C_{α} bonds in formyl complex $(\pi^5-C_5H_5)Re(NO)(PPh_3)(CHO)$ (2.055 (10) Å) and acyl complex (SR,RS)-13 (2.081 (7) Å).^{20b,35} These complexes have alkylidene-like Re— C_{α} resonance contributors similar to II but a much closer energy match between the d orbital shown in III and the ligand π^* orbitals.³⁵

2. Structure, Bonding, and Orientation of the Vinyl Ligands. The vinyl ligand C=C bond lengths in (E)-2d and (Z)-10d (1.320 (9), 1.319 (12) Å) are identical within experimental error and quite close to those in ethylene and methyl vinyl ether (1.339, 1.342 Å).^{36b,c,40b} Otherwise, the vinyl ligands have very different structures. In this section, we examine the interwoven factors that contribute to the Re- C_{α} conformations and C=C geometric isomers observed.

A. Re- C_{α} Conformations: Electronic Effects. Given the alkylidene-like Re= C_{α} resonance contributors II and XI, it should to a first approximation be electronically optimal for vinyl and

⁽³⁹⁾ Since we have shown that C=C bond isomerization can be acidcatalyzed, the existence of a purely thermal isomerization is questionable. Reger has observed the Z/E isomerization of related iron-vinyl complexes $(\eta^5-C_5H_3)Fe(CO)(L')(C(R)=CR'R'')$ under similar acid-catalyzed conditions, as well as in the presence of redox reagents.^{3a,g,h} However, C=C isomerization barriers of only ca. 17 kcal/mol have been found in deprotonated imines Li⁺H₂C=CHNR]⁻ under rigorously acid-free conditions: Lee, J. Y.; Lynch, T. J.; Mao, D. T.; Bergbreiter, D. E.; Newcomb, M. J. Am. Chem. Soc. 1981, 103, 6215. For other vinyl complexes that undergo $Z \rightleftharpoons E$ isomerization, see ref 7c, d, f, and i.

^{(40) (}a) Compare, for example, H₃C-C bond lengths in ethane (1.534 Å) and propene (1.501 Å).
(b) March, J. A. Advanced Organic Chemistry, 3rd ed.; Wiley: New York, 1985; p 19.
(c) Churchill, M. R. In Perspectives in Structural Chemistry; Dunitz, J. D., Ibers, J. A., Eds.; Wiley: New York, 1967; Vol. 3, pp 153-155.

Table III. Positional Parameters of Non-Hydrogen Atoms (×10⁴) in (E)-2d-CH₂Cl₂ and (Z)-10d and Their Estimated Standard Deviations^a

atomxyzxyzRe6379.5 (2)8695.2 (2)5789.8 (2)1257.2 (3)2672.0 (4)3186.8 (3)P7644 (1)8873 (1)6514 (1)2213 (3)2123 (3)1417 (2)N5162 (4)8820 (4)6171 (2)1090 (8)4402 (10)2986 (8)C04273 (4)8849 (5)6404 (3)948 (9)5603 (10)2872 (9)C(51)6596 (8)8545 (7)4887 (3)856 (10)1210 (13)4560 (11)C(52)574 (6)7705 (9)5016 (3)115 (11)2017 (13)4562 (11)C(53)6213 (7)6738 (7)5347 (3)-308 (9)1604 (16)3322 (12)C(54)7347 (6)7007 (7)5412 (3)174 (9)491 (14)2569 (11)C(55)7601 (6)8131 (8)5129 (3)898 (10)257 (13)3582 (10)C(1)6594 (5)10722 (6)5715 (2)2566 (8)34445 (10)4315 (9)C(2)7328 (6)12887 (6)5441 (3)2190 (10)5773 (13)5825 (10)OQ2220(14)4378 (12)233 (6)2299 (14)4378 (12)C(11)6819 (5)6609 (6)6996 (3)857 (8)3007 (12)23 (9)C(12)6733 (6)5714 (7)7823 (3)1980 (10)2745 (15)-2053 (10)C(14)8360 (6)6656 (6)7838 (3)1980 (10)2745 (15)-2053 (10)C(15)8410 (5)7560 (6)7433 (3)			(E)-2d·CH ₂ Cl ₂			(Z)-10d	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	atom	x	уу	Z	x	у	Z
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Re	6379.5 (2)	8695.2 (2)	5789.8 (2)	1257.2 (3)	2672.0 (4)	3186.8 (3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Р	7644 (1)	8873 (1)	6514 (1)	2213 (3)	2123 (3)	1417 (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ν	5162 (4)	8820 (4)	6171 (2)	1090 (8)	4402 (10)	2986 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4273 (4)	8849 (5)	6404 (3)	948 (9)	5603 (10)	2872 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(51)	6596 (8)	8545 (7)	4887 (3)	856 (10)	1210 (13)	4560 (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(52)	5745 (6)	7705 (9)	5016 (3)	115 (11)	2017 (13)	4562 (11)
$ \begin{array}{ccccc} C(54) & 7347 (6) & 7007 (7) & 5412 (3) & 174 (9) & 491 (14) & 2569 (11) \\ C(55) & 7601 (6) & 8131 (8) & 5129 (3) & 898 (10) & 257 (13) & 3358 (13) \\ C(1) & 6594 (5) & 10722 (6) & 5715 (2) & 2566 (8) & 3445 (10) & 4315 (9) \\ C(2) & 7328 (6) & 11427 (6) & 5452 (3) & 2788 (9) & 4608 (12) & 5302 (10) \\ C(3) & 7349 (6) & 12887 (6) & 5441 (3) & 2190 (10) & 5773 (13) & 5825 (10) \\ O(2) & & & & & & & & & & & & & & & & & & &$	C(53)	6213 (7)	6738 (7)	5347 (3)	-308 (9)	1604 (16)	3322 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(54)	7347 (6)	7007 (7)	5412 (3)	174 (9)	491 (14)	2569 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(55)	7601 (6)	8131 (8)	5129 (3)	898 (10)	257 (13)	3358 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	6594 (5)	10722 (6)	5715 (2)	2566 (8)	3445 (10)	4315 (9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	7328 (6)	11427 (6)	5452 (3)	2788 (9)	4608 (12)	5302 (10)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(3)	7349 (6)	12887 (6)	5441 (3)	2190 (10)	5773 (13)	5825 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)				3233 (6)	2431 (8)	3932 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)				4239 (9)	2929 (14)	4378 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	6819 (5)	6609 (6)	6996 (3)	857 (8)	3007 (12)	23 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	6753 (6)	5713 (7)	7408 (3)	526 (10)	3372 (13)	-992 (10)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(13)	7518 (6)	5749 (7)	7823 (3)	1098 (9)	3250 (13)	-2027 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	8360 (6)	6656 (6)	7838 (3)	1980 (10)	2745 (15)	-2053 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	8410 (5)	7560 (6)	7434 (2)	2297 (1)	2390 (14)	-1020 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	7631 (4)	7573 (5)	7010 (2)	1733 (8)	2508 (10)	33 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	6493 (5)	10748 (6)	7094 (3)	3632 (11)	4674 (14)	2099 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	6364 (6)	11678 (7)	7483 (3)	4533 (15)	5481 (20)	2122 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	7281 (6)	12170 (6)	7745 (3)	5331 (16)	4930 (32)	1600 (24)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	8330 (6)	11733 (6)	7617 (3)	5162 (13)	3427 (35)	974 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	8466 (4)	10777 (5)	7228 (2)	4236 (10)	2469 (18)	889 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	7542 (4)	10274 (5)	6967 (2)	3464 (8)	3127 (13)	1480 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	9724 (4)	7762 (6)	6251 (2)	1738 (10)	-837 (12)	-87 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	10821 (5)	7788 (7)	6047 (3)	1738 (10)	-2384 (13)	-387 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	11282 (5)	8931 (8)	5887 (2)	2329 (12)	-2911 (14)	313 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	10668 (5)	10062 (7)	5914 (2)	2896 (12)	-1961 (16)	1292 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35)	9578 (4)	10059 (5)	6110 (2)	2887 (12)	-451 (14)	1600 (12)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(36)	9103 (4)	8911 (5)	6282 (2)	2323 (8)	141 (11)	900 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)	8304 (6)	13701 (6)	6280 (3)	2716 (13)	8096 (15)	5100 (13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(42)	9233 (7)	14127 (7)	6567 (3)	3234 (17)	9462 (21)	5225 (18)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(43)	10240 (6)	14293 (7)	6309 (4)	3830 (14)	1015.7 (16)	6270 (18)
C(45) 9371 (7) 13612 (7) 5498 (3) 3303 (12) 8056 (14) 7056 (13) $C(46)$ 8348 (6) 13423 (5) 5748 (3) 2740 (8) 7357 (11) 5991 (10) $C(S)$ -930 (12) 8593 (6)	C(44)	10314 (7)	14036 (8)	5774 (4)	3857 (12)	9498 (16)	7207 (15)
C(46) 8348 (6) 13423 (5) 5748 (3) 2740 (8) 7357 (11) 5991 (10) C(S) 6523 (9)930 (12) 8593 (6)	C(45)	9371 (7)	13612 (7)	5498 (3)	3303 (12)	8056 (14)	7056 (13)
C(S) = 6523(9) = -930(12) = 8593(6)	C(46)	8348 (6)	13423 (5)	5748 (3)	2740 (8)	7357 (11)	5991 (10)
C(3) = 0.525(7) = 7.50(12) = 0.575(0)	C(S)	6523 (9)	-930 (12)	8593 (6)			
Cl(SA) 6566 (3) 330 (3) 9056 (1)	Cl(SA)	6566 (3)	330 (3)	9056 (1)			
Cl(SB) 5263 (4) -1500 (4) 8469 (2)	Cl(SB)	5263 (4)	-1500 (4)	8469 (2)			

^a Positional parameters for hydrogen atoms are in the supplementary material.

 α -methoxyvinyl ligands to adopt Re-C_{α} conformations that maximize rhenium-carbon π bonding. In frontier MO theory terminology,³⁸ the C=C π^* acceptor lobe on C_{α} should maximally overlap with the d orbital shown in III.⁴¹ This would occur with $\theta = 0^\circ$ and 180°. X-ray crystal structures of $[(\eta^5-C_5H_5)Re-(NO)(PPh_3)(L)]^{n+}$ complexes show that a variety of unsaturated ligands (L = =COR (see Figure 7),³⁵ =CHR (see V),^{13a} η^2 -RCH=X^{18,42}) adopt conformations that maximize overlap of their acceptor orbitals with the d orbital shown in III. Any slight deviations are readily ascribable to steric effects. However, we have also noted the possibility of conformation-influencing *repulsive* interactions involving d orbitals when donor orbitals are present on ligating atoms.⁴³

The EHMO calculations on model compounds $(\eta^5 \cdot C_5 H_5)$ Re-(NO)(PH₃)(CH=CH₂) and $(\eta^5 \cdot C_5 H_5)$ Re(NO)(PH₃)(C(OH)= CH₂) (Figure 2) show two Re-C_{α} conformational minima that are in good agreement with those expected from frontier MO

theory.⁴⁴ However, vinyl ligands are not as good π acceptors as acyl and alkylidene ligands,45 and a more thorough analysis of the data indicates additional significant Re-C_{α} conformationdetermining factors. As previously and perceptively noted by Fenske, the vinyl ligand is somewhat unusual in that both acceptor and donor orbitals are present on C_{α} .⁴⁵ Hence, attractive and repulsive interactions can play important roles in bonding to metals. Accordingly, we find a close energy match between the π orbital of the H₂C=CH fragment and the fourth and fifth occupied orbitals of the $(\eta^5-C_5H_5)Re(NO)(PH_3)^+$ fragment. In conformations with $\theta = 90^{\circ}$ and 270°, these are of appropriate symmetry to mix, and a strongly destabilizing interaction results. Less pronounced repulsive interactions, with different θ dependences, are evident in other molecular orbitals. In essence, the Re- C_{α} frontier MO interaction (Figure 3) and fragment orbital energetics render the repulsive interactions weaker at $\theta = 0^{\circ}$ and 180° than at $\theta = 90^{\circ}$ and 270°. Hence, several electronic effects contribute to M–C_{α} conformations of metal-vinyl complexes, and their relative importance will be a sensitive function of metal and

⁽⁴¹⁾ The α -methoxy substituent has two major effects upon the C==C π^* orbital: (1) The orbital polarizes toward C_{α} , which increases Re— C_{α} overlap. (2) The energy is raised, which diminishes the Re— C_{α} frontier orbital interaction. Also, the α -methoxy substituent will polarize the C==C π orbital toward C_{β} (which should diminish π repulsive interactions) and raise its energy.^{37a,b}

^{(42) (}a) Buhro, W. E.; Georgiou, S.; Fernández, J. M.; Patton, A. T.;
Strouse, C. E.; Gladysz, J. A. Organometallics 1986, 5, 956. (b) Buhro, W.
E.; Etter, M. C.; Georgiou, S.; Gladysz, J. A.; McCormick, F. B. Ibid. 1987, 6, 1150.

