JOC The Journal of Organic Chemistry

Article

Specific Z-Selectivity in the Oxidative Isomerization of Allyl Ethers to Generate Geometrically Defined Z-Enol Ethers using a Cobalt(II)(salen) Complex Catalyst

Guanxin Huang, Miaolin Ke, Yuan Tao, and Fener Chen

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c00004 • Publication Date (Web): 25 Mar 2020

Downloaded from pubs.acs.org on March 26, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9

10 11

12 13

14

15

16

17

18 19

20 21 22

23

24

25

26

27

28 29

30

31

32

33

34

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Specific Z-Selectivity in the Oxidative Isomerization of Allyl Ethers to Generate Geometrically Defined Z-Enol Ethers using a Cobalt(II)(salen) Complex Catalyst

Guanxin Huang,^{a,b} Miaolin Ke,^{a,b} Yuan Tao,^{a,b} and Fener Chen* ^{a,b,c}

a. Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University. Shanghai 200433, P. R. China.

b. Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Molecules. Shanghai 200433, P. R. China.

c. Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, Hangzhou 310014 China.

Supporting Information Placeholder

ABSTRACT: Enol ether structural motifs exist in many highly oxygenated biologically active natural products and pharmaceuticals. The synthesis of the geometrically less stable Z-enol ethers is challenging. An efficient Z-selective oxidative isomerization of allyl ethers catalyzed by a cobalt(II)(salen) complex using N-fluoro-2,4,6-trimethylpyridinium trifluoromethanesulfonate (Me₃NFPY•OTf) as an oxidant has been developed. Thermodynamically less stable Z-enol ethers were prepared in excellent yields with high geometric control. This methodology also demonstrates the effectiveness in controlling the Z-selective isomerization reaction of diallyl ethers at room temperature. This catalytic system provides an alternative pathway to extend the traditional reductive isomerization of allyl ethers.

Introduction

Enol ethers are stable, electron-rich π -bonds that are excellent substrates for the incorporation of oxygen functionalities. They are commonly employed in a large number of valuable synthetic transformations, such as the Claisen rearrangement,¹ isoxazoline synthesis,² cycloaddition,³ Diels-Alder reaction,⁴ Nazarov cyclization,⁵ and cross aldol reaction.⁶ In addition, enol ethers are important pharmacophores in a variety of bioactive natural products, which display antidiarrheal, antibiotic, antihypertensive, hypoglycemic and antalgic properties.^{7–9} (Figure 1). Structure-activity relationship studies have demonstrated the necessity of the enol ether group and a specific enol ether geometry. Both E- and thermodynamically disfavored Z-enol ethers are widely found in pharmaceutically active molecular scaffolds in drug discovery. A large number of strategies for the construction of enol ether substructures have been developed to identify an efficient synthetic route to prepare these compounds, including the Wittig olefination of lactones,¹⁰ Julia olefination with alkoxysulfones,¹¹ and the elimination of β -halo ethers, ¹² β - hydroxy ethers, ¹³ and β -halo acetals.¹⁴ However, these methods exhibit poor Z/E selectivity unless the steric demand of the substituents are substantially

different. In general, the copper (I or II)-catalyzed carbonoxygen Ullmann coupling of *sp*2-hybridized halides with oxygen-centered nucleophiles is perceived as a possible solution to circumvent the poor stereoselectivity observed in the aforementioned methods. The use of inexpensive copper salts as the catalyst make the Ullmann coupling strategy an attractive alternative to synthesize *E*-enol ethers with high stereospecificity.¹⁵ However, the drawback to this protocol is the need to heat the reaction, which could be problematic for sensitive substrates or some functional groups.

Figure 1. Natural products and pharmaceuticals containing enol ether scaffolds

The catalytic isomerization of an allyl ether is a simple and atom-economical process, which is very important in the synthesis of enol ethers using transition-metal catalysts in both the research laboratory and large-scale industrial applications. However, this catalytic isomerization reaction is thermodynamically favorable and gives an E/Z mixture of the enol ether isomer with the *E*-isomer formed as the predominant thermodynamic product (Scheme 1a).¹⁶ High *Z* - selective isomerization of allyl ethers in the presence of stoichiometric amounts of strong bases have been reported (Scheme 1b).¹⁷

Previous work

(a) Transition metal catalyzted isomerization of mono-allyl ethers

 $0_{R} \xrightarrow{complex} 0_{R}$ z cobalt(II)(salen) $0_{R} \xrightarrow{0} 0_{R}$ (Z, Z)

Scheme 1. Challenges in the isomerization of mono-allyl ethers and diallyl ethers.

However, the transition metalcatalyzed Z -selective transformations of allyl ethers suffer from a poor Z/E-stereoisomer selectivity or a narrow substrate scope.^{2,16b,16d,18}

This is not surprising, as reports on the highly stereoselective transition metal-catalyzed isomerization of allyl ethers to give the thermodynamically less stable stereospecific Z-enol ether products are notably absent. There are only four reports describing the selective formation of the thermodynamically less stable Z-enol ether product (Z/E > 99:1) using transition-metal catalysis.^{16a, 16b} However, this is limited to only a few examples bearing little functionality. In addition, there are no reports on generating high order Z-dienol ethers with exceptional geometric control via the transition metal-catalyzed isomerization of allyl ethers.

Table 1.	Optim	ization	of the	reaction	conditions.a
----------	-------	---------	--------	----------	--------------

		Cobalt cataly	st (3 mol%)		
	\sim	Me ₃ NFP·OTf	(2 equiv)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ן
	1a	H donor (2 ed	quiv)	2a	•
		solvent,	r.t		
Entry	Catalyst	H donor	Solvent	Yield (%) ^b	Z/E^{c}
1	Co(III)-a	(Me ₂ SiH) ₂ O	toluene	-	-
2	Co(III)-b	(Me ₂ SiH) ₂ O	toluene	-	-
3	Co(III)-c	(Me ₂ SiH) ₂ O	toluene	-	-
4	Co(III)-a	(Me ₂ SiH) ₂ O	THF	-	-
5	Co(III)-a	(Me ₂ SiH) ₂ O	acetone	-	-
6	Co(III)-a	(Me ₂ SiH) ₂ O	PhCF ₃	-	-
7	Co(II)-a	(Me ₂ SiH) ₂ O	PhCF ₃	25^d	>99:1
8	Co(II)-b	(Me ₂ SiH) ₂ O	PhCF ₃	33 ^e	>99:1
9	Co(II)-c	(Me ₂ SiH) ₂ O	PhCF ₃	31	>99:1
10	Co(II)-d	(Me ₂ SiH) ₂ O	PhCF ₃	87(80)	>99:1
11	Co(II)-d	PhSiH ₃	PhCF ₃	84	>99:1
12	Co(II)-d	Ph ₂ SiH ₃	PhCF ₃	67	>99:1
13	Co(II)-d	PhSiH ₂ (OiPr)	PhCF ₃	22	>99:1
14^{g}	Co(II)-d	(Me ₂ SiH) ₂ O	PhCF ₃	40	>99:1
15 ^h	Co(II)-d	(Me ₂ SiH) ₂ O	PhCF ₃	37	>99:1

