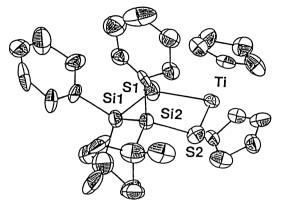
Synthesis and Reactions of a 2,5-Dithia-3,4-disilatitanacyclopentane

Nami CHOI, Shin-ichiro SUGI, and Wataru ANDO*


Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305

Lithium 1,2-di-*tert*-butyl-1,2-diphenyldisilane-1,2-dithiolate reacted with titanocene dichloride to afford *cis*-3,4-di-*tert*-butyl-3,4-diphenyl-2,5-dithia-3,4-disila-1-bis(cyclopentadienyl)titanacyclopentane (2), whose structure was determined by X-ray analysis. The titanacycle 2 is reacted with electrophilic reagents (SCl₂, S₂Cl₂, PhPCl₂, Ph₂GeCl₂) to afford the corresponding heterocycles in good yields.

Recently, heterocycles containing silicon (e.g. cyclosilazane, ^{1a)} cyclosilaphosphane, ^{1b)} cyclosilathiane ^{1c)}) have received increasing attention in the field of material science. On the other hand, the chemistry of metallacycles with incorporated titanocene units ²⁾ has attracted much interest, and these compounds have found widespread applications in organic synthesis. ³⁾ Nevertheless, the utility of these promising building blocks as a precursor of heterocyclic compounds containing silicon has not been fully realized. ⁴⁾ Herein we report the synthesis as well as structural features of a novel cis-3,4-di-tert-butyl-3,4-diphenyl-2,5-dithia-3,4-disila-1-bis(cyclopentadienyl)titanacyclopentane (2) and furthermore we demonstrate its suitability as a precursor for a variety of heterocycles containing a 1,4-dithia-2,3-disila fragment (eq.1).

To 819 mg (2.10 mmol) of *meso*-disilane-1,2-dithiol 1⁵⁾ dissolved in 20 mL of THF were added at room temperature 2.20 mL (2.20 mmol) of a 1.0 M solution of LiBEt₃H in THF. After 3 h a solution of 522 mg (2.10 mmol) of Cp₂TiCl₂ in 10 mL of THF was introduced and the resulting mixture was stirred for 12 h. The crude product, obtained after filtration and evaporation of the solvent, was purified by preparative GPC (eluent: toluene) to yield 952 mg (80%) of *cis*-3,4-di-*tert*-butyl-3,4-diphenyl-2,5-dithia-3,4-disila-1-bis(cyclopentadienyl)titanacyclopentane (2)⁶⁾ in diastereomerically pure form. The structure of 2 was determined by single crystal X-ray diffraction analysis.⁷⁾ The titanacycle of 2 exhibits a half-chair conformation as depicted in Fig. 1.

The Ti-S bond lengths (2.39 Å resp. 2.47 Å) are within the normal range (2.42-2.45 Å 3c), the Si-S bonds (2.13 Å) are slightly shortened (usually 2.16-2.17 Å). 3c) Interestingly, the Ti-S-Si bond angles (109.7° resp. 113.2°) are larger than those of other five-membered dithiatitanacycles (*e.g.* o-C₆H₄S₂TiCp₂: 95.7-

Bond Lengths (Å) and Angles (degree)

Ti-S1	2.47	Ti-S1-Si1	113.2
Ti-S2	2.39	Ti-S2-Si2	109.7
Si1-S1	2.13	S1-Ti-S2	93.9
Si2-S2	2.13	S1-Si1-Si2	99.0
Si1-Si2	2.41	S2-Si2-Si1	100.9

Fig. 1. ORTEP Drawing of 2.

97.0°8a); $\overline{SCH=CHSTiCp_2}: 94.2-95.0°8b)$) and resemble those of acyclic derivatives (e.g. $Cp_2Ti(SPh)_2: 113.6-115.5°8c)$). On the other hand the S-Ti-S bond angle (93.9°) takes an intermediate value between five-membered titanacycles (e.g. $o-C_6H_4S_2TiCp_2: 82.2°8a)$; $\overline{SCH=CHSTiCp_2}: 83.2°8b)$) and acyclic ones (e.g. $Cp_2Ti(SPh)_2$ (99.3°)8c)).