^{(43) (}a) Buhro, W. E.; Georgiou, S.; Hutchinson, J. P.; Gladysz, J. A. J. Am. Chem. Soc. 1985, 107, 3346. (b) Buhro, W. E.; Zwick, B. D.; Georgiou, S.; Hutchinson, J. P.; Gladysz, J. A. J. Am. Chem. Soc., in press.

^{(44) (}a) Seeman and Davies have advocated the use of PPhH₂ in place of PH₃ as a better EHMO model for the compounds described in this paper.^{44b,c} Such a substitution is certainly likely to give more pronounced maxima in Figure 2 and may affect the relative energies and exact locations of the minima. However, our simpler calculations should still reveal key electronic interactions. The desirability of calculations on larger models with full geometry optimization is widely recognized.^{44b,c} (b) Seeman, J. I.; Davies, S. G. J. Am. Chem. Soc. **1985**, 107, 6522. (c) Davies, S. G.; Seeman, J. I.; Williams, I. H. Tetrahedron Lett. **1986**, 27, 619.

⁽⁴⁵⁾ Kostić, N. M.; Fenske, R. F. Organometallics 1982, 1, 974.

Table IV. Bond Distances in (E)-2d·CH₂Cl₂ and (Z)-10d^a

Table V. Bond Angles in (E)-2d·CH₂Cl₂ and (Z)-10d^a

		distance	e, A
		(E) -2d- CH_2Cl_2	(Z)-10d
Re	P	2.353 (1)	2.358 (3)
Re	Ν	1.749 (5)	1.750 (11)
Ν	0	1.215 (7)	1.216 (15)
Re	C(1)	2.123 (6)	2.129 (10)
C(1)	C(2)	1.320 (9)	1.319 (12)
C(2)	C(3)	1.513 (9)	1.474 (18)
C(3)	C(46)	1.514 (9)	1.511 (15)
O(2)	C(4)		1.443 (14)
C(1)	O(2)		1.419 (14)
Re	C(51)	2.285 (7)	2.328 (14)
Re	C(52)	2.313 (8)	2.319 (14)
Re	C(53)	2.318 (8)	2.251 (12)
Re	C(54)	2.303 (8)	2.261 (11)
Re	C(55)	2.292 (7)	2.291 (13)
Р	C(16)	1.834 (5)	1.843 (11)
P	C(26)	1.847 (5)	1.818 (11)
P	C(36)	1.838 (5)	1.820 (11)
C(51)	C(52)	1.377(12)	1.378 (21)
C(52)	C(53)	1.410 (11)	1,440 (18)
C(53)	C(54)	1.386 (11)	1.410 (18)
C(54)	C(55)	1.398 (11)	1.432 (20)
C(55)	C(51)	1.404 (12)	1.404 (17)
C(11)	C(12)	1.391 (10)	1.380 (18)
C(12)	C(13)	1.375 (10)	1.387 (17)
C(12)	C(13)	1.375(10)	1.384 (20)
C(14)	CUS	1 381 (9)	1 386 (19)
C(15)	C(16)	1.501(9) 1.402(8)	1.397 (15)
C(16)	C(11)	1 390 (8)	1.378 (17)
C(21)	C(22)	1.380 (10)	1.342 (24)
C(22)	C(23)	1.366 (10)	1.360 (32)
C(23)	C(24)	1.369 (10)	1.371 (39)
C(24)	C(25)	1 400 (9)	1.424 (24)
C(25)	C(26)	1.100(5) 1.376(7)	1.397 (19)
C(26)	C(21)	1 382 (8)	1 405 (16)
C(31)	C(32)	1 408 (8)	1.396 (17)
C(32)	C(33)	1.367(10)	1.379 (23)
C(33)	C(34)	1.382(10)	1.365 (19)
C(34)	C(35)	1.393 (8)	1.396 (20)
C(35)	C(36)	1.395(0) 1.387(7)	1.373 (20)
C(36)	C(31)	1.507(7)	1.392(14)
C(41)	C(42)	1.383(10)	1.322(11) 1.328(24)
C(42)	C(43)	1 379 (11)	1 379 (27)
C(43)	C(44)	1.372(12)	1 359 (28)
C(44)	C(45)	1 383 (10)	1.402 (19)
C(45)	C(46)	1 389 (11)	1 373 (17)
C(46)	C(41)	1 367 (10)	1.365 (21)
Cl(SA)	$C(\mathbf{S})$	1.307(10) 1.746(14)	1.505 (21)
CI(SB)	C(S)	1.639 (12)	
^a See Figure 3	for atomic	numbering: C(S) is	s the solvate carbon.

Distances of bonds to hydrogen atoms are given in the supplementary material.

vinyl ligand fragment orbital energies.45

B. Re– C_{α} Conformations: Steric Effects. The conformations of many molecules arise from combinations of steric and electronic effects that are difficult to partition. As noted above, we have principally employed frontier MO interactions, as opposed to steric effects of the PPh₃ ligand, to rationalize the Re- C_{α} -X_{β} planes of unsaturated ligands (L) in $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(L)]^{n+1}$ complexes. This approach contrasts with a model that has been presented for related iron complexes $[(\eta^5-C_5H_5)Fe(CO)-(PPh_3)(L)]^{n+,44b,c}$ but which has been mainly applied when L is a saturated alkyl ligand.⁴⁶ In view of the diminished π acidity

(46) As would be intuitively expected, the HOMO of the $(\eta^5-C_5H_5)$ Fe-(46) As would be intuitively expected, the HOMO of the $(\eta^5-C_5H_5)$ Fe-(CO)(PH₃)⁺ fragment calculates to be lower in energy (0.034 eV) than that of the $(\eta^5-C_5H_3)$ Re(NO)(PH₃)⁺ fragment. Thus, $M-C_\alpha$ frontier MO inter-actions in $[(\eta^5-C_5H_5)$ Fe(CO)(PPh₃)(L)]^{*+} complexes should be diminished. This is evidenced by the lower Fe⁻⁻⁻C_a rotational barriers for alkylidene ligands in $[(\eta^5-C_5H_5)$ Fe(CO)(PPh₃)(=CHR)]⁺ complexes (ca. 8 kcal/mol, compared to 15-21 kcal/mol in analogous rhenium complexes^{13a,b,15}): Brookhart, M.; Studabaker, W. B. *Chem. Rev.* **1987**, *87*, 411 (ref 49). Studabaker, W. B. Ph.D. Thesis, University of North Carolina, Chapel Hill, 1986; p 97. Hence, PPh₃ ligand bulk should be a more important $M-C_\alpha$ conformation-determining factor in iron complexes of unsaturated ligands. factor in iron complexes of unsaturated ligands.

			angles,	deg
			$(E) \cdot 2d \cdot CH_2Cl_2$	(Z)-10d
<u>.</u>	Re	N	95.8 (2)	93.3 (3)
P	Re	C(1)	85.1 (2)	89.2 (3)
Ν	Re	C (1)	94.4 (2)	98.3 (4)
Re	C(1)	C(2)	132.2 (5)	130.0 (9)
Re	C(1)	H(1)	120.5 (39)	110 4 (5)
C(1)	O(2)	C(4)		118.4(8)
C(2)	C(1)	O(2)		119.4 (10)
$\tilde{C}(1)$	C(2)	C(3)	124.9 (6)	126.8 (12)
C(1)	C(2)	H(2)	124.2 (32)	116.6 (13)
C(2)	C(1)	H(1)	107.1 (39)	1121(11)
C(2)	C(3)	U(46)	111.7(3) 110.5(32)	115.1(11) 116.6(11)
Re	N (2)	0	174.8 (5)	177.9 (10)
C(1)	Re	C(51)	88.0 (2)	82.6 (4)
C(1)	Re	C(52)	113.8 (3)	102.5 (4)
C(1)	Re	C(53)	146.3 (2)	138.9 (4)
C(1)	Re	C(54)	130.8(2)	136.0(5)
P	Re	C(53)	133.7(3)	127.0(3)
P	Re	C(52)	151.9 (2)	153.3 (3)
Р	Re	C(53)	119.2 (2)	125.6 (3)
Р	Re	C(54)	93.3 (2)	94.5 (3)
P	Re	C(55)	99.9 (2)	96.3 (3)
N N	Re	C(51)	130.4(3) 103.0(2)	139.7 (4)
N	Re	C(53)	105.0 (2)	100.3 (5)
N	Re	C(54)	134.6 (2)	125.2 (5)
Ν	Re	C(55)	161.7 (2)	160.0 (5)
C(52)	C(51)	C(55)	109.4 (7)	108.2(12)
C(51)	C(52)	C(53)	107.4 (7)	108.4(11) 108.1(12)
C(52) C(53)	C(54)	C(55)	108.9 (7)	106.0 (12)
C(51)	C(55)	C(54)	106.6 (7)	109.3 (12)
Re	P	C(16)	117.1 (2)	114.9 (4)
Re	Р	C(26)	119.4 (2)	119.2(3)
P	г С(16)	C(30)	120.7(4)	112.4 (4)
P	C(16)	C(11)	121.4 (4)	122.2 (8)
Р	C(26)	C(21)	119.1 (4)	116.9 (10)
P	C(26)	C(25)	122.1 (4)	123.8 (9)
P	C(36)	C(31)	120.0 (4)	120.3(10) 1189(7)
C(16)	P	C(35) C(26)	99.1 (2)	99.9 (5)
C(16)	P	C(36)	104.1 (2)	104.2 (4)
C(26)	Р	C(36)	104.2 (2)	104.4 (5)
C(11)	C(12)	C(13)	120.0 (6)	118.9 (12)
C(12) C(12)	C(13)	C(14)	121.1 (0)	120.7(12) 122.0(10)
C(12) C(11)	C(16)	C(15)	117.9 (5)	118.1 (11)
C(13)	C(14)	C(15)	118.7 (6)	119.2 (11)
C(14)	C(15)	C(16)	121.9 (5)	121.0 (13)
C(21)	C(22)	C(23)	120.3 (6)	125.6 (18)
C(21) C(22)	C(23)	C(23)	118.5 (5)	119.2(11) 115.2(19)
C(22)	C(21)	C(24)	121.2 (5)	119.2 (14)
C(23)	C(24)	C(25)	120.6 (6)	123.8 (19)
C(24)	C(25)	C(26)	120.0 (5)	116.9 (15)
C(31)	C(32)	C(33)	120.0 (6)	118.6 (11)
C(31) C(32)	C(30) C(31)	C(35) C(36)	119.3 (5)	120.1(11) 120.2(12)
C(32)	C(33)	C(34)	120.3 (5)	121.6 (13)
C(33)	C(34)	C(35)	120.8 (6)	119.8 (16)
C(34)	C(35)	C(36)	119.7 (5)	119.7 (12)
C(3)	C(46)	C(41)	122.3 (6)	122.0 (10)
C(41)	C(40)	C(43)	119.4 (7)	119.7 (20)
C(41)	C(46)	C(45)	116.9 (6)	119.2 (11)
C(42)	C(41)	C(46)	122.4 (7)	121.8 (15)
C(42) C(43)	C(43) C(44)	C(44)	119.9 (7) 119.3 (7)	121.0 (15)
C(44)	C(44) C(45)	C(46)	122.1 (7)	119.9 (14)
CÌ(SÁ)	C(S)	CÌ(SB)	114.5 (7)	()

^aSee Figure 3 for atomic numbering; C(S) is the solvate carbon. Additional bond angles involving hydrogen atoms are in the supplementary material.

of vinyl ligands,⁴⁵ it is likely appropriate to view the PPh₃ ligand bulk as a significant Re– C_{α} conformation-determining factor for the complexes reported in this paper. This would reinforce the electronic preference for Re– C_{α} conformations with θ near 0° and 180°.

Additional steric effects upon Re-C_{α} conformations are possible. First, it would not be surprising if conformational minima deviated slightly from $\theta = 0^{\circ}$ to lessen interaction between the NO ligand and the C_{β} substituent cis to rhenium (see VI, Figure 1). This is suggested by both EHMO calculations in Figure 2. Also, PPh₃ ligand bulk should favor Re-C_{α} rotation to positive θ . Second, both calculations show a slight energy maximum near $\theta = 145^{\circ}$, which is approximately coincident with rotation of C_{β} of the vinyl ligand over the cyclopentadienyl ligand ($\theta = 135^{\circ}$).