"Unless otherwise noted, all the reactions were carried out using **1a** (0.3 mmol), **Co(II)-d** (3 mol%), Me₃NFPY•OTf (2.0 equiv), and (Me₂SiH)₂O (2.0 equiv) in PhCF₃ (3 mL) under a N₂ atmosphere at room temperature for 3 h. ^{h,c}The yield and Z/E selectivity were determined using **GC-MS**. ^dThe reaction time was 5 h. ^cThe reaction time was 7 h. ^fThe isolated yield is provided in the parentheses. ^gMe₃NFPY•OTf (1.0 equiv). ^h(Me₂SiH)₂O (1.0 equiv).

Table 2. Substrate scope of the allyl ether used in the isomerization reaction.^a

	R. 0	Co(II)-d (3 mol%) Me ₃ NFP·OTf (2 equiv) (Me ₂ SiH) ₂ O (2 equiv) PhCF ₃ (0.1 M), rt	R.0 2	R ¹
Entry	Product	Time (h)	Yield (%) ^b	Z/E^{c}
1		3	80	>99:1
2	MeO 2b	6	82	>99:1
3	BnO 2c	5	84	>99:1

42

43

44

45 46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

1	4	2d	6	81	>99:1
2		MeO			
3	5		5	79	>99.1
4	Ũ	2e 10'	Ū	10	00.1
5					
6		\sim			
7	6	$\langle \rangle_{0}$	5	88	>99:1
8		2f			
9		\sim			
10	7	$\langle \rangle \rangle$	35	72	>99:1
11		2g			
12		\bigwedge			
12	8	F₃C└└└	3	78	>99:1
17		2h			
14					
10	9		5	75	>99:1
10		2i			
1/		CI L			
18	10		5	74	>99:1
19					
20					
21	11	Br	5	79	>99:1
22		2k			
23		Br			
24	12		5	83	>99:1
25		21			
26		Br			
27	13		5	74	>99:1
28		2m			
29		$\bigcirc \bigcirc \bigcirc$			
30	14		4	78	>99:1
31		2n /			
32	15	Ph~~~o~	7	53	>99:1
32		20			
31	16	C ₁₅ H ₃₁ 0	7	59	>99:1
25		2p			
20		\downarrow			
30	17 ^d		16	90	>99:1
5/		2α ¹			
38					
39	18	Show of	8	81	-
40		2r			
41	^a Unless	otherwise noted, all the reaction	ons were carried	out using 1 (0.3 r	nmol), Co(II)-d

"Unless otherwise noted, all the reactions were carried out using 1 (0.3 mmol), Co(II)-d (3 mol%), Me₃NFPY•OTf (2.0 equiv), and (Me₂SiH)₂O (2.0 equiv) in anhydrous PhCF under a N2 atmosphere at room temperature. bThe isolated yield after column chromatography. "The Z/E selectivity was determined using 1H NMR spectroscopy. "The ee of 2q was >99%.

Results and Discussion

Cobalt-catalyzed Z-selective alkene isomerization has been reported by Hilt et al.¹⁹ Herein, we report a novel and general cobalt-catalyzed oxidative isomerization reaction for the synthesis of Z-enol ethers with excellent geometric selectivity. This methodology displays excellent functional group tolerance, uses a commercially available catalyst, and can be performed under mild reaction conditions. The catalytic system works well for not only the Z-selective isomerization of allyl ethers, but also the Z-selective isomerization of diallyl ethers.

We began our study on the isomerization of allyl ether 1a using a series of Co(III)(R,R-salen)Cl catalysts with Me₃NFPY•OTf and (Me₂SiH)₂O acting as the oxidant and

hydrogen donor, respectively. Unfortunately, almost no reaction occurred at room temperature in a range of diverse solvents (Table 1, entry 1-6). Switching to a class of Co(II)(R,R-salen) catalysts was crucial to achieving the oxidative isomerization and surprisingly gave the thermodynamically less stable Z-enol ether 2a using Co(II)-a-**Co(II)-c** with excellent geometric selectivity (Z/E > 99:1) albeit in very poor yield (entries 7-9). To our delight, this oxidative isomerization gave the desired product 2a in 87% yield and >99:1 Z-selectivity using the Co(II)-d catalyst (entry 10). Subsequently, different silanes were tested as the hydrogen donor in the reaction (entries 11-13). Isomerization of 1a using PhSiH₃ and Ph₂SiH₂ was successful at room temperature and the reaction was completed within 3 h, resulting in Z-enol ether 2a in 84% and 67% yield, respectively (entries 11 and 12). However, employing PhSiH₂(OiPr) gave 2a in 22% yield (entry 13). The selectivity observed for the conversion of 1a to 2a was always excellent (>99:1). Attempts to reduce the amount of oxidant and hydrogen donor used in the reaction caused a significant decrease in the product yield (entries 14, 15).

Having established the optimized reaction conditions, the scope of the isomerization reaction was examined. All the aromatic allyl ether derivatives studied were cleanly converted to the thermodynamically less stable Z-enol ether product in high yield (74–88%) with excellent stereospecificity (>99:1) (Table 2, entries 2-14). A steric bulky substituent, such as 2,6dimethylphenyl allyl ether 1g was used, the Z-product still be favoured with good yield and >99:1 Z/E but longer reaction time than other aromatic allyl ethers. The cobalt-catalyzed isomerization of aliphatic allyl ethers 10 and 1p was also investigated (entries 15 and 16). Remarkably, the double bond was selectively isomerized to afford the desired products (20 and 2p) in 53% and 59% yield, respectively. Importantly, sterically hindered allyl ether 1q bearing a menthol group required a longer reaction time to complete the isomerization reaction and gave 2q in 90% with exclusive Z-selectivity (entry 17). The result reveals that steric hindrance has a significant effect on the rate of the isomerization reaction. Interestingly, double bond migration in 1q (>99% ee) proceeded well without any loss of optical purity. 1,1disubstituted allyl ether 1r could still be convered to corresponding enol ether 2r with excellent yield (entry 18). Excellent functional group tolerance was observed in table 2 when different allyl ethers were subjected to the reaction conditions bearing methyl, trifluoromethyl, methyoxy, benzyloxy, tert-butyl, halides and so on.

Scheme 2. Limitation of this method.