Titanacycle 2 reacted with several electrophilic reagents under substitution of the titanocene unit to yield heterocycles in fair to good yields (eq. 2, Table 1). E. g. to a solution of 113 mg (0.200 mmol) of 2 in 10 mL

Table 1. Reactions of Disilatitanacycle 2 with Various Electrophilic Reagents

run		E ^{a)}	Solvent	Temp/°C	Time/h	Isolated Yield/%
1	3a ¹⁰⁾	S	CS ₂	-78	0.5	90
2	3b ¹¹⁾	SS	CS ₂	-78	0.5	92
3	3c ¹²⁾	PhP	Benzene	20	1	42
4	3d ¹³⁾	Ph ₂ Ge	Toluene	110	24	55
5	3 e	Ph ₂ Si	Xylene	140	72	

a) The corresponding dichlorides ECl₂ were employed as reagents.

of CS₂ was added under stirring at -78 °C a solution of 20.6 mg (0.200 mmol) of SCl₂ in 5 mL of CS₂. After 30 min the solvent was removed *in vacuo* and 10 mL of n-pentane were added. Reddish solids⁹⁾ were filtered off, the solvent was evaporated and the residue recrystallized from n-pentane to afford 76 mg (90%) of 3,4,5-trithia-1,2-disilacyclopentane $3a^{10}$ (entry 1 of Table 1), whose structure was confirmed by X-ray analysis¹⁴) (Fig. 2).

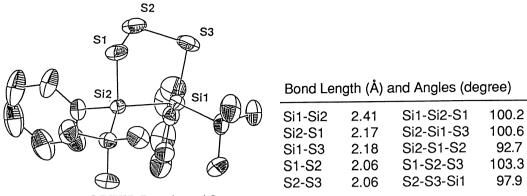


Fig. 2. ORTEP Drawing of 3a.

In the transformations of 2 with PhPCl₂, and especially with Ph₂GeCl₂ (Table 1, entries 3,4) more drastic conditions, *i. e.* evaluated temperature and prolonged reaction time were necessary to achieve full conversion. Nevertheless, it was not possible to convert 2 with Ph₂SiCl₂; even after 72 h in refluxing xylene only unreacted 2 was re-isolated.

Further work to elucidate the synthetic utility of dithiadisilatitanocene derivatives related to 2 is in progress.

This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

References

- 1) a) L. Birkofer and O. Stuhl, "The Chemistry of Organic Silicon Compounds," ed by S. Patai and Z. Rappoport, John Wiley & Sons, New York (1989), Part 1, pp. 706-721; b) D. A. ('Fred') Armitage, *ibid.*, Part 2, pp. 1363-1394; c) D. A. ('Fred') Armitage, *ibid.*, Part 2, pp. 1395-1414.
- J. M. McCall and A. Schaver, J. Organomet. Chem., 193, C37 (1980); A. Schaver and J. M. McCall, Organometallics, 3, 1923 (1984); D. M. Giolando, T. B. Rauchfuss, A. L. Rheingold, and S. R. Wilson, ibid., 6, 667 (1987); J. Albertsen and R. Steudel, J. Organomet. Chem., 424, 153 (1992).
- a) G. Hencken and E. Weiss, Chem. Ber., 106, 1747 (1973);
 b) H. Köpf and T. Klapötke, J. Organomet. Chem., 307, 319 (1986);
 c) D. M. Giolando, T. B. Rauchfuss, and G. M. Clark, Inorg. Chem., 26, 3080 (1987);
 d) P. J. Fagan, W. A. Nugent, and J. C. Calabrese, J. Am. Chem. Soc., 116, 1880 (1880);
 e) P. J. Fagan and W. A. Nugent, ibid., 110, 2310 (1988).
- 4) J. Albertsen and R. Steudel, J. Organomet. Chem. 424, 153 (1992).
- 5) 1,2-Di-*tert*-butyl-1,2-diphenyldisilane-1,2-dithiol was prepared by reaction of 1,2-di-*tert*-butyl-1,2-diphenyldisilane-1,2-bis(triflate) with H_2S in the presence of triethylamine in 67% yield. Recrystallization from hexane gave diastereomerically pure 1; mp 138-139 °C; ¹H NMR (400 MHz, C_6D_6) δ 0.23 (s, 2H), 0.95 (s, 18H), 7.16-7.18 (m, 6H), 7.99-8.01 (m, 4H); ¹³C NMR (100 MHz, C_6D_6) δ 22.3 (s), 28.0 (q), 128.7 (d), 129.9 (d), 135.1 (s), 135.9 (d); ²⁹Si NMR (80 MHz, C_6D_6) δ 1.10; Anal. Found: C, 61.31; H, 7.61; S, 16.42%. Calcd for $C_{20}H_{30}S_2Si_2$: C, 61.48; H, 7.74; S, 16.41%.
- 6) **2**: mp 113 °C; ¹H NMR (400 MHz, C_6D_6) δ 1.39 (s, 18H), 5.77 (s, 5H), 6.21 (s, 5H), 7.18-7.25, 8.03-8.05 (m, 10H); ¹³C NMR (100 MHz, C_6D_6) δ 24.77 (s), 28.63 (q), 118.27 (d), 118.45 (d), 127.55 (d), 129.0 (d), 136.36 (s), 141.36 (d); ²⁹Si NMR (80 MHz, C_6D_6) δ 40.99; MS, m/z 566 (M⁺), 509 (M⁺- ^tBu).