The EHMO calculations do not clearly predict whether Re- C_{α} conformations with θ near 0° or 180° should be preferred. However, since the NO ligand is smaller than the PPh₃ and cyclopentadienyl ligands, we have been biased that conformations with θ near 0° should be favored. This places the larger C_{α} substituent (=CHR) syn to the NO ligand. Furthermore, al-kylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHR)]^+$ favor Re= C_{α} conformations with θ near 0° (see IV and V) by 1.4->2.7 kcal/mol.¹³ However, note that if the Re-PPh₃ rotamers are averaged, the PPh₃ ligand bulk should equally destabilize conformations with $\theta = 0^\circ$ and 180°, leaving the relative sizes of the cyclopentadienyl and NO ligands as the remaining steric conformation-determining factor. Figure 6 emphasizes the substantial steric influence of the cyclopentadienyl ligand in the N-Re-P plane.⁴⁷

Accordingly, the crystal structure of (Z)-10d exhibits a Re- C_{α} conformation with $\theta = 47^{\circ}$ (Figure 4),⁴⁸ close to the broad minimum at $\theta = 30^{\circ}$ found in the corresponding EHMO calculation (Figure 2B). Surprisingly, the crystal structure of (E)-2d shows a Re- C_{α} conformation with $\theta = 175.5^{\circ}$, contrary to expectations (Figure 5). However, the difference ¹H NOE data suggest that the Re- C_{α} conformation with θ near 0° is more stable in solution. Further, as analyzed below, the conformation with θ near 0° is more reactive toward protonation.⁴⁷

C. C=C Geometric Isomerism. Any C_{β} alkyl substituent cis to rhenium will sterically interact with some rhenium ligand in nearly all Re- C_{α} conformations. Hence, E (trans) C=C isomers should be favored for monosubstituted vinyl complexes **2b-d**, regardless of θ .

The α -methoxyvinyl complexes 10b, 10d, and 10e can in principle exist as four C=C/C $_{\alpha}$ -OCH₃ isomers: XV ("U"-shaped), XVI, XVII ("sickle"-shaped), and XVIII ("W"-shaped).

The (Z)-10 C=C isomers predominate in solution, and s-cis C_{α} -OCH₃ isomers are commonly favored in methyl vinyl ethers.³⁶ Note that in W Z/s-trans isomer XVIII, both the C_{α} methoxy and C_{β} alkyl substituents will have unfavorable steric interactions with rhenium ligands. Hence, we conclude that sickle Z/s-cis

isomer XVI, which is found in the crystal structure of (Z)-10d, is the most stable in solution.

The question arises as to how the lower stability of (E)-10b, (E)-10d, and (E)-10e can be accounted for. The U E/s-cis isomer XV has an unfavorable steric interaction between the cis C_{α} methoxy and C_{β} alkyl substituents. This interaction is diminished in sickle E/s-trans isomer XVII but at the expense of the s-cis C_{α} -OCH₃ conformation. Note that sickle isomers XVI and XVII are comparable sterically but should prefer θ that differ by ca. 180°. Apparently, of all of these possibilities, it is thermodynamically optimum to place the C_{β} alkyl substituent cis to rhenium as in XVI. Concurrently, θ opens to 40–50° to minimize interaction of the C_{β} alkyl substituent with the NO ligand.⁴⁹

The initial formation of appreciable amounts of (E)-10b, (E)-10d, and (E)-10e upon deprotonation of α -methoxycarbene complexes $[(\eta^5-C_5H_5)\text{Re}(\text{NO})(\text{PPh}_3)(=C(\text{OCH}_3)\text{CH}_2\text{R})]^+\text{PF}_6^-$ (9-PF $_6^-$) can be rationalized. Compounds 9-PF $_6^-$, like other methoxycarbene complexes, exist as mixtures of C_{α} -OCH₃ isomers.²⁵ Since they have no conformation-enforcing C_{α} -OCH₃ isomers.²⁵ Since they have no conformation-enforcing C_{α} -OCH₃ alkyl substituents should be less than in (E)-10b, (E)-10d, and (E)-10e. Hence, transition states for the formation of (E)-10 and (Z)-10 should not differ in energy as much as (E)-10 and (Z)-10. Finally, we note that in the enolate anion corresponding to complex 10d, which lacks an O-methyl group, the E C=C isomer is favored.^{17,50}

D. Structures of Related Complexes. Several previous structural studies are particularly relevant to the above discussion. First, Reger has reported the X-ray crystal structures of three iron-vinyl complexes of the formula $(\eta^5-C_5H_5)Fe(CO)(L')(C(R)=CR'R'')(L' = PPh_3, P(OPh)_3).^{3c-e}$ He has analyzed their Fe-C_{α} conformations^{3e} and finds OC-Fe-C_{α}-C_{β} torsion angles near $\theta = 45^{\circ}$ and 225°. These complexes differ from ours in several ways. First, the M-C_{α} frontier MO interactions should be diminished.⁴⁶ Second, the nature of the π repulsive interactions will be altered. Third, all compounds studies contained either trisubstituted or tetrasubstituted C=C double bonds, so additional steric M-C_{α} conformation-determining factors are present.

Davies has reported that deprotonation of iron α -methoxycarbene complexes $[(\eta^5-C_5H_5)Fe(CO)(PPh_3)(=C(OCH_3)-C(OCH_3))]$ (CH_2R)]⁺ gives vinyl complexes (η^5 - C_5H_5)Fe(CO)(PPh₃)(C- (OCH_3) =CHR) that are exclusively Z C=C isomers.^{5a} The vinyl complex with $R = CH_3$ was structurally characterized and adopts $M-C_{\alpha}$ and C_{α} -OCH₃ conformations very similar to those of (Z)-10d. Bruce has similarly prepared ruthenium α -alkoxyvinyl complexes $(\eta^5-C_5H_5)Ru(CO)(PPh_3)(C(OR)=CHR)^6$ and finds the compound analogous to 10e to exist as a 1:1 mixture of Z/EC=C isomers, similar to our observation. However, the corresponding α -isopropoxyvinyl complex (η^5 -C₅H₅)Ru(CO)(PPh₃)- $(C(OCH(CH_3)_2) = CHC_6H_5)$ is one C=C isomer in solution. Its crystal structure shows $E \subset C = C$ and s-trans C_{α} -oxygen isomers, similar to XVII. Hence, conformational generalizations about one class of vinyl complexes must be extrapolated to other classes with caution.

3. Mechanism of 1,3-Asymmetric Induction. The preceding conformational analysis leads to the following key generalizations: (1) The vinyl complexes reported in this paper preferentially adopt Re-C_{α} conformations with θ near 0° and 180°; this is due to a complex mixture of electronic and steric factors. (2) Interaction of the C_{β} substituent cis to rhenium with the NO ligand can distort θ in the former conformer up to ca. 45°. This conformational model will undoubtedly be more fully developed and refined as additional structural, dynamic, and theoretical data become available. However, the present stage of sophistication suffices for an analysis of 1,3-asymmetric induction in the alkylation reactions described above. Deviations as much as 60° from θ =

⁽⁴⁷⁾ The question of which $\operatorname{Re-C}_{\alpha}$ conformation of (E)-2d (θ near 0° or 180°) is more stable can be approached by analyzing whether there should be a greater energy difference between vinyl complex $\operatorname{Re-C}_{\alpha}$ conformers VI and VII (Figure 1) or alkylidene complex $\operatorname{Re-C}_{\alpha}$ conformers VII and IX (where ΔG are known and favor VIII).¹³ Considerations: (1) There is a R/NO interaction in VI that is not present in VIII; however, this interaction is diminished by the longer $\operatorname{Re-C}_{\alpha}$ bond in VI and any deviation from $\theta = 0^{\circ}$. (2) While IX has three C_{β} substituents that can interact with the η^5 -C₃H₅ and PPh₃ ligands, VII has two; C_{β} should be about the same distance from the rhenium in each.

⁽⁴⁸⁾ Twist angles of 44° still allow appreciable C=C π overlap in strained alkenes such as *trans*-cyclooctene: Wiberg, K. B. Angew. Chem., Int. Ed. Engl. 1986, 25, 312. Hence, significant Re-C_a frontier orbital overlap should be maintained in (Z)-10d.

⁽⁴⁹⁾ For a related analysis of the stabilities of silyl ketene acetal C=C and C=O isomers, see: Wilcox, C. S.; Babston, R. E. J. Org. Chem. 1984, 49, 1451.

⁽⁵⁰⁾ This assumes that (a) the slow deprotonation conditions (hours, 0 °C)¹⁷ give the thermodynamically favored enolate C=C isomer and (b) the stereochemistry of enolate alkylation is analogous to that of (Z)-10b, (Z)-10d, and (Z)-10e.

 0° and 180° do not affect the mechanism presented below. Furthermore, since the product alkylidene complexes show strong conformational preferences for $\theta = 0^{\circ}$ and 180°,¹³ the model improves as the reaction coordinate progresses.

The alkylation reactions shown in eq viii (right) and ix are easiest to analyze. The former connects a reactant ((Z)-10b) that is a lower homologue of structurally characterized (Z)-10d with an acyl complex product ((SR,RS)-13) whose stereochemistry has been determined by an X-ray crystal structure.^{20b,35} The latter connects a structurally characterized reactant ((Z)-10d) with an acyl complex product ((SS,RR)-13) whose stereochemistry has been established by a crystal structure of its diastereomer. The former is shown in expanded form in Figure 7.

We consider four limiting transitions states for these reactions, two of which are shown in Figure 1. First, a Re-C_{α} conformer with θ near 0° (VI) could undergo electrophilic attack upon the C_{β} face anti to the bulky PPh₃ ligand to give alkylidene product VIII. This is consistent with the observed stereochemistry, as shown in Figure 7. Second, a Re- C_{α} conformer with θ near 180° (VII) could be attacked upon the C_{β} face anti to the PPh₃ ligand to give alkylidene product IX. This gives the opposite configuration at carbon and is inconsistent with the predominant stereochemistry. From Figures 1 and 6, it seems likely that the cyclopentadienyl ligand sterically hinders this mode of electrophilic attack. Finally, there are two corresponding transition states in which the electrophile attacks the C_{β} face syn to the bulky PPh₃ ligand. However, in numerous reactions involving C_{α}^{13} and $C_{\beta}^{14,17}$ attack upon unsaturated ligands (L) in $[(\eta^5-C_5H_5)Re(NO) (PPh_3)(L)$ ⁿ⁺ complexes, we have never noted significant amounts of products that could arise via reactant approach syn to the PPh₃ ligand.

The low-temperature reactions of 2a-d and CF₃SO₃H provide further evidence that $Re-C_{\alpha}$ conformer VI is more reactive than conformer VII. Note that electrophilic attack upon the former gives, regardless of direction, an ac(t) Re= C_{α} isomer (Figure 1),²² whereas attack upon the latter gives an sc (k) Re= C_{α} isomer. A control experiment above shows that the slow thermal interconversion of these Re= C_{α} isomers is not accelerated by CF₃S- O_3H . Protonation of the smallest vinyl ligand, that in ethenyl complex 2a, gives a (71 ± 2) : (29 ± 2) ratio to *ac/sc* ethylidene isomers. A similar kinetic ratio is observed in the reaction of 2a with $Ph_3C^+PF_6^-$ to give 7-PF₆⁻ (eq iv). Protonation of the C₈substituted vinyl complexes (E)-2b-d gives ca. 90:10 ratios of ac/scalkylidene products. Thus, we conclude that $Re-C_{\alpha}$ conformers with θ near 0° (VI) are more reactive than conformers with θ near 180° (VII) and that the difference is greater for C_{β} -substituted vinyl complexes. Hence, the only other transition state consistent with the stereochemistry of eq viii—attack upon VII from the C_{β} face syn to PPh₃-is rejected as unlikely by two criteria.

We assume an identical stereochemistry of electrophilic attack upon all of the vinyl complexes and make product diastereomer assignments accordingly. Thus, deuteriation of propenyl complex (*E*)-**2b** with CF₃SO₃D must yield predominantly the propylidene complex diastereomer (*SR*,*RS*)-*ac*-**1b**- β -*d*-CF₃SO₃⁻, and deuteriomethylation of (*E*)-**2b** with CD₃SO₃F must yield predominantly the isobutylidene complex diastereomer (*SS*,*RR*)-*ac*-**3**-FSO₃⁻⁻ γ -*d*₃ (Scheme I). The minor diastereomers formed in the above reactions can arise from electrophilic attack upon the C_{β} face anti to the PPh₃ in VII (Figure 1) or from small amounts of the opposite C==C geometric isomers.