Nevertheless, our developed method also contains limitations (Scheme 2). When homoallyl ether 1s was subjected to the standard reaction conditions, only trace amount of the isomerized product 2s was observed. Instead, the bicyclic compound 2s' was isolated as the major product. The isomerization of the higher alkenyl ether 1t was also investigated, furnishing the isomerized product 2t in 61% yield. The E/Z selectivity was rather poor, with the *E*-isomer being slightly favored. Finally, no isomerization reaction happened to compound 1u, which contains a methyl group attaching to the terminal carbon of the double bond. Table 3. Isomerization of diallyl ethers.^{*a*}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46 47

48

49

50

51

52

53

54

55

56

57

58 59

60

	0. p.0.	Co(II)-d (3 mol%) Me₃NFP·OTf (4 equiv)		
	3 R V	(Me ₂ SiH) ₂ O (4 equiv) PhCF ₃ (0.1 M), rt	R 4	
Entry	Product	Time (h)	Yield ^b (%)	Z/E^{c}
1		9	83	>99:1
2		10	82	>99:1
3		9	78	>99:1
4	0 4d	5	74	>99:1
5	00 4e	4	75	>99:1
6	00 4f	5	81	>99:1
7		6	77	>99:1
8	مر کر مر 4h	5	86	>99:1
9		.] 6	86	>99:1
10		~ 7	83	>99:1

"Unless otherwise noted, all the reactions were carried out using **3** (0.3 mmol), **Co-II-d** (3 mol%), Me₃NFPY+OTf (4.0 equiv), and (Me₂SiH)₂O (4.0 equiv) in anhydrous PhCF₃ under a N₂ atmosphere at room temperature. "Isolated yield after column chromatography. "The Z/E selectivity was determined using ¹**H** NMR spectroscopy.

To the best of our knowledge, the previously reported isomerization reactions of diallyl ethers form the dienol ether products as the (Z, Z)-isomer using stoichiometric amounts of strong bases (Scheme 1c)^{17a, 17b} and as mixture of *E*, *Z*-isomers using Ru complex catalysts (Scheme 1d), respectively.^{18g, 20} However transition meal-catalyzed exclusive (Z, Z)-selective translocation of various diallyl ethers has been rarely reported to date, which is especially noteworthy. Therefore, we turned our attention to investigating whether diallyl ethers could be selectively isomerized into the thermodynamically less stable (Z, Z)-isomer.

The results of the isomerization reactions are summarized in Table 3. We were pleased to find that these reactions worked well in the presence of **Co(II)-2d** (3 mol%) using 4 equiv of Me₃NFPY•OTf as the oxidant and 4 equiv of (Me₂SiH)₂O as the hydrogen donor in PhCF₃ at room temperature. The isomerization reaction clearly shows high geometric selectivity in all cases to give the corresponding (*Z*, *Z*)-dienol ether products in good to excellent yield. It is noteworthy that aliphatic diallyl ethers (**4d-j**) (Table 3, entries 4–10) isomerized much faster than aromatic diallyl ethers (**4ac**) (entries 1-3). As chiral catalyst were applied, we also investigated asymmetric desymmetrisation for **3f**, but no mono-isomerization product was found through GCMS and ¹H NMR under all the time-points. We speculate that the rate of isomerization is the same on both sides.

Deuterium labelling experiment has been done. We used $PhSiD_3$ (D=99.5%) as the H source to conduct the isomerization of **1n** under the standard reaction conditions, resulting in deuterium incorporation exclusively at the terminal carbon (Scheme 3).

Scheme 3. Mechanistic study.

Based on the above results, a plausible reaction pathway for the cobalt-catalyzed isomerization reaction is shown in Scheme 4. Initially, the catalytic cycle begins with the generation of a Co(III)-F complex and cationic Co(III)OTf complex in the presence of Me₃NFPY•OTf. Transformation of the Co(III)-F complex to the Co(III)-H complex occurs due to the strong F-Si bonding energy, which has been reported by Shigehisa²¹ and Holland et al.²² The Co(III)-H coordinates with the allyl ether to form a *cis*-conformation. Formation of similar cis-conformation via the coordination of Pt-H and Ru-H has been reported previously.²³ Subsequently, the key radical intermediate B generated via single electron transfer. B is subsequently oxidized by the cationic Co(III)OTf complex to form key carbocation intermediate C with the release of cobalt(II) complex . Finally, trans-coplanar elimination of the proton in C occurs to form the desired Z-vinyl ether 2 with the release of the second cobalt(II) complex.

Scheme 4. Proposed catalytic cycle for the oxidative isomerization reaction.

11

12

13

14

15

16

17

59

60

In summary, the oxidative isomerization of allyl ethers to Z-1 enol ethers has been developed based on carbon radicals and 2 carbocation species as key intermediates using a 3 cobalt(II)(salen) complex, Me₃NFPY•OTf, and (Me₂SiH)₂O. 4 The reaction was found to tolerate a wide variety of functional 5 groups and exhibited excellent yields and selectivity (Z/E)6 >99:1). This methodology also works well for the Z-selective 7 isomerization reaction of diallyl ethers at room temperature. 8 9

EXPERIMENTAL SECTION

General Information: Thin-layer chromatography (TLC) carried out on 0.25 mm silica gel platesvisualized with UV light and/or by staining with ethanolic phosphomolybdic acid (PMA) or iodine. Flash column chromatography was performed on silica gel (300-400 mesh). NMR spectraswere recorded on Bruker AM400 (400 MHz). Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. Optical rotations were taken on JASCO P1020. Highresolution mass spectra were recorded on Bruker ApeXIII 7.0 TESLA FTMS.

18 General Procedure for the Cobalt-catalyzed Allyl Ethers 19 Isomerization: A Schlenk tube was charged with Co(II)-d 20 (5.4 mg, 0.009 mmol, 3% equiv), Me₃NFPY•OTf (173.5 mg, 21 0.6 mmol, 2 equiv), after being dried in vacuo for 3 mins, 22 degassed trifluorotoluene (3 mL) was added. The solution was 23 bubbled with N_2 for three times, after which 1a (40.2 mg, 0.3 mmol, 1 equiv) and (Me₂SiH)₂O (80.6 mg, 0.6 mmol, 2 equiv) 24 was added under N2. The resulting mixture was stirred at rt for 25 5 hours. After 1a was completely consumed as monitored by 26 TLC, H₂O (5 mL) was added to quench the reaction. The 27 resulted mixture was then extracted three times with diethyl 28 ether (10 mL \times 3). The combined organic layer was dried over 29 Na₂SO₄. After evaporation of the volatile solvent under 30 reduced pressure, the residue was purified by flash 31 chromatography on silica gel to afford pure 2a (32.2 mg, 0.25 mmol) as a colourless oil in a yield of 80%. 32