- 7) Crystal Data for 2: C₃₀H₃₈S₂Si₂Ti, M=566.84 are tetragonal with a=16.954(1) Å, c=41.679(3) Å, V=11980.3 Å³, space group I-4, Z=16, μ(Mo Kα)= 5.1 cm⁻¹, r_{calcd}=1.26 g/cm³. The 3212 independent reflections [|Fo|>3σ|Fo|, θ<50°] were measured on an Enraf-Nonius CAD4 diffractometer using Mo-Kα irradiation and ω-2θ scan. The structure was solved by the direct method and all nonhydrogen atoms refined anisotropically by full-matrix least-squares to R=0.055 and Rw= 0.063.
- 8) a) V. A. Kutoglu, Z. Anorg. Allg. Chem., **390**, 195 (1972); b) V. A. Kutoglu, Acta Cryst., **B29**, 2891 (1973); c) E. G. Muller, J. L. Petersen, and L. F. Dahl, J. Organomet. Chem., **111**, 91 (1976).
- 9) Reddish solids were identified as Cp₂TiCl₂ by ¹H NMR and mass spectroscopy.
- 10) **3a**: mp 119 °C; ¹H NMR (400 MHz, C_6D_6) δ 0.95 (s, 18H), 6.63-6.73 (m, 5H), 6.80-6.91 (m, 5H); ¹³C NMR (100 MHz, C_6D_6) δ 22.5 (s), 29.5 (q), 127.8 (d), 127.9 (d), 129.4 (d), 135.6 (s); ²⁹Si NMR (80 MHz, C_6D_6) δ 28.4; MS, m/z 420 (M⁺), 363 (M⁺-^tBu).
- 11) **3b**: mp 131 °C; ¹H NMR (400 MHz, C_6D_6) δ 1.25 (s, 18H), 7.03-7.16 (m, 5H), 7.50-7.61 (m, 5H); ²⁹Si NMR (80 MHz, C_6D_6) δ -7.79; MS, m/z 452 (M⁺), 420 (M⁺-S), 395 (M⁺-tBu).
- 12) **3c**: 1 H NMR (90 MHz, $C_{6}D_{6}$) δ 0.99 (s, 18H), 7.18-7.20, 7.99-8.10 (m, 10H); 29 Si NMR (18 MHz, $C_{6}D_{6}$) δ -1.67; MS, m/z 469 (M⁺), 439 (M⁺- t Bu).
- 13) **3d**: 1 H NMR (400 MHz, $C_{6}D_{6}$) δ 1.26 (s, 18H), 6.92-7.22, 7.41-7.52, 7.60,7.70, 7.88-8.01, 8.11-8.22 (m, 20H); 29 Si NMR (80 MHz, $C_{6}D_{6}$) δ 17.4; MS, m/z 616 (M+), 559 (M+- 1 Bu).
- 14) Crystal Data of 3a: $C_{20}H_{28}S_3Si_2$, M=420.81 are triclinic with a=8.013(1) Å, b=9.860(1) Å, c=16.423(2) Å, $\alpha=86.60(1)^\circ$, $\beta=82.50(1)^\circ$, $\gamma=64.56(26)^\circ$, V=1161.8 Å³, space group P-1, Z=2, μ (Mo $K\alpha$)=4.1cm⁻¹, $r_{calcd}=1.20$ g/cm³. The 3367 independent reflections [IFol>3 σ IFol, θ <50 $^\circ$] were measured on an Enraf-Nonius CAD4 diffractometer using Mo-K α irradiation and ω -2 θ scan. The structure was solved by the direct method and all nonhydrogen atoms refined anisotropically by full-matrix least-squares to R=0.061 and Rw= 0.087.

(Received April 15, 1994)