4. Conclusion. From the preceding mechanistic analysis, we generalize the key factors responsible for efficient asymmetric induction in reactions of rhenium complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(L)]^{n+}$, where L is an η^1 unsaturated ligand, as follows: (1) The ligand L adopts a Re- C_α conformation that maximizes or has a high degree of frontier orbital overlap and minimizes any Re- $C_\alpha \pi$ repulsive interactions. (2) With weaker π accepting ligands such as vinyl, the influence of PPh₃ ligand bulk upon the Re- C_α conformation increases, but any effect reinforces 1. (3) The attacking reagent approaches the ligand face opposite to the bulky PPh₃ ligand. (4) For the specific case of C_β electrophilic attack upon vinyl complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CX=$

CHR) (X = H, OCH₃), conformations with θ near 0° are more reactive than those with θ near 180°.

We have previously shown that factors 1 and 3 account for the high 1,2-asymmetric induction observed in C_{α} nucleophilic attack upon alkylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHR)]^+$ (see IV and V).¹³ We have also used 3 to explain the high 1,3-asymmetric induction found for C_{β} electrophilic attack upon acetylide complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(C=CR).^{14}$ Factors 1–4 also account for the 1,3-asymmetric induction observed in C_{β} electrophilic attack upon enolates derived from the deprotonation of acyl complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(COR).^{17}$ However, there are reactions of other types of $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(L)]^{n+}$ complexes in which the mechanisms of 1,*n*-asymmetric induction are different¹⁸ or remain unexplained.¹⁶ The latter provide challenges for future conformational and transition-state analyses.

In an elegant series of papers, Davies and Liebeskind have reported related examples of 1,3-asymmetric induction in reactions of iron complexes $(n^5-C_5H_5)Fe(CO)(PPh_3)(L)$.^{5,34} Although we caution that the energies of key metal fragment orbitals will differ in these complexes,⁴⁶ the above analysis can be adapted to account for many of their stereochemical results. Indeed, Davies and Liebeskind have reported similar interpretations but with greater emphasis upon steric M-C_a conformation-determining effects.^{5,34,44b,c,51}

This study further demonstrates the versatility and effectiveness of the $(\eta^5-C_5H_5)Re(NO)(PPh_3)$ moiety as a stereogenic transmitter. It should now be possible, by adding nucleophiles to the alkylidene complexes that are initial products of C_{β} electrophilic attack upon vinyl complexes, to construct contiguous chiral centers α and β to the rhenium. Furthermore, the $(\eta^5-C_5H_5)Re(NO)$ -(PPh₃) moiety can be readily detached from most ligands—often with retention of configuration at rhenium.^{13e,18} Hence, as recycle capabilities are developed and refined, we expect the $(\eta^5-C_5H_5)Re(NO)(PPh_3)$ moiety to become a useful chiral auxiliary for organic synthesis. Finally, this study has shown the $(\eta^5-C_5H_5)Re(NO)(PPh_3)$ moiety to be both a useful and a sterically and electronically unique C=C double-bond donor substituent.

Experimental Section

General Procedures. All reactions were carried out under a dry N₂ atmosphere. All chromatography was conducted in air unless noted. IR spectra were recorded on Perkin-Elmer Model 521 and 1500 (FT) spectrometers. NMR spectra were recorded on Bruker WP-200 and Varian SC-300, XL-300 (¹H, ¹³C), and FT-80A (³¹P) spectrometers as outlined in Table I. Mass spectra were obtained on AEI-MS9 and VG Micromass 7070E spectrometers. Microanalyses were conducted by Galbraith and Schwarzkopf Laboratories. Melting points were determined in evacuated capillaries and were not corrected.

Solvents were purified as follows: acetone and ethyl acetate, distilled from CaH₂; benzene, ether, and THF, distilled from Na/benzophenone; hexanes and pentane, distilled from Na; CH₂Cl₂, CHCl₃, CD₂Cl₂, and CDCl₃, distilled from P₂O₅; C₆D₆, CD₃CN, and acetone- d_6 , distilled from CaH₂.

Starting materials were purified as follows: $Ph_3C^+PF_6^-$ (Aldrich or Columbia), precipitated from CH_2Cl_2 /ethyl acetate; CF_3SO_3H (Aldrich), distilled under vacuum; $HBF_4\cdot Et_2O$ (Aldrich), used as received; $(CF_3SO_2)_2O$ (Alfa), refluxed over and distilled from P_2O_5 ; CF_3SO_3D , prepared by mixing the anhydride with 1.0 equiv of D_2O in an ampule (4–5 days, until homogeneous), followed by distillation;⁵² $C_6H_5CH_2Br$ (Aldrich), washed with concentrated H_2SO_4 , H_2O , and NaHCO₃ (saturated), dried over anhydrous Na₂CO₃, vacuum distilled [30–32 °C (0.06 mm)], and stored over Cu turnings (dark, -20°C); CH_3I (Aldrich) and CD_3I (KOR), distilled from P_2O_5 and stored over Cu ribbon at -20 °C; CH_3OSO_2F (Aldrich) and CD_3IOSO_2F (Aldrich), refluxed over and distilled from CAH_2 ; $(CH_3)_3O^+BF_4^-$ (Aldrich), used as received; DBU (Aldrich),^{23e} vacuum distilled from LAH [62–64 °C (0.06 mm)]; NaH and KH (Alfa, Aldrich; both oil dispersions), washed with hexanes and

⁽⁵¹⁾ Davies, S. G.; Seeman, J. I. Tetrahedron Lett. 1984, 25, 1845.

 ⁽⁵²⁾ Perkins, C. W.; Martin, J. C.; Arduengo, A. J.; Lau, W.; Alegria, A.;
 Kochi, J. K. J. Am. Chem. Soc. 1980, 102, 7753. Pasto, D. J.; Gadberry, J.
 F. Ibid. 1978, 100, 1469.

dried in vacuo; $N(C_2H_5)_3$ (Fischer), used as received.

Preparation of $[(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})(=CHCH_{2}CH_{2}C_{6}H_{5})]^{+}PF_{6}^{-1}$ (**1d**-PF₆⁻¹). A Schlenk flask was charged with $(\eta^{5}-C_{5}H_{5})Re(NO)$ -(PPh_{3})(CH₂CH₂CH₂C₆H₅) (0.400 g, 0.604 mmol),²⁵ CH₂Cl₂ (40 mL), and a stir bar. The solution was cooled to -78 °C, and Ph₃C⁺PF₆⁻¹ (0.258 g, 0.664 mmol, 1.1 equiv) was added with stirring. After 0.5 h, the reaction was warmed to room temperature and stirred for an additional 2 h. Then hexanes (20 mL) were added, and solvent was removed via oil pump vacuum. The resulting yellow powder was triturated with hexanes, washed with cold acetone, and dried in vacuo to give 0.438 g (0.543 mmol, 90%) of **1d**-PF₆⁻, mp 148–150 °C dec. IR (cm⁻¹, KBr): $\nu_{N=0}$ 1706 s. ¹H NMR (δ, CD₃CN): 15.59 (ddd, $J_{H_{6}H_{6}} = 8$ Hz, $J_{H_{6}H_{5}}$, = 8 Hz, $J_{H_{6}H_{5}}$, 2.69 (m, =CHCH₂). ¹³C NMR (ppm, CD₃CN): 312.7 (d, $J_{CP} = 6$ Hz, C_{α}), PPh₃ at 133.7 (d, $J_{CP} = 10$ Hz), 133.0 (s, p), 130.1 (d, $J_{CP} = 11$ Hz); CC₆H₅ at 149.0 (s, ipso), 127.2 (s), 127.1 (s), 125.1 (s, p); 100.1 (s, C₅H₅), 58.4 (s, C_β), 34.6 (s, C_γ). ³¹P{¹H} NMR (ppm, C₆H₅C): 17.5 (s). Anal. Calcd for C₃₂H₃₀F₆NOP₂Re: C, 47.63; H, 3.72.

Preparation of $(\eta^5 - C_5 H_5)$ Re(NO)(PPh₃)(CH=CH₂) (2a). A Schlenk flask was charged with $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHCH_3)]^+PF_6^-$ (1a-PF₆⁻; 0.150 g, 0.209 mmol),^{13b} CH₂Cl₂ (15 mL), and a stir bar. The solution was cooled to -15 °C (ethylene glycol/CO₂), and DBU (0.063 mL, 0.418 mmol, 2.0 equiv)^{23c} was added with stirring. After 0.5 h, the resulting orange solution was warmed to room temperature and stirred for an additional 1 h. Solvent was removed under oil pump vacuum, and the residue was extracted with benzene. The extract was filtered, and an equal volume of hexanes was added. Solvents were removed by rotary evaporation, and the resulting orange oil was dissolved in benzene. This was passed through a plug of silica gel that had been previously treated with $N(C_2H_5)_3$ with 50:50:10 (v/v/v) ethyl acetate/hexanes/ $N(C_2H_5)_3$ as eluent. The orange band was collected, and solvents were removed under oil pump vacuum to give an orange bubble-up solid. The solid was dissolved in ether, and hexanes were added. Solvents were removed under oil pump vacuum to give 2a as an orange powder (0.093 g, 0.163 mmol, 78%), mp 163–165 °C dec. IR (cm⁻¹, CHCl₃): $\nu_{N=0}$ 1641 s. MS (16 eV, m/e, ¹⁸⁷Re): 571 (M⁺, 100%), 467 (M⁺ - C₂H₃ - C₆H₅, 32%), 262 (Ph₃P⁺, 7%). Anal. Calcd for C₂₅H₂₃NOPRe: C, 52.62; H, 4.07. Found: C, 52.46; H, 4.18.

Preparation of (E)- $(\eta^5-C_5H_5)$ **Re(NO)(PPh₃)(CH=CHCH₃) ((E)-2b).** A Schlenk flask was charged with $[(\eta^5-C_5H_5)$ Re(NO)(PPh₃)(= CHCH₂CH₃)]⁺PF₆⁻(1b-PF₆⁻; 0.300 g, 0.411 mmol),^{13b} CH₂Cl₂ (30 mL), and a stir bar. Then DBU (0.115 mL, 0.770 mmol, 1.5 equiv) was added with stirring. After 1 h, the reaction was worked up as described for the preparation of 2a. The orange bubble-up solid was dissolved in CH₂Cl₂, layered with three volumes of hexanes, and kept at -20 °C for 4 days. Red crystals formed, which were collected by filtration and dried in vacuo. A second crop was similarly obtained from the filtrate for a total of 0.190 g (0.325 mmol, 79%) of (E)-2b, mp 184–186 °C dec. IR (cm⁻¹, CHCl₃): $\nu_{N=0}$ 1641 s. MS (16 eV, m/e, ¹⁸⁷Re): 585 (M⁺, 100%), 544 (M⁺ - C₃H₅, 7%), 467 (M⁺ - C₃H₅ - C₆H₅, 17%), 323 (M⁺ - PPh₃, 5%), 262 (Ph₃P⁺, 39%). Anal. Calcd for C₂₆H₂₅NOPRe: C, 53.46; H, 4.28. Found: C, 53.86; H, 4.44.

Preparation of $(E) - (\eta^5 - C_3H_5) \text{Re}(\text{NO})(\text{PPh}_3)(\text{CH}=\text{CHCH}_2\text{CH}_2\text{CH}_2\text{CH}_3)$ ((E) - 2c). Complex $[(\eta^5 - C_5H_5) \text{Re}(\text{NO})(\text{PPh}_3)(=$ CHCH $_2\text{CH}_2\text{CH}_2\text{CH}_3)]^+\text{PF}_6^-$ (1c-PF $_6^-$; 0.250 g, 0.330 mmol)^{13b} and DBU (0.074 mL, 0.495 mmol, 1.5 equiv) were reacted in CH $_2\text{Cl}_2$ (25 mL), analogous to the procedure used to prepare (E)-2b. An identical workup gave red crystals of (E)-2c (0.172 g, 0.280 mmol, 85%), mp 163-164 °C dec. IR (cm⁻¹, CHCl_3): 1641 s. MS (16 eV, m/e, ¹⁸⁷Re): 613 (M⁺, 100%), 584 (M⁺ - C_2H_5, 23%), 467 (M⁺ - C_3H_9 - C_6H_5, 12%), 262 (Ph_3P⁺, 26\%). Anal. Calcd for C $_{28}H_{29}$ NOPRe: C, 54.88, H, 4.77. Found: C, 54.80; H, 4.77.