(Z)-(prop-1-en-1-yloxy)benzene (2a): purified by column 33 chromatography (petroleum ether). Colorless oil; actual mass 34 32.2 mg, yield 80%. (Z: E > 99:1). ¹H NMR (400 MHz, 35 CDCl₃): δ 7.38-7.34 (m, 2H), 7.10-7.05 (m, 3H), 6.44 (dd, J= 36 6.0, 1.5 Hz, 1H), 4.94 (m, 1H), 1.79 (dd, J= 6.9, 1.5 Hz, 3H). 37 ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.6, 141.0, 129.6, 38 122.4, 116.2, 107.5, 9.4. (Only Z isomer is visible). This 39 product is known.17a

40 (Z)-1,3-dimethoxy-5-(prop-1-en-1-yloxy)benzene (2b): 41 purified by column chromatography (petroleum ether/ethyl 42 acetate = 30/1). Colorless oil; actual mass 47.8 mg, yield 82%. 43 (Z: E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ 6.35 (dd, J = 5.9, 1.5 Hz, 1H), 6.18-6.17 (m, 3H), 4.88 (m, 1H), 3.77 (s, 6H), 44 1.71 (dd, J= 6.9, 1.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, 45 CDCl₃): δ 161.5, 159.4, 140.6, 107.9, 94.9, 55.4, 9.4. (Only Z 46 isomer is visible). 47

HRMS (EI-TOF): calcd. for $C_{11}H_{14}O_3$ (M⁺) m/z: 194.0943, 48 found: 194.0949.

49 (Z)-1-(benzyloxy)-4-(prop-1-en-1-yloxy)benzene (2c)50 purified by column chromatography (petroleum ether). 51 Colorless oil; actual mass 60.6 mg, yield 84%. (Z: E > 99:1). 52 ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.31 (m, 5H), 6.93 (s, 4H), 6.31 (dd, J= 5.9, 1.5 Hz, 1H), 5.04 (s, 2H), 4.85-4.78 (m, 53 1H), 1.72 (dd, J= 6.9, 1.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, 54 CDCl₃): δ 154.3, 151.9, 141.9, 137.2, 128.6, 128.0, 127.5, 55 117.3, 115.8, 106.4, 70.7, 9.3. (Only Z isomer is visible).

56 HRMS (EI-TOF): calcd.for C₁₆H₁₆O₂ (M⁺) m/z: 240.1150, 57 found: 240.1155. 58

(Z)-1-methyl-3-(prop-1-en-1-yloxy)benzene (2d): purified by column chromatography (petroleum ether). Colorless oil; actual mass 36.0 mg, yield 81%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): & 7.24-7.20 (m, 1H), 6.89-6.83 (m, 3H), 6.40 (dd, J= 4.8, 1.5 Hz, 1H), 4.91-4.88 (m, 1H), 2.37 (s, 3H), 1.75 (dd, J= 6.8, 1.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 157.6, 141.0, 139.7, 129.3, 123.2, 117.0, 113.2, 107.3, 21.5, 9.4. (Only Z isomer is visible).

HRMS (EI-TOF): calcd.for $C_{10}H_{12}O$ (M⁺) m/z: 148.0888, found: 148.0887.

(Z)-1-methoxy-4-(prop-1-en-1-yloxy)benzene (2e): purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 38.9 mg, yield 79%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 6.98-6.96 (m, 2H), 6.88-6.86 (m, 2H), 6.34 (dd, J= 6.2, 1.9 Hz, 1H), 4.86-4.80 (m, 1H), 3.80 (s, 3H), 1.77 (dd, J= 6.8, 1.3 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.1, 151.8, 142.0, 117.4, 114.7, 106.2, 55.6, 9.4. (Only Z isomer is visible).

This product is known.^{16b}

(Z)-1-(tert-butyl)-4-(prop-1-en-1-yloxy)benzene (2f): purified by column chromatography (petroleum ether). Colorless oil; actual mass 50.2 mg, yield 88%. (Z:E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.42 (m, 2H), 7.05-7.03 (m, 2H), 6.47 (dd, J= 5.8, 1.4 Hz, 1H), 4.96-4.93 (m, 1H), 1.83 (dd, J= 6.9)1.3 Hz, 3H), 1.42 (s, 9H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 155.5, 145.2, 141.3, 126.4, 115.8, 107.0, 34.3, 31.6, 9.5. (Only Z isomer is visible).

HRMS (EI-TOF): calcd.for $C_{13}H_{18}O$ (M⁺) m/z: 190.1358, found: 190.1359.

(Z)-1,3-dimethyl-2-(prop-1-en-1-yloxy)benzene (2g): purified by column chromatography (petroleum ether). Colorless oil; actual mass 35.0 mg, yield 72%. (Z:E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 7.09-7.07 (m, 2H), 7.04-7.00 (m, 1H), 6.03 (dd, J= 6.0, 1.7 Hz, 1H), 4.69-4.62 (m, 1H), 2.32 (s, 6H), 1.85 (dd, J= 6.9, 1.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.7, 144.6, 130.8, 128.8, 124.5, 102.3, 16.2, 9.2. (Only Z isomer is visible).

This product is known.^{18d}

(Z)-1-(prop-1-en-1-yloxy)-3-(trifluoromethyl)benzene (2h) : purified by column chromatography (petroleum ether). Colorless oil; actual mass 47.3 mg, yield 78%. (Z: E >99:1).¹H NMR (400 MHz, CDCl₃): δ 7.44-7.40 (m, 1H), 7.30-7.28 (m, 1H), 7.24 (m, 1H), 7.18-7.16 (m, 1H), 6.38 (dd, J= 6.1, 1.7 Hz, 1H), 5.00 (m, 1H), 1.72 (dd, J= 6.9, 1.6 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 157.6, 140.1, 130.1, 119.4, 119.0, 119.0, 118.9, 118.9, 113.0, 113.0, 113.0, 112.9, 109.3, 9.4.

HRMS (EI-TOF): calcd.for C₁₀H₉F₃O (M⁺) m/z: 202.0605, found: 202.0608.

(Z)-1-chloro-4-(prop-1-en-1-yloxy)benzene (2i): purified by column chromatography (petroleum ether). Colorless oil; actual mass 37.9 mg, yield 75%. (Z: E >99:1).¹H NMR (400 MHz, CDCl₃): δ 7.26-7.23 (m, 2H), 6.92-6.90 (m, 2H), 6.30 (dd, J= 6.0, 1.6 Hz, 1H), 4.91 (m, 1H), 1.71 (dd, J= 6.9, 1.6)Hz, 3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 156.2, 140.6, 129.5, 127.3, 117.4, 108.3, 9.4. (Only Z isomer is visible). This product is known.16b

(Z)-1,3-dichloro-5-(prop-1-en-1-yloxy)benzene (2j): purified by column chromatography (petroleum ether). Colorless oil; actual mass 45.1 mg, yield 74%. (Z: E >99:1).¹H NMR (400 MHz, CDCl₃): δ 6.55-6.46 (m, 3H), 6.30 (dd, J= 6.2, 1.7 Hz, 1H), 5.01 (m, 1H), 1.69 (dd, J= 6.9, 1.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 164.9 164.8, 162.5, 139.6, 110.1, 98.9, 99.8, 99.7, 99.6, 98.1, 97.8, 97.5, 9.4. (Only Z isomer is visible).

