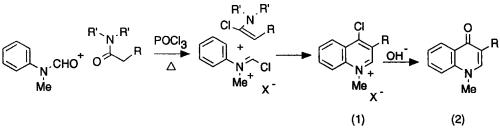

A NOVEL ONE-STEP SYNTHESIS OF QUINOLINIUM SALTS AND 4-QUINOLONES FROM FORMANILIDES

Otto Meth-Cohn* and David L Taylor


Chemistry Department, University of Sunderland, Sunderland SR1 3SD, England

Abstract: N-Methylformanilide in POCl₃ reacts readily at 80° C with alkanoamides(RCH₂CONR'₂) to give 3-R-4-chloroquinolinium salts in good yields. The arylamide reacts as its Vilsmeier salt and the alkanoamide as an α -chloroenamine. High yields of 4-quinolones are easily obtained by base treatment.

We have demonstrated elsewhere that Vilsmeier reagents are superb for the synthesis of quinolines¹. Thus for example, acylanilides react with Vilsmeier reagents to give 2-chloro-3-substituted quinolines in high yield by way of a nucleophilic enamine (Scheme 1). We now disclose an alternative approach in which the quinoline framework is constructed largely from an electrophilic iminium salt, the Vilsmeier reagent, by interaction with an α -chloroenamine which supplies the 3-4 carbons. The enamine is produced *in situ* from an alkanoamide (Scheme 2) and we refer to this process as the 'Reverse Vilsmeier Approach' to quinolines.

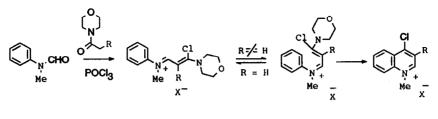
Scheme 1

Scheme 2

The former method is excellent for the generation of [b]-fused quinolines¹ while the present method produces quinolines ideal for the synthesis of [c] fused derivatives and of 4-quinolones. A number of examples are shown in the Table.

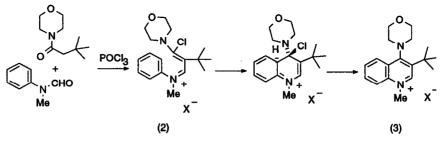
Table

Quinolinium salts(1) and 4-Quinolones(2) from the Reaction of N-Methylformanilide (10mmol) POCl₁ (5cc) and an Alkanoamide (10mmol)


Amide ^b RCH ₂ CONR' ₂		Temp	Time (h)	Quinolinium Salt (1) $X = PF_6$			Quinolone (2)	
		(°C)						
R	R'2			R	M.p.	%	M.p.	%
					(°C)		(°C)	(recryst)
н	Me ₂	50	20	-		_°		
н	Me ₂	110	17	-		_°		
Me	Me ₂	80	2.5	Ме	222	72	159°	88
Ме	(CH ₂) ₄	80	2.5	Ме	222	56		
Ме	(CH ₂) ₂ O(CH ₂) ₂	80	2.5	Ме	222	79		
Ci	(CH ₂) ₂ O(CH ₂) ₂	80	4.5	Ci	249	76	236	74
Et	(CH ₂) ₂ O(CH ₂) ₂	80	1.5	Et	171	73	132	67
i-Pr	(CH ₂) ₂ O(CH ₂) ₂	80	2.25	i-Pr	191	78	105	89
PhCH ₂	(CH ₂) ₂ O(CH ₂) ₂	80	2	PhCH ₂	211	93	123	91
CH ₂ Cl	(CH ₂) ₂ O(CH ₂) ₂	80	1.5	CH ₂ Cl	185	60		
t-Bu	(CH ₂) ₂ O(CH ₂) ₂	80	2	t-Bu	274-276	7 (32 ^d)		
t-Bu	(CH ₂) ₂ O(CH ₂) ₂	80	10	t-Bu 2	274-276	30 (9 ^d)		
CH ₂ CH ₂ OH (CH ₂) ₂ O(CH ₂) ₂		80	2	CH ₂ CH ₂	Cl 232	63		

^a The reactions are conveniently followed by NMR spectroscopy, POCl₃ being an excellent NMR solvent. All new compounds gave satisfactory spectra and CHN analyses. ^bThe amides were made by reaction of the appropriate acid chloride with the amine; N-(4-hydroxybutyryl) morpholine was made by heating γ -butyrolactone with morpholine at 110°C for 2h (92%). ^c No cyclised product was isolated; Under similar conditions Lee and co-workers² isolated (N-methyl-N-phenylamino) acrolein in 88% yield. ^d The yield in parentheses is that of the 4-morpholino-derivative (3). ^c Lit⁴ m.p. 152-153°C.

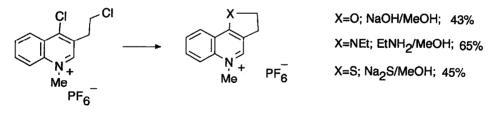
3630


Some features of the reaction deserve further comment:

- Morpholine amides proved to be the most effective.
- The reactions generally proceed in good yield. However acetamides did not give quinolinium salts but gave solely uncyclised product (see footnote c) in accord with the reported literature². We believe that the substituent that ends up in the quinolinium 3-position allows ready transformation of the intermediate to the geometry necessary for cyclisation (Scheme 3).

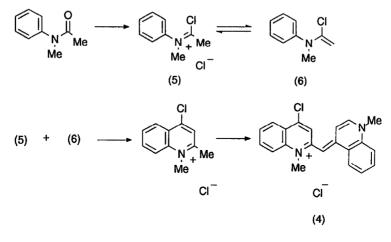
Scheme 3

• When a t-butyl substituent is generated in the 3-position of the quinolinium salt, the reaction is anomalous in that the 4-morpholino derivative (3) is initially formed. This compound is slowly transformed into the 4-chloro-derivative on prolonged heating of the reaction mixture. We explain this process in Scheme 4. The intermediate iminodiene (2) will tend to form with the bulky t-butyl and morpholino groups *trans* to each other, which upon $\pi 6_s$ electrocyclisation will give an intermediate that by *anti*-elimination of HCl will generate the



4-morpholino quinolinium salt (3).

• The products are easily isolated as the insoluble PF_6 salts, which may be easily transformed into 4-quinolones by brief treatment with aqueous sodium hydroxide. Other nucleophiles


can be introduced into the 4 position allowing further annelated quinolines to be synthesised given an appropriate 3-substituent (e.g. CH₂Cl, CH₂Cl).

Scheme 5

• A typical application of [c]-annelation is outlined in Scheme 5.

The discovery of the Vilsmeier reaction stemmed from the reinvestigation of the effect of $POCl_3$ on N-methylacetanilide by Fischer, Müller and Vilsmeier³ who showed that the low yield of dyestuff produced was a quinolinium salt (4). We interpret this reaction as shown in Scheme 6 - the interaction of a Vilsmeier reagent (5) with an enamine (6), both being derived from N-methylacetanilide. This

Scheme 6

reaction is the prototype of our present quinoline synthesis.

References:

- For reviews see: O. Meth-Cohn and B. Tarnowski, Adv. Het. Chem., 1981, 31, 207;
 O. Meth-Cohn, Heterocycles, 1993, 35, 539.
- 2. G. T. Lee, J. C. Amedio Jr., R. Underwood, K. Prasad and O. Repic, J. Org. Chem., 1992, 57, 3250.
- 3. O. Fischer, A. Müller and A.. Vilsmeier, J. Prak.t Chem, 1925, 109, 69.
- 4. J. R. Merchant and V. Shankaranarayan, Chem. & Ind. (London), 1979, 9, 320.

(Received in UK 14 April 1993)