Preparation of (E)- $(\eta^5$ -C₅H₅)Re(NO)(PPh₃)(CH=CHCH₂C₆H₅). CH_2Cl_2 ((E)-2d·CH_2Cl_2). Complex 1d-PF₆⁻ (0.300 g, 0.372 mmol) and DBU (0.083 mL, 0.558 mmol, 1.5 equiv) were reacted in CH_2Cl_2 (30 mL), analogous to the procedure used to prepare (E)-2b. An identical workup gave a corresponding orange bubble-up solid, which was dissolved in CH₂Cl₂. Addition of hexanes precipitated an orange powder, which was collected by filtration, washed with cold ether, and dried in vacuo to give 0.226 g (0.342 mmol, 92%) of a (92 ± 2) : (8 ± 2) (E)-2d/(Z)-2d mixture, mp 172–175 °C dec. Anal. Calcd for $C_{32}H_{29}NOPRe: C$, 58.16; H, 4.39. Found: C, 58.25; H, 4.44. MS (17 eV, m/e, ¹⁸⁷Re): 661 $(M^+, 45\%), 544 (M^+ - C_9H_9, 17\%), 399 (M^+ - PPh_3, 9\%), 262 (Ph_3P^+)$ 100%). A sample (0.063 g, 0.094 mmol) was dissolved in CH₂Cl₂ (1 mL), layered with hexanes (7 mL), and kept at -20 °C for 3 days. Orange prisms formed, which were collected by filtration, washed with cold ether $(2 \times 5 \text{ mL})$, and dried in vacuo to give (E)-2d-CH₂Cl₂ (0.065 g, 0.087 mmol, 93%; 86% from 1d-PF₆), mp 191-194 °C dec. IR (cm⁻¹, **KBr**): $\nu_{N=0}$ 1644 s. Anal. Calcd for $C_{33}H_{31}Cl_2NOPRe$: C, 53.15; H,

4.20; Cl, 9.51. Found: C, 53.02; H, 4.32; Cl, 9.42. The presence of the solvate was confirmed by 1 H NMR in CDCl₃.

Reactions of Vinyl Complexes 2a-d with Acids. The following procedures are representative.

A. ¹H NMR Monitored Experiments. A 5-mm NMR tube was charged with ethenyl complex 2a (0.0047 g, 0.008 mmol) and $CD_2Cl_2/(CH_3)_4Si$ (0.300 mL) and was capped with a septum and frozen in liquid N₂. Then CF_3SO_3H (0.0008 mL, 0.009 mmol, 1.1 equiv) was added. The tube was thawed, shaken once, and transferred to a -78 °C NMR probe. A ¹H NMR spectrum was recorded immediately. Ethylidene complexes ac-1a- $CF_3SO_3^-$ were the only products. Integrations of the Re= CH_{α} resonances indicated a (71 ± 2):(29 ± 2) ratio of isomers.

B. Isolation of 1b-CF₃SO₃⁻ from the Reaction of 2b with CF₃SO₃H. A Schlenk flask was charged with 2b (0.100 g, 0.171 mmol) and CH₂Cl₂ (10 mL). Then CF₃SO₃H (0.018 mL, 0.20 mmol) was added with stirring. The volatiles were removed under oil pump vacuum, and the residual oil was triturated with ether and then hexane. The oil was dissolved in CH₂Cl₂ (5 mL), and ether (40 mL) and hexanes (40 mL) were then added. The solvents were slowly removed under oil pump vacuum. The resulting powder was dried overnight under oil pump vacuum to give 1b-CF₃SO₃⁻ (0.115 g, 0.157 mmol, 91%) that was pure by ¹H NMR (δ , CDCl₃, 200 MHz): 15.8 (t, J_{HH} = 8 Hz, H_a), 7.8-7.3 (m, phenyl), 6.0 (s, C₅H₅), 3.4-2.9 (m, H_β), 2.8-2.4 (m, H_{β'}), 0.8 (distorted t, J_{HH} = 6 Hz, H_{\gamma}).

C. Reaction of 2b with CHCl₂CO₂H. A 5-mm NMR tube was charged with propenyl complex (*E*)-2b (7.5 mg, 0.013 mmol) and CD₂Cl₂/(CH₃)₄Si (0.300 mL) and was capped with a septum and transferred to a -68 °C NMR probe. A t_0 ¹H NMR spectrum was recorded. The tube was then frozen in liquid N₂, and CHCl₂CO₂H (0.0011 mL, 0.013 mmol) was added. The tube was returned to the -68 °C NMR probe, and the ¹H NMR methyl resonances indicated a (66 ± 2):(34 ± 2) ratio of 1b-CHCl₂CO₂⁻ ((90 ± 2):(10 ± 2) ac/sc) to 2b ((82 ± 2):(18 ± 2) E/Z).

D. Reaction of (E)-2b with CF₃SO₃D. A 5-mm NMR tube was charged with (E)-2b (0.012 g, 0.021 mmol) and CD₂Cl₂ (0.300 mL) and was capped with a septum. The tube was shaken to dissolve the (E)-2b, cooled in liquid N₂, and transferred to a -75 °C NMR probe. A t_0 ¹H NMR spectrum was recorded. The tube was removed from the probe and frozen in liquid N₂. Then CF₃SO₃D (0.002 mL, 0.022 mmol) was added by syringe. The tube was thawed, shaken once, and returned to the -75 °C NMR probe. Analysis by ¹H NMR indicated that 78% of the resulting 1b-CF₃SO₃⁻ contained a single deuterium and that the ac-1b- β - d_x -CF₃SO₃⁻ ratio was (87 ± 2):(13 ± 2). The relative areas of the ac-1b H_β proton resonances (highfield > low-field) indicated a (76 ± 2):(24 ± 2) ratio of ac-1b- β - d_1 diastereomers.

Preparation of $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHCH(CH_3)_2)]^+FSO_3^-$ (3-FSO₃⁻). In a typical experiment, a Schlenk flask was charged with **2b** (0.096 g, 0.164 mmol), CH_2Cl_2 (1.0 mL), and a stir bar. This mixture was cooled to -25 °C (CO₂/CCl₄), and CH₃OSO₂F (0.150 mL, 1.85 mmol, 11.3 equiv) was added with stirring. After 17 min, volatiles were removed under oil pump vacuum while a reaction temperature of -25 °C was maintained. Complete removal of CH₃OSO₂F usually required 5-7 h. The residue was taken up in CD₂Cl₂, rapidly transferred to a 5-mm NMR tube, and frozen in liquid N_2 . The tube was transferred to a cooled NMR probe and ¹H NMR spectra were recorded from -25 to -10 °C. Complex 3-FSO₃ was present in \geq 95% spectroscopic yield. Complexes 1b-FSO₃⁻ (2-3%) and 5 (2-3%) were also present; under careful conditions, no isobutylene complex was observed. IR (cm⁻¹, thin film): $\nu_{N=0}$ 1712 s. ¹H NMR (δ , CD₂Cl₂, -3 °C): 15.16 (d, $J_{H_{\alpha}H_{\beta}}$ = 11 Hz, Re= $\begin{array}{l} {\rm CH}_{\alpha}, 7.80{\rm -}6.90 \ ({\rm m}, {\rm PPh}_3), 5.96 \ ({\rm s}, {\rm C}_5{\rm H}_5), 3.96 \ ({\rm m}, {\rm J}_{{\rm H}_{\alpha}{\rm H}_{\beta}} = 11 \ {\rm Hz}, \\ {\rm J}_{{\rm H}_{\beta}{\rm H}_{\gamma}} = 7 \ {\rm Hz}, {\rm J}_{{\rm H}_{\beta}{\rm H}_{\gamma}} = 7 \ {\rm Hz}, {\rm CH}_{\beta}), 0.98 \ ({\rm d}, {\rm J}_{{\rm H}_{\gamma}{\rm H}_{\beta}} = 7 \ {\rm Hz}, {\rm CH}_3), 0.22 \\ ({\rm d}, {\rm J}_{{\rm H}_{\gamma}{\rm H}_{\beta}} = 7 \ {\rm Hz}, {\rm CH}'_3). \ ^{13}{\rm C} \ {\rm NMR} \ ({\rm ppm}, {\rm CD}_2{\rm Cl}_2, -3 \ {\rm °C}): \ 319.5 \ ({\rm d}, \\ \end{array}$ $J_{CP} = 9$ Hz, C_{ab} , PPh₃ at 134.0 (d, $J_{CP} = 11$ Hz), 133.2 (s, p), 131.6 (d, $J_{CP} = 61$ Hz, ipso), 130.6 (d, $J_{CP} = 12$ Hz); 100.0 (s, C_5H_5), 56.5 (s, C_{bb}), 21.4 (s, C_{γ}), 18.7 (s, $C_{\gamma'}$).

Preparation of (SS,RR)-ac- $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHCH-(CH_3)(CD_3))]^+FSO_3^- ((SS,RR)-ac-3-FSO_3^-\gamma-d_3). A 5-mm NMR tube was charged with <math>(E)$ -2b (0.0060 g, 0.010 mmol) and $CD_2Cl_2/(CH_3)_4Si$ (0.300 mL) and was capped with a septum. The tube was shaken vigorously to effect dissolution and was transferred to a -25 °C NMR probe, where a t_0 ¹H NMR spectrum was recorded. The tube was removed from the probe, and CD_3SO_3F (0.009 mL, 0.10 mmol) was added. The tube was returned to the probe, and a ¹H NMR spectrum showed an (E)-2b/(Z)-2b equilibrium mixture to be present. Over the course of 20 min, >90% conversion to (SS,RR)-ac-3-FSO₃⁻ γ -d₃ occurred, as assayed by ¹H NMR integration of the methyl resonances. A small amount of 1b-FSO₃⁻ formed, but no $6 \cdot d_3$ -FSO₃⁻ was detected.

Preparation of $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH=C(CH_3)_2)$ (4). Complex (E)-2b (0.076 g, 0.130 mmol) and CH₃OSO₂F (0.115 mL, 1.30

mmol, 10 equiv) were reacted in CH₂Cl₂ (1 mL), analogous to the procedure used to prepare 3-FSO₃⁻. The residue was taken up in cold CH₂Cl₂ (3 mL), and 2.0 mL of a 1.17 M t-BuOH solution of t-BuO⁻K⁺ was added. The reaction was warmed to room temperature and filtered. The filtrate was washed with degassed H₂O (3 × 30 mL) and saturated aqueous NaCl (30 mL) and dried over Na₂SO₄. The drying agent was removed by filtration, and the filtrate was concentrated by rotary evaporation. Hexanes were added, giving an undesired brown precipitate that was removed by filtration. The filtrate was concentrated by rotary evaporation until a cloud point was reached. The sample was stored at -20 °C overnight. Red crystals formed, which were collected by filtration and dried in vacuo to give 0.047 g (0.079 mmol, 60%) of 4, mp 204-205 °C dec. IR (cm⁻¹, KBr): $\nu_{N=O}$ 1622 s. MS (15 eV, m/e, ¹⁸⁷Re): 599 (M⁺, 100%), 544 (M⁺ - C₄H₇, 8%), 467 (M⁺ - C₄H₇ - C₆H₅, 6%), 337 (M⁺ - PPh₃, 17%), 262 (Ph₃P⁺, 91%). Anal. Calcd for C₂₇H₂₇NOPRe: C, 54.17; H, 4.55. Found: C, 54.06; H, 4.64.

Preparation of 3-BF₄⁻ from 4 and HBF₄·Et₂O. A 5-mm NMR tube was charged with 4 (0.0132 g, 0.022 mmol) and CD₂Cl₂ (0.300 mL) and was capped with a septum. The tube was frozen in liquid N₂, and HBF₄·Et₂O (0.004 mL, 1.60 g/mL,⁵³ 1.8 equiv) was added. The tube was thawed and shaken, and a ¹H NMR spectrum was recorded at 7 °C. The only resonances present were due to isobutylidene complex 3-BF₄⁻, Et₂O, and excess HBF₄·Et₂O.

Preparation of ac-[(η^{5} -C₅H₅)Re(NO)(PPh₃)(=CHC(CH₃)₃)]⁺FSO₃⁻ (ac-5-FSO₃⁻). A Schlenk tube was charged with 4 (0.100 g, 0.167 mmol), CH₂Cl₂ (10 mL), and a stir bar. Then CH₃OSO₂F (0.054 mL, 0.669 mmol, 4.0 equiv) was added with stirring. After 10 h, volatiles were removed under oil pump vacuum (5–7 h). The resulting yellow foam was extracted with CH₂Cl₂. The extract was filtered through a medium-porosity glass frit, and an equal volume of hexanes was added to the filtrate. Solvents were removed by rotary evaporation, and the resulting yellow powder was dissolved in CHCl₃, layered with three volumes of hexanes, and kept at –20 °C for 3 days. This gave yellow crystals, which were collected by filtration, washed with cold CHCl₃, and dried in vacuo to give 0.107 g (0.150 mmol, 90%) of ac-5-FSO₃⁻, mp 212–215 °C dec. IR (cm⁻¹, KBr): $\nu_{N==0}$ 1702 s. ¹H NMR (δ , CD₂Cl₂): 15.18 (s, Re=CH_a), 8.00–7.30 (m, PPh₃), 5.94 (s, C₅H₅), 0.91 (s, CH₃). ¹³C NMR (ppm, CD₂Cl₂): 320.8 (d, J_{CP} = 8 Hz, C_{α}), PPh₃ at 134.0 (d, J_{CP} = 11 Hz); 100.1 (s, C₅H₅), 61.2 (s, C_βH₃0-FNO₄PReS: C, 47.18; H, 4.21. Found: C, 47.26; H, 4.23.