1

2

3

4

5

6

7

8

9

10

HRMS (EI-TOF): calcd.for C₉H₈Cl₂O (M⁺) m/z: 201.9952, found: 201.9959.

- (Z)-1-bromo-3-(prop-1-en-1-yloxy)benzene (2k): purified by column chromatography (petroleum ether). Colorless oil; actual mass 50.5 mg, yield 79%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 7.17-7.15 (m, 3H), 6.96-6.93 (m, 1H), 6.36-6.34 (dd, J= 6.1, 1.5 Hz, 1H), 5.00-4.93 (m, 1H), 1.73 (dd, J= 6.9. 1.6 Hz, 3H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 158.2. 140.2, 130.7, 125.4, 122.9, 119.5, 114.9, 108.9, 9.4. (Only Z isomer is visible). This product is known.^{16b}
- 11 (Z)-1-bromo-4-(prop-1-en-1-yloxy)benzene (21): purified by column chromatography (petroleum ether). Colorless oil; 12 actual mass 53.1 mg, yield 83%. ¹H NMR (400 MHz, CDCl₃): 13 δ 7.40 (d, J= 8.6 Hz, 2H), 6.88 (d, J= 8.7 Hz, 2H), 6.37 (dd, J= 14 6.4, 1.6 Hz, 1H), 4.95-4.90 (m, 1H), 1.73 (dd, J= 6.9, 1.3 Hz, 15 3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 156.7, 140.5, 132.4, 16 117.9, 114.7, 108.5, 9.4. (Only Z isomer is visible). This 17 product is known.16b
- 18 (Z)-1-bromo-2-(prop-1-en-1-vloxy)benzene (2m): purified by 19 column chromatography (petroleum ether). Colorless oil; 20 actual mass 47.3 mg, vield 74%. (Z: E >99:1). ¹H NMR (400 21 MHz, CDCl₃): δ 7.57 (dd, J= 8.1, 1.5 Hz, 1H), 7.26 (td, J= 7.4, 22 1.5 Hz, 1H), 6.98 (dd, J= 8.2, 1.2 Hz, 1H), 6.92 (td, J= 7.9, 1.3 23 Hz, 1H), 6.35 (dd, J= 6.5, 1.6 Hz, 1H), 5.00 (m, 1H), 1.77 (dd, J= 6.8, 1.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 24 154.1, 140.5, 133.6, 128.5, 123.5, 115.9, 112.5, 109.1, 9.5. 25 (Only Z isomer is visible). This product is known.^{16b} 26
- (Z)-2-(prop-1-en-1-yloxy)naphthalene (2n): purified by 27 column chromatography (petroleum ether). Colorless oil; 28 actual mass 43.1 mg, yield 78%. (Z: E >99:1). ¹H NMR (400 29 MHz, CDCl₃): δ 7.79 (d, J= 8.5 Hz, 2H), 7.74 (d, J= 8.2 Hz, 30 1H), 7.46 (t, J= 7.1 Hz, 1H), 7.37 (t, J= 7.3 Hz, 1H), 7.29-7.24 31 (m, 2H), 6.53-6.62 (m, 1H), 5.00-4.95 (m, 1H), 1.77 (dd, J= 32 6.9, 1.5 Hz, 3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 155.4, 140.8, 134.3, 129.8, 129.7, 127.7, 127.0, 126.5, 124.2, 118.6, 33 110.1, 108.1, 9.5. (Only Z isomer is visible). 34

HRMS (EI-TOF): calcd.for C₁₃H₁₂O (M⁺) m/z: 184.0888, 35 found: 184.0884. 36

(Z)-(4-(prop-1-en-1-yloxy)butyl)benzene (20): purified by 37 column chromatography (petroleum ether). Colorless oil; 38 actual mass 30.3 mg, yield 53%. (Z: E >99:1). ¹H NMR (400 39 MHz, CDCl₃): δ 7.37-7.33 (m, 2H), 7.27-7.23 (m, 3H), 6.00 40 (dd, J= 6.3, 1.7 Hz, 1H), 4.49-4.42 (m, 1H), 3.80 (t, J= 6.5 Hz, 41 2H), 2.72 (t, J= 7.5 Hz, 2H), 1.84-1.71 (m, 4H), 1.67 (dd, J= 42 7.0, 1.8 Hz, 3H). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 145.7, 142.4, 128.5, 128.4, 125.8, 100.9, 71.9, 35.7, 29.5, 27.8, 9.3. 43 (Only Z isomer is visible). 44

HRMS (EI-TOF): calcd.for C₁₃H₁₈O (M⁺) m/z: 190.1358, 45 found: 190.1362. 46

(Z)-1-(prop-1-en-1-yloxy)hexadecane (2p): purified by 47 column chromatography (petroleum ether). Colorless oil; 48 actual mass 50.0 mg, yield 59%. (Z: E >99:1). ¹H NMR (400 49 MHz, CDCl₃): δ 5.94 (dd, J= 6.3, 1.5 Hz, 1H), 4.36 (m, 1H), 50 3.71 (t, J= 6.7 Hz, 2H), 1.64-1.62 (m, 2H), 1.58 (dd, J= 7.0, 51 1.4 Hz, 3H), 1.27 (m, 26H), 0.89 (t, J= 6.6 Hz, 3H). ¹³C{¹H} 52 NMR (100 MHz, CDCl₃): δ 145.6, 100.7, 72.1, 32.0, 29.8, 53 29.8, 29.7, 29.6, 29.6, 29.4, 29.4, 25.9, 22.7, 14.1, 9.2. (Only 54 Z isomer is visible).

58 59

60

HRMS (EI-TOF): calcd.for C₁₉H₃₈O (M⁺) m/z: 282.2923, 55 found: 282.2929. 56

(1S,2R,4R)-1-isopropyl-4-methyl-2-((Z)-prop-1-en-1-57

yloxy)cyclohexane (2q): purified by column chromatography

(petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 53.0 mg, vield 90%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 6.00 (dd, J= 6.2, 1.4 Hz, 1H), 4.36-4.30 (m, 1H), 3.34 (td, J= 10.5, 4.4 Hz, 1H), 2.20-2.12 (m, 1H), 2.00 (m, 1H), 1.67-1.62 (m, 2H), 1.57 (dd, J= 6.7, 1.4 Hz, 3H), 1.39-1.32 (m, 2H), 1.01 (q, J= 12.0 Hz, 2H), 0.92-0.90 (m, 7H), 0.78 (d, J= 6.9 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.8, 100.2, 81.3, 47.9, 41.6, 34.4, 31.6, 25.9, 23.6, 22.2, 20.8, 16.4, 9.4. (Only Z isomer is visible).