Preparation of $ac - [(\eta^5 - C_5H_5)Re(NO)(PPh_3)(=CHCH_2CPh_3)]^+$ PF₆-CH₂Cl₂ (ac-7-PF₆-CH₂Cl₂). A. A Schlenk tube was charged with **2a** (0.150 g, 0.263 mmol), $C\dot{H}_2\dot{C}l_2$ (15 mL), and a stir bar. The solution was cooled to -78 °C, and $Ph_3C^+PF_6^-$ (0.102 g, 0.263 mmol, 1.0 equiv) was added with stirring. After 0.5 h, the reaction was warmed to room temperature and stirred for an additional 2 h. Then hexanes (20 mL) were added, and solvents were removed by rotary evaporation. The resulting yellow solid was triturated with ether and hexanes to give 0.244 g (0.234 mmol, 89%) of crude 7-PF₆·(CH₂Cl₂)_x; analysis by ¹H NMR showed the presence of ac (δ 15.15) and sc (δ 16.10) Re=C geometric isomers. The solid was dissolved in CH₂Cl₂, layered with four volumes of hexanes, and kept at room temperature for 2 days. Yellow prisms formed, which were collected by filtration and dried in vacuo to give 0.222 g (0.213 mmol, 81%) of ac-7-PF6-CH2Cl2, mp 200-202 °C dec. IR (cm⁻¹, KBr): $\nu_{N=0}$ 1715 s. ¹H NMR (δ , CD₂Cl₂): 15.15 (dd, $J_{H_{\alpha}H_{\beta}}$ IR (Cfii ', Kbj): $v_{N=0}$ (1/15 s. fit function (c, C2₂C₁₂): 12.15 (d, $v_{H_{\alpha}H_{\beta}}$ = 10 Hz, $J_{H_{\alpha}H_{\beta'}}$ = 3 Hz, Re=CH_{\alpha}), 7.80-6.90 (m, 6 C₆H₅), 5.56 (s, C₅H₅), 4.72 (dd, $J_{H_{\beta}H_{\alpha}}$ = 10 Hz, $J_{H_{\beta}H_{\beta'}}$ = 19 Hz, CH_{\beta}), 2.55 (dd, $J_{H_{\beta'}H_{\alpha}}$ = 3 Hz, $J_{H_{\beta'}H_{\beta}}$ = 19 Hz, CH_{\beta}). ¹³C NMR (ppm, CD₂Cl₂): 305.4 (d, J_{CP} = 8 Hz, C_{\alpha}), CPh₃ at 146.1 (s, ipso); other CPh₃ and PPh₃ not resolved; 99.5 (s, C₅H₅), 65.5 (s, C_{β}), 58.5 (s, C_{γ}). ³¹P[¹H] NMR (ppm, C₆H₅Cl): 18.3 (s). Anal. Calcd for C₄₄H₃₈F₆NOP₂Re•CH₂Cl₂: C, 51.76; H, 3.83. Found: C, 51.70; H, 3.85.

B. A septum-capped NMR tube was charged with **2a** (0.0058 g, 0.010 mmol) and $CD_2Cl_2/(CH_3)_4Si$ (0.350 mL) was inserted into a -71 °C NMR probe to record a t_0 spectrum. The tube was moved to a -78 °C bath, and Ph₃C⁺PF₆⁻ (0.0046 g, 0.012 mmol, 1.2 equiv) in CD₂Cl₂ (0.050 mL) was added. The tube was shaken and returned to the -71 °C probe. Complex 7-PF₆⁻ had formed as a (76 ± 2):(24 ± 2) ratio of ac/sc Re=C isomers, as determined by integration of the Re=CHR resonances at δ 15.2 and 16.1, respectively. ¹H NMR of sc-7-PF₆⁻ (δ , CD₂Cl₂): 16.10 (dd, $J_{H_{\alpha}H_{\beta}} = 12$ Hz, $J_{H_{\beta}H_{\beta}} = 18$ Hz, CH_{β}), 2.72 (dd, $J_{H_{\beta}H_{\alpha}} = 3$ Hz, $J_{H_{\beta}H_{\beta}} = 18$ Hz, CH_{β}), 2.72 (dd, $J_{H_{\beta}H_{\alpha}} = 3$ Hz, $J_{H_{\beta}H_{\beta}} = 18$ Hz, CH_{β}).

Preparation of (E)- $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH=CHCPh_3)$ ((E)-8). Complex 7-PF₆- CH_2Cl_2 (0.120 g, 0.115 mmol) and DBU (0.026 mL, 0.173 mmol, 1.5 equiv) were reacted in CH₂Cl₂ (12 mL), analogous to the procedure used to prepare (*E*)-**2b**. An identical workup gave red crystals of (*E*)-**8** (0.082 g, 0.101 mmol, 88%), dec pt \geq 240 °C. IR (cm⁻¹, KBr): $\nu_{N=0}$ 1642 s. MS (16 eV, m/e, ¹⁸⁷Re): 813 (M⁺, 88%), 544 (M⁺ - C₂₁H₁₇, 100%), 262 (Ph₃P⁺, 22%). Anal. Calcd for C₄₄H₃₇NOPRe: C, 65.01; H, 4.56. Found: C, 65.20; H, 4.64.

Preparation of $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=C(OCH_3)CH_2CH_3)^+PF_6^-$ (9b-PF₆⁻). A Schlenk flask was charged with $(\eta^5-C_5H_5)Re(NO)$ -(PPh₃)(COCH₂CH₃) (0.904 g, 1.54 mmol),²⁵ CH₂Cl₂ (100 mL), and a stir bar. Then (CH₃)₃O⁺PF₆⁻ (0.621 g, 3.01 mmol, 2.0 equiv) was added, and the mixture was stirred for 2 h. The reaction was then filtered, and solvent was removed from the filtrate by rotary evaporation. The residue was taken up in CH₂Cl₂, and ether was added by slow vapor diffusion. The resulting yellow crystals were collected by filtration and dried in vacuo to give 1.04 g (1.37 mmol, 90%) of **9b**-PF₆⁻, mp 192–195 °C dec. IR (cm⁻¹, CH₂Cl₂): $\nu_{N=0}$ 1703 s. ¹H NMR (δ , CD₂Cl₂, -28 °C): 7.56-7.27 (m, PPh₃); major isomer at 5.64 (s, C₅H₅), 4.08 (s, OCH₃), 2.26 (m, CH₂), 1.09 (t, $J_{HH} = 8$ Hz, CCH₃); minor isomer at 5.89 (s, C_5H_5), 3.76 (s, OCH₃), 2.73 (m, CH₂), 0.80 (t, J_{HH} = 7 Hz, CCH₃). ¹³C NMR (ppm, CD_2Cl_2 , -30 °C): major isomer at 304.9 (d, $J_{CP} = 9$ Hz, C_{α}), PPh₃ at 133.1 (d, $J_{CP} = 9$ Hz), 132.4 (s, p), 131.8 (d, $J_{CP} = 60$ Hz, ipso), 129.6 (d, $J_{CP} = 12$ Hz); 96.0 (s, C_5H_5), 61.9 (s, OCH₃), 53.0 (s, C_{β} , 12.1 (s, C_{γ}); minor isomer at 302.4 (d, $J_{CP} = 6$ Hz, C_{α}), PPh₃ at 132.6 (s, p), 130.7 (d, $J_{CP} = 62$ Hz, ipso), 129.8 (d, $J_{CP} = 14$ Hz); 96.6 (s, C₅H₅), 66.8 (s, OCH₃), 44.2 (s, C_{β}), 10.4 (s, C_{γ}). ³¹P{¹H} NMR (ppm, CD₂Cl₂, -20 °C): 13.8 (s, minor isomer), 10.6 (s, major isomer). Anal. Calcd for C₂₇H₂₈F₆NO₂P₂Re: C, 42.63; H, 3.71. Found: C, 42.45; H. 3.70.

Preparation of $[(\eta^5 \cdot C_5H_5)Re(NO)(PPh_3)(=C(OCH_3))$ $CH_2CH_2C_6H_5$)]⁺PF₆⁻ (9d-PF₆⁻). Complex (η^5 -C₅H₅)Re(NO)(PPh₃)-(COCH₂CH₂C₆H₅) (0.300 g, 0.446 mmol)²⁵ and (CH₃)₃O⁺PF₆⁻ (0.184 g, 0.893 mmol, 2.0 equiv) were reacted in CH₂Cl₂ (30 mL), analogous to the procedure used to prepare 9b-PF₆⁻. An identical workup gave yellow crystals of 9d-PF₆⁻ (0.289 g, 0.352 mmol, 79%), mp 210-214 °C dec. IR (cm⁻¹, CH₂Cl₂): $\nu_{N=0}$ 1706 s. ¹H NMR (δ , CD₂Cl₂, -21 °C): 7.50 (m, PPh₃), 7.20 (m, CC₆H₅), 2.90-2.40 (m, 2 CH₂); major isomer at 5.70 (s, C₅H₅), 3.70 (s, OCH₃); minor isomer at 5.60 (s, C₅H₅), 4.10 (s, OCH₃). ¹³C NMR (ppm, CD₂Cl₂, -24 °C): major isomer, 299.2 (d, $J_{CP} = 5 \text{ Hz}, C_{\alpha}$, PPh₃ at 133.0 (d, $J_{CP} = 11 \text{ Hz}$), 132.6 (s, p), 131.8 (d, $J_{CP} = 60$ Hz, ipso), 129.9 (d, $J_{CP} = 11$ Hz); CC₆H₅ at 140.5 (s, ipso), 129.0 (s), 128.9 (s), 126.7 (s, p); 96.5 (s, C₅H₅), 66.8 (s, OCH₃), 61.0 (s, C_{β}) , 21.9 (s, C_{γ}) ; minor isomer, 302.0 (s, C_{α}) , PPh₃ at 133.0 (d, J_{CP} = 11 Hz), 132.4 (s, p), 130.3 (d, J_{CP} = 55 Hz), 129.7 (d, J_{CP} = 12 Hz); CC₆H₅ at 139.2 (s, ipso), 128.9 (s), 128.5 (s), 127.2 (s, p); 96.2 (s, C₅H₅), 62.4 (s, OCH₃), 52.5 (s, C_{β}), 33.8 (s, C_{γ}). ³¹P{¹H} NMR (ppm, CH₂Cl₂, -78 °C): 14.0 (s, major isomer), 9.8 (s, minor isomer). Anal. Calcd for C₃₃H₃₂F₆NO₂P₂Re: C, 47.37; H, 3.85. Found: C, 47.21; H, 4.03.

Preparation of $(\eta^5$ -C₃H₃)**Re(NO)**(**PPh₃)**(**C(OCH₃)=CH₂)**(**10a).** A Schlenk flask was charged with $[(\eta^5-C_5H_5)\text{Re(NO)}(\text{PPh}_3)(=C-(OCH_3)CH_3)]^+\text{PF}_6^-$ (**9a**-PF₆⁻; 0.815 g, 1.09 mmol),²⁵ THF (80 mL), and a stir bar. Then NaH (0.105 g, 4.36 mmol, 4.0 equiv) was added, and the mixture was stirred overnight. The resulting orange suspension was filtered, and solvent was removed from the filtrate by rotary evaporation. The resulting orange solid was extracted several times with cold CH₂Cl₂. The extract was filtered, hexanes were added to the filtrate, and solvents were removed by rotary evaporation to give **10a** (0.494 g, 0.83 mmol, 75%) as an orange powder, mp 202-204 °C dec. IR (cm⁻¹, CH₂Cl₂): $\nu_{N=O}$ 1651 s. MS (70 eV, m/e, ¹⁸⁷Re): 601 (M⁺, 5%), 572 (M⁺ - C₂H₅, 48%), 569 (M⁺ - CH₃OH, 9%), 544 (M⁺ - C₃H₅O, 33%), 262 (Ph₃P⁺, 100%). Anal. Calcd for C₂₆H₂₅NO₂PRe: C, 51.99; H, 4.20. Found: C, 51.66; H, 4.06.