This product is known.^{17a}

2-((2-methylprop-1-en-1-yl)oxy)naphthalene (2r): purified by column chromatography (petroleum ether). Colorless oil; actual mass 48.2 mg, yield 81%. ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.76 (m, 3H), 7.50-7.37 (m, 2H), 7.29-7.26 (m, 2H), 6.39 (s, 1H), 1.82 (s, 3H), 1.80 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 155.7, 135.1, 134.5, 129.6, 127.7, 126.9, 126.5, 124.0, 118.6, 118.3, 109.4, 19.6, 15.3. This product is known.24

6-methoxy-4-methylchroman (2s'): purified by column chromatography (petroleum ether). Colorless oil; actual mass 39.2 mg, yield 73%. ¹H NMR (400 MHz, CDCl₃): δ 6.74-6.66 (m, 3H), 4.17-4.11 (m, 2H), 3.76 (s, 3H), 2.94-2.93 (m, 1H), 2.11-2.04 (m, 1H), 1.74-1.70 (m, 1H), 1.33 (d, 3H, J = 6.8Hz). This product is known.^{21a}

tert-butyl(hept-5-en-1-yloxy)dimethylsilane (2t): Colorless oil; actual mass 41.8 mg, yield 61%. (E:Z =1.5:1). ¹H NMR (400 MHz, CDCl₃): δ 5.43-5.40 (m, 2H), 3.63-3.58 (m, 2H), 2.10-2.02 (m, 2H), 1.64-1.55 (m, 5H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 131.0 (E), 130.2 (Z), 125.0 (E), 124.2 (Z), 62.7, 32.7, 28.8 (Z), 26.0 (E), 23.1, 18.4 (Z), 17.9 (E), 12.7, -5.3. This product is known.^{16h}

1,3-bis((Z)-prop-1-en-1-yloxy)benzene (4a): purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 47.4 mg, yield 83%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 7.26-7.22 (m, 1H), 6.71-6.68 (m, 3H), 6.39-6.38 (m, 2H), 4.95-4.89 (m, 2H), 1.73 (dd, J= 6.8, 1.3 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 158.7, 140.6, 130.1, 110.0, 108.0, 104.4, 9.4. (Only Z isomer is visible).

HRMS (EI-TOF): calcd.for C₁₂H₁₄O₂ (M⁺) m/z: 190.0994, found: 190.0989.

2-chloro-1,3-bis((Z)-prop-1-en-1-yloxy)benzene (4b): purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 55.3 mg, yield 82%. (Z: E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ 7.11 (t, J= 8.3Hz, 1H), 6.69 (d J= 8.2 Hz, 2H), 6.33 (dd, J= 5.8, 1.4 Hz, 2H), 5.00-4.95 (m, 2H), 1.74 (dd, J= 6.8, 1.6 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 154.5, 140.5, 127.0, 109.6, 109.3, 9.5. (Only Z isomer is visible).

HRMS (EI-TOF): calcd.for C₁₂H₁₃ClO₂ (M⁺) *m/z*: 224.0604, found: 224.0598.

1,4-bis((Z)-prop-1-en-1-yloxy)benzene (4c): purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 44.5 mg, yield 78%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 6.96 (m, 4H), 6.33 (dd, J= 6.2, 1.8 Hz, 2H), 4.88-4.82 (m, 2H), 1.74 (dd, J= 6.8, 1.4 Hz, 6H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 153.0, 141.6, 117.3, 106.8, 9.4. (Only Z isomer is visible).

HRMS (EI-TOF): calcd.for $C_{12}H_{14}O_2$ (M⁺) m/z: 190.0994, found: 190.0999.

1,2-bis((Z)-prop-1-en-1-yloxy)ethane (4d) : purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 31.6 mg, yield 74%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 5.96 (dd, J= 6.1, 1.5

2

58 59

60

- Hz, 2H), 4.45-4.38 (m, 2H), 3.89 (s, 4H), 1.58 (dd, J= 6.8, 1.6 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.5, 101.7, 70.9, 9.2. (**Only** *Z* isomer is visible).
- 3 HRMS (EI-TOF): calcd.for $C_8H_{14}O_2$ (M⁺) m/z: 142.0994, found: 142.0997.
- 1,3-bis((Z)-prop-1-en-1-yloxy)propane(4e):purified bycolumn chromatography (petroleum ether/ethyl acetate =30/1). Colorless oil; actual mass 35.1 mg, yield 75%. (Z: E>99:1). ¹H NMR (400 MHz, CDCl₃): δ 5.96 (dd, J= 6.1, 1.5Hz, 2H), 4.45-4.38 (m, 2H), 3.85 (t, J= 6.2 Hz, 4H), 1.98-1.92(m, 2H), 1.60 (dd, J= 6.8, 1.6 Hz, 6H). ¹³C {¹H} NMR (100MHz, CDCl₃): δ 145.5, 101.2, 68.3, 30.3, 9.2. (Only Z isomeris visible).
- 12 HRMS (EI-TOF): calcd.for $C_{10}H_{18}O_2$ (M⁺) m/z: 156.1150, 13 found: 156.1151.
- 14 (Z)-1-(2-methyl-3-((Z)-prop-1-en-1-yloxy)propoxy)prop-1-
- ene (4f): purified by column chromatography (petroleum 15 ether/ethyl acetate = 30/1). Colorless oil; actual mass 41.4 mg, 16 yield 81%. (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 5.96-17 5.94 (m, 2H), 4.41-4.36 (m, 2H), 3.74-3.70 (m, 2H), 3.67-3.63 18 (m, 2H), 2.15-2.08 (m, 1H), 1.60 (dd, J= 6.8, 1.6 Hz, 6H), 1.00 19 (d, J= 6.8 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 20 145.9, 100.9, 73.7, 34.7, 13.7, 9.2. (Only Z isomer is visible). 21 HRMS (EI-TOF): calcd.for C₉H₁₆O₂ (M⁺) m/z: 170.1307, 22 found: 170.1311.
- 23 (Z)-1-(2,2-dimethyl-3-((Z)-prop-1-en-1-yloxy)propoxy)prop-
- 24
 1-ene (4g): purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 42.6 mg, yield 77%. (**Z: E >99:1**). ¹H NMR (400 MHz, CDCl₃): δ 5.95 (dd, J= 6.1, 1.4 Hz, 2H), 4.36-4.20 (m, 2H), 3.52 (s, 4H), 1.58 (dd, J= 6.8, 1.5 Hz, 6H), 0.96 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 146.5, 100.2, 77.5, 37.0, 21.7, 9.2. (Only Z isomer is visible).
- 30 HRMS (EI-TOF): calcd.for $C_{11}H_{20}O_2$ (M⁺) m/z: 184.1463, 31 found: 184.1460.
- 32
 1,1-bis(((Z)-prop-1-en-1-yloxy)methyl)cyclopropane
 (4h):

 33
 purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 47.0 mg, yield 86%.