Preparation of (Z)- $(\eta^5 \cdot C_5 H_5)$ **Re(NO)(PPh₃)(C(OCH₃)=CHCH₃)** ((Z)-10b). A Schlenk flask was charged with 9b-PF₆⁻ (1.00 g, 1.31 mmol), CH₂Cl₂ (100 mL), and a stir bar. Then DBU (2.9 mL, 1.97 mmol, 1.5 equiv)^{23c} was added with stirring. After 1 h, solvent was removed from the deep orange solution by rotary evaporation. The orange residue was dissolved in benzene and passed through a plug of silica gel that had previously been treated with N(C₂H₅)₃ with 70:30:10 (v/v/v) ethyl acetate/hexanes/N(C₂H₅)₃ as eluent. The orange band was collected, and solvents were removed by rotary evaporation. The orange residue was dissolved in CH₂Cl₂ and layered with hexanes. Orange crystals formed, which were collected by filtration and dried in vacuo to give 0.560 g (0.91 mmol, 72%) of (Z)-10b, mp 191–193 °C dec. IR (cm⁻¹, CH₂Cl₂): $\nu_{N=0}$ 1646 s. MS (70 eV, m/e, ¹⁸⁷Re): 615 (M⁺, C₄H₇O - C₆H₅, 36%), 262 (Ph₃P⁺, 100%). Anal. Calcd for C₂₇H₂₇NO₂PRe: C, 52.76; H, 4.43. Found: C, 52.59; H, 4.49.

Preparation of $(Z) - (\eta^5 - C_5H_5)Re(NO)(PPh_3)(C(OCH_3) = CHCH_2C_6H_5)$ ((Z)-10d). Complex 9d-PF₆⁻ (0.049 g, 0.059 mmol) and DBU (0.020 mL, 0.134 mmol, 2.3 equiv) were reacted in CH₂Cl₂ (5 mL),

⁽⁵³⁾ Density taken from: Bruno, J. M.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1984, 106, 1663, 1668.

analogous to the procedure used to prepare (*Z*)-10b. An identical workup gave orange crystals of (*Z*)-10d (0.033 g, 0.048 mmol, 81%), mp 209.5–215 °C dec. IR (cm⁻¹, CH₂Cl₂): $\nu_{N=0}$ 1645 s. MS (70 eV, *m/e*, 1⁸⁷Re): 691 (M⁺, 9%), 659 (M⁺ – CH₃OH, 100%), 572 (M⁺ – C₉H₁₁, 12%), 544 (M⁺ – C₁₀H₁₁O, 25%), 467 (M⁺ – C₁₀H₁₁O – C₆H₅, 16%). Anal. Calcd for C₃₃H₃₁NO₂PRe: C, 57.38; H, 4.52. Found: C, 57.23; H, 4.77.

Preparation of (*Z*)-(η^{5} -C₅H₅)**Re**(**NO**)(**PPh**₃)(**C**(**OCH**₃)=**CHC**₆H₅) ((*Z*)-**10e**). A Schlenk flask was charged with (η^{5} -C₅H₅)**Re**(**NO**)-(**PPh**₃)(**COCH**₂C₆H₅) (0.398 g, 0.602 mmol),²⁵ CH₂Cl₂ (10 mL), and a stir bar. Then (CH₃)₃O⁺BF₄⁻ (0.134 g, 0.905 mmol, 1.5 equiv) was added with stirring. After 1.5 h, the reaction was filtered into a Schlenk tube, and DBU (0.135 mL, 0.903 mmol, 1.5 equiv) was added; the yellow solution immediately turned deep red. After 0.75 h, solvent was removed by rotary evaporation. The resulting dark oil was dissolved in benzene and purified and recrystallized as described for (*Z*)-**10b** above. This gave orange prisms of (*Z*)-**10e** (0.336 g, 0.497 mmol, 83%), mp 172.5-178 °C dec. IR (cm⁻¹, thin film): ν_{Nmo} 1650 s. MS (70 eV, m/e, ¹⁸⁷Re): 677 (M⁺, 11%), 645 (M⁺ - CH₃OH, 100%), 467 (M⁺ - C₁₅H₁₄O, 16%), 262 (Ph₃P⁺, 91%). Anal. Calcd for C₃₂H₂₉NO₂PRe: C, 56.80; H, 4.29. Found: C, 56.49; H, 4.52.

Reaction of 10a with CH₃I. A 5-mm NMR tube was charged with **10a** (0.023 g, 0.038 mmol), CD_2Cl_2 (0.500 mL), and CH_3I (0.007 mL, 0.133 mmol, 3.0 equiv) and was capped with a septum. After 4 h (during which time ³¹P and ¹H NMR showed the intermediacy of **9b**-I⁻), solvent was removed by rotary evaporation. The residue was extracted in benzene and passed through a silica gel column with 70:30 (v/v) hexanes/ethyl acetate as eluent. Solvent was removed from the yellow product fraction to give a yellow oil. This was dissolved in CH₂Cl₂ (5 mL), and four volumes of hexanes were added. Solvent was removed by rotary evaporation to give (η^{5} -C₃H₅)Re(NO)(PPh₃)(COCH₂CH₃) (**11**)²⁵ as a yellow powder (0.019 g, 0.031 mmol, 82%), which was pure by ¹H NMR.

Preparation of $(η^5-C_5H_5)$ Re(NO)(PPh₃)(COCH(CH₃)₂) (12). A Schlenk flask was charged with (Z)-10b (0.400 g, 0.651 mmol), CH₂Cl₂ (40 mL), and a stir bar. Then CH₃I (0.081 mL, 1.30 mmol, 2.0 equiv) was added with stirring. After 24 h, solvent was removed via oil pump vacuum, and the residue was extracted with benzene. An equal volume of hexanes was added to the extract, and solvent was removed by rotary evaporation. The resulting yellow solid was triturated with hexanes, washed with cold ether, and dried in vacuo to give 0.352 g (0.573 mmol, 88%) of 12, mp >210 °C. IR (cm⁻¹, thin film): $\nu_{N=0}$ 1654 s, $\nu_{C=0}$ 1558 m. ¹H NMR (δ , CD₂Cl₂): 7.47-7.41 (m, PPh₃), 5.21 (s, C₃H₅), 2.89 (m, J_{HH} = 7 Hz, CH), 0.97 (d, J_{HH} = 7 Hz, CH₃), 0.13 (d, J_{HH} = 7 Hz, CH₃'). ¹³C NMR (ppm, CDCl₃): 260.7 (br s, C=O), PPh₃ at 136.2 (d, J_{CP} = 56 Hz, ipso), 133.8 (d, J_{CP} = 11 Hz), 130.5 (s, p), 128.6 (d, J_{CP} = 11 Hz); 92.6 (s, C₅H₅), 58.6 (s, CH), 20.7 (s, CH₃), 19.2 (s, CH₃'). ³¹P{¹H} NMR (ppm, CH₂Cl₂): 16.3 (s). MS (CI, m/e, ¹⁸⁷Re): 616 (MH⁺, 69%), 572 (M⁺ - C₃H₇, 97%), 544 (M⁺ - C₄H₇O, 19%), 262 (Ph₃P⁺, 33%), 185 (Ph₂P⁺, 100%). Anal. Calcd for C₂₇H₂₇NO₂PRe: C, 52.76; H, 4.43. Found: C, 52.84; H, 4.54.

Preparation of $(SR,RS) - (\eta^5 - C_5H_5)Re(NO)(PPh_3)(COCH(CH_3)-(CD_3))$ ((SR,RS)-12-d₃). Complex (Z)-10b (0.300 g, 0.489 mmol) and CD₃I (0.093 mL, 1.47 mmol, 3.0 equiv) were reacted in CH₂Cl₂ (20 mL), analogous to the procedure used to prepare 12. An identical workup afforded 0.260 g (0.420 mmol, 86%) of (SR,RS)-12-d₃. IR (cm⁻¹, CH₂Cl₂): $\nu_{N=O}$ 1649 s, $\nu_{C=O}$ 1556 m. ¹H NMR (δ , CD₂Cl₂): CH₃ at 0.96 (d, $J_{HH} = 7$ Hz). ¹³C NMR (ppm, CD₂Cl₂): 259.0 (d, $J_{CP} = 9$ Hz, C=O), PPh₃ at 136.9 (d, $J_{CP} = 55$ Hz, ipso), 134.2 (d, $J_{CP} = 11$ Hz), 131.0 (s, p), 129.0 (d, $J_{CP} = 11$ Hz); 93.0 (s, C₅H₅), 58.7 (s, CH), 20.7 (s, CH₃); MS (CI. m/e, ¹⁸⁷Re): 619 (MH⁺, 59%), 572 (M⁺ - C₃H₄D₃, 97%), 544 (M⁺ - C₄H₄D₃O, 19%), 262 (Ph₃P⁺, 39%), 185 (Ph₂P⁺, 100%).

Preparation of $(SR, SR) \cdot (\eta^5 \cdot C_3H_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)(\operatorname{COCH}(\operatorname{CH}_3) \cdot (\operatorname{CH}_2C_6H_5))$ ($(SR, RS) \cdot 13$). A Schlenk flask was charged with (Z) \cdot 10b (0.120 g, 0.195 mmol), CH₂Cl₂ (12 mL), and a stir bar. Then C₆H₃C-H₂Br (0.035 mL, 0.293 mmol, 1.5 equiv) was added with stirring. After 2 days, the reaction mixture was heated at 50 °C for an additional 6 h. Solvent was removed via oil pump vacuum, and the residue was dissolved in acetone and chromatographed on a silica gel column with 40:60 ethyl acetate/hexanes as the eluent. The yellow product band was collected, and solvents were removed by rotary evaporation. The residue was dissolved in CH₂Cl₂ and layered with hexanes. Yellow prisms formed, which were collected by filtration and dried in vacuo to give 0.095 g (0.137 mmol, 70%) of (SR, RS) - 13, mp 201-204 °C dec. IR (cm⁻¹, CH₂Cl₂): $\nu_{N==0}$ 1651 s, $\nu_{C==0}$ 1557 m. ¹H NMR (δ , CD₂Cl₂): 7.61-7.16 (m, 4 C₆H₅), 5.23 (s, C₅H₅), 2.99 (m, CH_a), 2.08 (dd, J_{H₆H₆' = 14 Hz, J_{H₆H₆' = 7 Hz, CH₆), 0.88 (d, J_{H₆'H₆ = 7 Hz, CH₃). ¹³C NMR (ppm, CDCl₃): 258.8 (d, J_{CP} = 10 Hz, C=O), PPh₃ at 136.0 (d, J_{CP} = 55 Hz, ipso), 133.3 (d, J_{CP} =}}}

11 Hz), 130.2 (s, p), 128.3 (d, $J_{CP} = 11$ Hz); CC₆H₅ at 142.0 (s, ipso), 129.2 (s), 127.5 (s), 124.9 (s, p); 92.5 (s, C₅H₅), 65.0 (s, CH), 37.3 (s, CH₂), 17.5 (s, CH₃). ³¹P{¹H} NMR (ppm, CDCl₃): 15.9 (s). MS spectrum (CI, m/e, ¹⁸⁷Re): 692 (MH⁺, 50%), 572 (M⁺ - C₉H₁₁, 93%), 544 (M⁺ - C₁₀H₁₁O, 21%), 262 (Ph₃P⁺, 57%), 185 (Ph₂P⁺, 100%). Anal. Calcd for C₃₃H₃₁NO₂PRe: C, 57.38; H, 4.52. Found: C, 57.11; H, 4.40.

Preparation of (*SS*,*RR*)-(η^5 -C₅H₅)Re(NO)(PPh₃)(COCH(CH₃)-(CH₂C₆H₅)) ((*SS*,*RR*)-13). Complex (*Z*)-10d (0.100 g, 0.145 mmol) and CH₃I (0.018 mL, 0.290 mmol, 2.0 equiv) were reacted in CH₂Cl₂ (10 mL), analogous to the procedure used to prepare (*SR*,*RS*)-13. After 2 days, solvent was removed under oil pump vacuum, and an identical workup afforded yellow prisms of (*SS*,*RR*)-13 (0.088 g, 0.127 mmol, 88%), mp > 210 °C. IR (cm⁻¹, CH₂Cl₂): $\nu_{N=0}$ 1648 s, $\nu_{C=0}$ 1558 m. ¹H NMR (δ , CD₂Cl₂): 7.49–7.14 (m, 4 C₆H₅), 5.17 (s, C₃H₅), 3.28 (dd, J_{HgH_g} = 13 Hz, J_{HgH_a} = 4 Hz, CH_β), 3.17 (m, CH), 2.09 (dd, $J_{Hg'H_g}$ = 13 Hz, $J_{Hg'H_a}$ = 11 Hz, CH_β), -0.03 (d, $J_{Hg'H_a}$ = 6 Hz, CH₃). ¹³C NMR (ppm, CDCl₃): 259.0 (d, J_{CP} = 9 Hz, C=O), PPh₃ at 135.9 (d, J_{CP} = 53 Hz, ipso), 133.3 (d, J_{CP} = 13 Hz), 130.2 (s, p), 128.2 (d, J_{CP} = 11 Hz); CC₆H₅ at 141.7 (s, ipso), 129.3 (s), 127.8 (s), 125.2 (s, p); 92.8 (s, C₃H₅), 66.1 (s, CH), 41.7 (s, CH₂), 140 (s, CH₃). ³¹Pl⁴H} NMR (ppm, CDCl₃): 15.9 (s). MS (CI, *m*/e, ¹⁸⁷Re): 692 (MH⁺, 48%), 572 M⁺ – C₉H₁₁, 100%), 544 (M⁺ – C₁₀H₁₁O, 24%), 262 (Ph₃P⁺, 38%), 185 (Ph₂P⁺, 81%). Anal. Calcd for C₃₃H₃₁NO₂PRe: C, 57.38; H, 4.52. Found: C, 57.34; H, 4.41.

Preparation of $(SS, RR) - (\eta^5 - C_5H_5)Re(NO)(PPh_3)(COCH (CH_3)(C_6H_5))$ ((SS,RR)-14). A Schlenk flask was charged with Z)-10e (0.050 g, 0.074 mmol), CH_2Cl_2 (4 mL), and a stir bar. Then (CH₃)₃O⁺PF₆⁻ (0.018 g, 0.087 mmol, 1.2 equiv) was added with stirring. After 0.5 h, the reaction mixture was filtered into a Schlenk tube, and Ph₃PCH₃⁺I⁻ (0.035 g, 0.087 mmol, 1.2 equiv) was added. The reaction was stirred for 8 h, and solvent was then removed by rotary evaporation. The residue was chromatographed on a silica gel column with CH₂Cl₂ as eluent. Some (Z)-10e (0.009 g, 0.013 mmol, 18%) eluted first. The product band was then collected, and solvents were removed by rotary evaporation. The residue was dissolved in CH₂Cl₂ and layered with pentane. Yellow prisms formed, which were collected by filtration and dried in vacuo to give 0.037 g (0.055 mmol, 74% based upon (Z)-10e consumed) of product, mp 225-229 °C dec. HPLC analyais indicated a (98 ± 1) : (2 ± 1) ratio of (SS, RR)-14/(SR, RS)-14.¹⁷ IR (cm⁻¹, thin film): $\nu_{N=0}$ 1650 s, $\nu_{C=0}$ 1564 m. ¹H NMR (δ , CDCl₃): 7.50-7.42 (m, PPh₃), 7.30-7.18 (m, CC₆H₅), 4.79 (s, C₅H₅), 4.29 (q, J_{HH} = 7 Hz, CH), 0.61 (d, J_{HH} = 7 Hz, CH₃). ¹³C NMR (ppm, CDCl₃): 253.7 (d, J_{CP}) = 9 Hz, C=O), PPh₃ at 136.0 (d, J_{CP} = 55 Hz, ipso), 133.3 (d, J_{CP} = 11 Hz), 130.1 (d, $J_{CP} = 2$ Hz, p), 128.2 (d, $J_{CP} = 10$ Hz); CC_6H_5 at 143.7 (s, ipso), 128.3 (s), 127.7 (s), 125.3 (s, p); 91.7 (s, C₅H₅), 70.6 (s, CH), 16.2 (s, CH₃). ³¹P{¹H} NMR (ppm, CDCl₃): 16.4 (s). MS (CI, m/e, ¹⁸⁷Re): 678 (MH⁺, 29%), 572 (M⁺ - C₈H₁₀, 100%), 544 (M⁺ -C₉H₁₀O, 18%), 262 (Ph₃P⁺, 26%), 185 (Ph₂P⁺, 97%). Anal. Calcd for C₃₂H₂₉NO₂PRe: C, 56.80; H, 4.29. Found: C, 56.40; H, 4.56.

¹H NOED Experiments.³² The following experiment is representative. A 5-mm NMR tube was charged with CD_2Cl_2 and (E)-2d (0.14 M), sealed under vacuum, and inserted into a broad-band probe of a Varian XL-300 spectrometer. The NOED experiment was performed as an array consisting of two spectra in which the first was obtained with 75% irradiation of the η^5 -C₃H₅ resonance (100% irradiation was avoided to minimize complications of decoupler spill-over) and the second (off-resonance) with the decoupler frequency set >2 ppm from all resonances. Spectra were obtained at 21 °C in interleaved blocks of 32 transients with 8 steady states per block for a total of at least 1216 transients. The acquisition time was 3.0 s, and the pulse delay was 15 s (selected to be at least 3 times the T_1 of interest). Difference NOEs were calculated by subtraction of the off-resonance spectrum from the η^5 -C₃H₅-irradiated spectrum. In a separate experiment, the H_a T_1 in (E)-2d was found to be 3.0 s.

X-ray Crystal Structure of (E)-2d-CH₂Cl₂. Crystals were grown as described above and mounted on fine glass fibers with epoxy cement. X-ray data were collected as summarized in Table II. Crystal symmetry and the unit cell parameters were obtained from photographic characterization and the best fit of the angular settings of 25 reflections (22° $\leq 2\theta \leq 27^{\circ}$). The space group was uniquely determined by systematic absences in the intensity data. The data were corrected for Lp effects and for absorption (empirical Ψ -scan, seven reflections fitted to a sixparameter pseudoellipsoidal form).

The structure was solved by direct methods and subsequent difference Fourier syntheses. A solvate molecule, CH_2Cl_2 , was found in the lattice for each molecule of (E)-2d. In the final refinement, all non-hydrogen atoms were refined with anisotropic temperature factors. All hydrogen atoms, except those of CH_2Cl_2 , were found and were well-behaved on isotropic refinement. The CH_2Cl_2 hydrogen atoms were incorporated as idealized isotropic contributions (d(C-H) = 0.96 Å). Software (Nicolet

Corp., Madison, WI): P3 (data collection), SHEXTL (version 5.1; structure solution and refinement).

X-ray Crystal Structure of (Z)-10d. Suitable crystals were obtained by slow vapor diffusion of ether into a THF solution of (Z)-10d. The resulting orange prisms were mounted on fine glass fibers with epoxy cement, and X-ray data were collected as summarized in Table II. Crystal symmetry and unit cell parameters were determined as above from 15 centered reflections ($20^{\circ} \le 2\theta \le 25^{\circ}$). Data were corrected for Lp effects and for absorption based upon a series of Ψ scans. The general techniques employed have been previously described.54

The position of the rhenium was obtained from a three-dimensional Patterson map. Several least-squares refinements, followed by a difference Fourier synthesis, yielded all non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic temperature factors. All hydrogens were assigned and held in their calculated positions (d(C-H) =0.95 Å).55 Software: Pi (data collection), modified SHELX-76 (data reduction and refinement).

MO Calculations. Extended Hückel calculations⁵⁶ were conducted

with weighted H_{ii} formula. The rhenium and phosphorus atoms of the model compounds were assigned idealized octahedral and tetrahedral geometries, respectively. The C=C carbons were assigned idealized trigonal-planar geometries. The Re- C_{α} , C=C, C-H, C-O, and O-H bonds were assigned lengths of 2.10, 1.32, 1.09, 1.43, and 0.98 Å, respectively. The remaining bond lengths and H_{ij} and ζ parameters used were the same as reported previously.^{13a,d,42a}

Acknowledgment. We thank the NIH for support of this research and A. Patton for help with the X-ray data. The NMR spectrometers utilized were acquired via NSF, DOD, and NIH instrumentation grants, and the diffractometer used (University of Delaware) was obtained via an NSF instrumentation grant.

Supplementary Material Available: Additional NOE data and tables of bond distances and angles, hydrogen atom coordinates, and anisotropic and isotropic thermal parameters for (E)-2d and (Z)-10d (10 pages); listing of observed and calculated structure factors (41 pages). Ordering information is given on any current masthead page.

(56) (a) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. (b) Hoffmann, R.; Lipscomb, W. N. Ibid. 1962, 36, 2179 and 3489; 1962, 37, 2872.

Synthesis, Photochemistry, and Electrochemistry of $(P)Ge(R)_2$ and (P)Ge(R)X (P = TPP or OEP, R = CH₃, CH₂C₆H₅, or C_6H_5 , and $X = Cl^-$, OH^- , or ClO_4^-)

K. M. Kadish,^{*1a} Q. Y. Xu,^{1a} J.-M. Barbe,^{1a,b} J. E. Anderson,^{1a} E. Wang,^{1a,c} and R. Guilard*1b

Contribution from the Department of Chemistry, University of Houston, Houston, Texas 77004. and Laboratoire de Synthèse et d'Electrosynthèse Organométallique, Associé au C.N.R.S., UA 33, Faculté des Sciences "Gabriel", 21100 Dijon, France. Received April 3, 1987

Abstract: The synthesis and characterization of $(P)Ge(R)_2$ and (P)Ge(R)X, where P is the dianion of octaethylporphyrin (OEP) or the dianion of tetraphenylporphyrin (TPP), R is CH₃, CH₂C₆H₅, or C₆H₅, and X is ClO₄⁻, Cl⁻, or OH⁻, is described. Each complex was characterized by ¹H NMR, IR, and UV-visible spectroscopy and electrochemistry. The investigated (P)Ge(R)₂ complexes can be reduced and oxidized by up to two electrons. The reductions are reversible but a rapid cleavage of the germanium-carbon bond follows the initial electrooxidation. The final oxidation product after the abstraction of one electron from $(P)Ge(R)_2$ was identified as (P)Ge(R)X, where $X = ClO_4^-$, Cl^- , or OH^- depending on the solvent/supporting electrolyte system. (P)Ge(R)Cl could also be generated from (P)Ge(R)₂ in solutions of degassed CHCl₃ by illumination with visible light. Electrochemical oxidation of $(OEP)Ge(C_6H_5)_2$, $(OEP)Ge(C_6H_5)OH$, and $(OEP)Ge(C_6H_5)Cl$ gives the same final species which was spectroscopically and electrochemically identified as $(OEP)Ge(C_6H_5)ClO_4$. Interestingly, $(OEP)Ge(C_6H_5)ClO_4$ could be converted to $(OEP)Ge(C_6H_5)OH$ by a one-electron electroreduction which was followed by reaction of the generated anion radical with trace H_2O in solution. Finally, an overall scheme for the oxidation and reduction of $(P)Ge(R)_2$ and (P)Ge(R)Xporphyrins is presented.

The remarkable antitumor activity of cis-dichlorodiammineplatinum(II) (cisplatin)² has led to the search for new inorganic anticancer agents. One class of such candidates may include porphyrins and metalloporphyrins. Some porphyrins and metalloporphyrins are powerful photodynamic agents that can render cancer cells vulnerable to light at frequencies that correspond to wavelengths of the porphyrin absorption maxima.^{3,4} For example,

malignant tumors take up and retain hematoporphyrin to a much greater extent than do normal tissues.⁵ The hematoporphyrin then sensitizes these cells so that they are killed by exposure to visible light.

Germanium porphyrins that contain σ -bonded alkyl or aryl ligands are also potential antitumor agents. In this regard, three properties of the alkyl or aryl Ge(IV) complexes are of importance. These are the following: the tendency of tetraphenylporphyrin derivatives to accumulate in malignant tissues,⁶ the potential utility of metal alkyls to act as alkylating agents, and the nature of

⁽⁵⁴⁾ Churchill, M. R.; Lashewycz, R. A.; Rotella, F. J. Inorg. Chem. 1977, 16.265

⁽⁵⁵⁾ Churchill, M. R. Inorg. Chem. 1973, 12, 1213.

^{(1) (}a) University of Houston. (b) University of Dijon. (c) On leave from Changchun Institute of Applied Chemistry, Changchun, People's Republic of China.

⁽²⁾ Prestayko, A. W.; Crooke, S. T.; Carter, S. K. Cisplatin; Academic: New York, 1980.

⁽³⁾ Magnus, I. A. S. Afr. J. Lab. Clin. Med. 1963, 9, 238.
(4) Mathews-Roth, M. M.; Pathak, M. A.; Fitzpatrick, T. B.; Harber, L. C.; Kass, E. H. JAMA, J. Am. Med. Assoc. 1974, 228, 1004.

⁽⁵⁾ Granelli, S. G.; Diamond, I.; McDonagh, A. F.; Wilson, C. B.; Nielson, S. L. Cancer Res. 1975, 35, 2567

⁽⁶⁾ Musser, D. M.; Wagner, J. M.; Datta-Grupta, N. J. Natl. Cancer Inst. **1978**, *61*, 1397.