 35
 (Z: E >99:1). ¹H NMR (400 MHz, CDCl₃): δ 5.97 (dd, J= 6.1, 1.6 Hz, 2H), 4.38-4.35 (m, 2H), 3.66 (s, 4H), 1.59 (dd, J= 6.8, 1.6 Hz, 6H), 0.55 (s, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ
- 146.0, 100.9, 74.9, 21.3, 9.2, 8.3. (**Only Z** isomer is visible).
- HRMS (EI-TOF): calcd.for $C_{11}H_{18}O_2$ (M⁺) m/z: 182.1307, found: 182.1311.
- 40 1,6-bis((Z)-prop-1-en-1-yloxy)hexane (4i): purified by 41 column chromatography (petroleum ether/ethyl acetate = 42 30/1). Colorless oil; actual mass 47.4 mg, yield 86%. (Z: E 43 >99:1). ¹H NMR (400 MHz, CDCl₃): δ 5.91 (dd, J= 6.3, 1.6 Hz, 2H), 4.37-4.33 (m, 2H), 3.70 (t, J= 6.5 Hz, 4H), 1.64-1.60 44 (m, 4H), 1.56 (dd, J= 6.9, 1.4 Hz, 6H), 1.41-1.38 (m, 4H). 45 ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 145.6, 100.8, 71.9, 29.7, 46 25.6, 9.2. (Only Z isomer is visible). This product is 47 known.17a
- 48 (2Z,14Z)-4,7,10,13-tetraoxahexadeca-2,14-diene (4j): 49 purified by column chromatography (petroleum ether/ethyl 50 acetate = 30/1). Colorless oil; actual mass 57.1 mg, yield 83%. 51 (Z: E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ 5.95 (dd, J = 6.2, 52 1.6 Hz, 2H), 4.37-4.34 (m, 2H), 3.85 (t, J= 4.9 Hz, 4H), 3.67-3.64 (m, 8H), 1.54 (dd, J= 6.9, 1.4 Hz, 6H). ¹³C{¹H} NMR 53 54 (100 MHz, CDCl₃): δ 145.6, 101.3, 71.3, 70.8, 70.4, 9.2. (Only Z isomer is visible). 55
- 56 HRMS (EI-TOF): calcd.for $C_{12}H_{22}O_4$ (M⁺) m/z: 230.1518, found: 230.1522.

1,3-bis(allyloxy)-2-chlorobenzene (3b) : Method A: Allyl bromide (7.86 mL, 90.89 mmol) was slowly added to a stirred solution of 2-chlorobenzene-1,3-diol (3.3 g, 22.73 mmol) and K₂CO₃ (9.4 g, 68.15 mmol) in dry DMF (22 mL) kept at room temperature under nitrogen with stirring. After 20 h the mixture was diluted with H₂O, until dissolution of the precipitate, and washed with ether (3 x 100 mL). The combined extracts were washed with H₂O (8 x 200 mL), brine (200 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressures to give **4b** (4.95 g, 97%) as a yellow oil without further purification. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (t, *J*= 8.4 Hz, 1H), 6.58 (d, *J*= 8.3 Hz, 2H), 6.11-6.02 (m, 2H), 5.46 (dd, *J*= 17.2, 1.5 Hz, 2H), 5.30 (dd, *J*= 10.5, 1.4 Hz, 2H), 4.61-4.60 (m, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 155.4, 132.8, 126.9, 117.8, 106.4, 69.9.

HRMS (EI-TOF): calcd.for $C_{12}H_{13}ClO_2$ (M⁺) m/z: 224.0604, found: 224.0609.

3-(3-(allyloxy)-2-methylpropoxy)prop-1-ene (3f): Method B: The starting alcohol (1.8 g, 20 mmol) was dissolved in dry THF (50 ml) under an atmosphere of nitrogen at 0°C. To this solution was added sodium hydride (2.4 g, 60 mmol) and was allowed to stir for 10 minutes at 0°C. After adding allyl bromide (7.3 g, 60 mmol), the solution was then allowed to stir at room temperature for 30 minutes and reflux overnight. The reaction was quenched by the addition of saturated ammonium chloride solution. The mixture was then extracted with diethyl ether three times and the organic phase was washed with water, brine and dried over Na₂SO₄. After evaporation of the volatile solvent under reduced pressure, the residue was purified by flash chromatography(petroleum ether/ethyl acetate = 30/1) on silica gel to afford pure 3f (2.59g, 76.0%,) as a colourless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.94-5.85 (m, 2H), 5.25 (d, J= 17.5 Hz, 2H), 5.14 (d, J= 10.9 Hz, 2H), 3.95 (d, J= 5.2 Hz, 4H), 3.42-3.86 (m, 2H), 3.32-3.28 (m, 2H), 2.07-1.99 (m, 1H), 0.95 (s, 3H), $^{13}C{^{1}H}$ NMR (100 MHz, CDCl₃): δ 135.1, 116.5, 72.8, 72.0, 34.3. 14.5.

HRMS (EI-TOF): calcd.for $C_{10}H_{18}O_2$ (M⁺) *m/z*: 170.1307, found: 170.1311.

1,1-bis((allyloxy)methyl)cyclopropane (3h): (Method B: the synthesis method is the same as *3f*): purified by column chromatography (petroleum ether/ethyl acetate = 30/1). Colorless oil; actual mass 2.6 g, yield 71.1%. ¹H NMR (400 MHz, CDCl₃): δ 5.90-5.84 (m, 2H), 5.22 (dd, *J*= 17.1, 1.5 Hz, 2H), 5.11 (dd, *J*= 10.3, 1.1 Hz, 2H), 3.95 (d, *J*= 5.5 Hz, 4H), 3.33 (s, 4H), 0.46 (s, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 135.1, 116.6, 73.6, 71.8, 20.7, 8.5.

HRMS (EI-TOF): calcd.for $C_{10}H_{18}O_2$ (M⁺) m/z: 182.1307, found: 170.1307.

4,7,10,13-tetraoxahexadeca-1,15-diene (3j): (Method B: the synthesis method is the same as 3f): Colorless oil; actual mass 3.1 g, yield 67.4%. purified by column chromatography (petroleum ether/ethyl acetate = 30/1). ¹H NMR (400 MHz, CDCl₃): δ 5.93-5.84 (m, 2H), 5.24 (d, *J*= 17.0, 2H), 5.14 (d, *J*= 10.3, 2H), 4.00 (d, *J*= 5.3, 4H), 3.64-3.62 (m, 8H), 3.58-3.56 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 134.7, 117.1, 72.2, 70.6, 69.4.

HRMS (EI-TOF): calcd.for $C_{12}H_{22}O_4$ (M⁺) *m/z*: 230.1518, found: 230.1515.

Synthesis of PhSiD₃²⁵: LiAlD₄ (1.2 g, 31.22 mmol) was mixed with dry Et₂O (100 ml) and cooled to 0 °C in an ice bath. Trichlorophenylsilane (2.5 ml, 15.61 mmol) was added slowly to the above suspension in a drop wise manner. After the addition the reaction mixture was brought to room

temperature and refluxed for 24 h. The solvent was evacuated and $PhSiD_3$ was distilled into a cold trap.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

- **PhSiD₃: (D=99.5%)** Colorless oil; actual mass1.25 g, yield 74.0%. ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.64 (m, 2H), 7.48-7.39 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 136.3, 130.3, 128.6.
- **Deuterium labelling experiment**: A Schlenk tube was charged with Co(II)-d (5.4 mg, 0.009 mmol, 3% equiv), Me₃NFPY•OTf (173.5 mg, 0.6 mmol, 2 equiv), after being dried in vacuo for 3 mins, degassed trifluorotoluene (3 mL) was added. The solution was bubbled with N₂ for three times, after which 1n (55.3 mg, 0.3 mmol, 1 equiv) and PhSiD₃ (66.7 mg, 0.6 mmol, 2 equiv) was added under N₂. The resulting mixture was stirred at rt for 4 hours. After 1n was completely consumed as monitored by TLC, H₂O (5 mL) was added to quench the reaction. The resulted mixture was then extracted three times with diethyl ether (10 mL \times 3). The combined organic layer was dried over Na₂SO₄. After evaporation of the volatile solvent under reduced pressure, the residue was purified by flash chromatography on silica gel (petroleum ether) to afford pure d-2n (17.2 mg, 0.17 mmol) as a colourless oil in a vield of 31.0%.
- 20 (d-2n): Colorless oil; actual mass 17.2 mg, yield 31.0%. (Z: E 21 >99:1). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J= 8.5 Hz, 22 2H), 7.74 (d, J= 8.2 Hz, 1H), 7.46 (t, J= 7.1 Hz, 1H), 7.37 (t, 23 J=7.3 Hz, 1H), 7.29-7.24 (m, 2H), 6.53-6.62 (m, 1H), 5.00-4.95 (m, 1H), 1.76-1.74 (m, 2H). ¹³C{¹H} NMR (100 MHz, 24 CDCl₃): δ 155.4, 140.8, 134.3, 129.8, 129.7, 127.7, 127.0, 25 126.5, 124.2, 118.6, 110.1, 108.1, 9.2 (t, J= 19.5 Hz). (Only Z 26 isomer is visible). 27
- HRMS (EI-TOF): calcd.for $C_{13}H_{11}DO$ (M⁺) m/z: 185.0951, found: 185.0951.
- 29 Gram scale experiment: A 150 mL Three-necked flask was 30 charged with Co(II)-d (135.0 mg, 0.225 mmol, 3% equiv), 31 Me₃NFPY•OTf (4.338 g, 15 mmol, 2 equiv), after being dried 32 in vacuo for 3 mins, degassed trifluorotoluene (75 mL) was added. The solution was bubbled with N2 for three times, after 33 which 1a (1.005 g, 7.5 mmol, 1 equiv) and (Me₂SiH)₂O (2.015 34 g, 15 mmol, 2 equiv) was added under N₂. The resulting 35 mixture was stirred at rt for 5 hours. After 1a was completely 36 consumed as monitored by TLC, H₂O (50 mL) was added to 37 quench the reaction. The resulted mixture was then extracted 38 three times with diethyl ether (100 mL \times 3). The combined 39 organic layer was dried over Na₂SO₄. After evaporation of the 40 volatile solvent under reduced pressure, the residue was 41 purified by flash chromatography on silica gel to afford pure 42 2a (663.3 mg, 4.95 mmol) as a colourless oil in a yield of 43 66%, Z/E >99:1.

ASSOCIATED CONTENT

Supporting Information

General experimental conditions, NMR spectra, and HPLC analysis of the products. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: rfchen@fudan.edu.cn

Notes

Any additional relevant notes should be placed here.

REFERENCES

- (a) Jeon, H.; Chung, Y.; Kim, S. Proline Ester Enolate Claisen Rearrangement and Formal Total Synthesis of (-)-Cephalotaxine. J. Org. Chem. 2019, 84, 8080. (b) Ziegler, F. E. Stereo- and Regiochemistry of the Claisen Rearrangement: Applications to Natural Products Synthesis. Acc. Chem. Res. 1977, 10, 227. (c) Martín Castro, A. M. Claisen Rearrangement over the Past Nine Decades. Chem. Rev. 2004, 104, 2939. (d) Zieg-ler, F. E. The Thermal, Aliphatic Claisen Rearrangement. Chem. Rev. 1988, 88, 1423.
- 2 Krompiec, S.; Bujak, P.; Szczepankiewicz, W. Convenient Synthesis of Isoxazolines via Tandem Isomerization of Allyl Compounds to Vinylic Derivatives and 1,3-Dipolar Cycloaddition of Nitrile Oxides to the Vinylic Compounds. *Tetrahedron Lett.* **2008**, *49*, 6071.
- 3 Greene, A. E.; Charbonnier, F. Asymmetric Induction in the Cycloaddition Reaction of Dichloroketene with Chiral Enol Ethers. A Versatile Approach to Optically Active Cyclopentenone Derivatives. *Tetrahedron Lett.* **1985**, *26*, 5525.
- 4 Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. The Diels-Alder Reaction in Total Synthesis. *Angew. Chem. Int. Ed.* **2002**, *41*, 1668.
- 5 (a) Harmata, M.; Lee, D. R.; Barnes, C. L. Stereospecific Synthesis of Dienones via a Torquoselective Retro-Nazarov Reaction. *Org. Lett.* **2005**, *7*, 1881. (b) He, W.; Herrick, I.; Atesin, T.; Caruana, P.; Kellenberger, C.; Frontier, A. Polarizing the Nazarov Cyclization: The Impact of Dienone Substitution Pattern on Reactivity and Selectivity. *J. Am. Chem. Soc.* **2008**, *130*, 1003.
- 6 Kawano, Y.; Fujisawa, H.; Mukaiyama, T. Lithium Acetatecatalyzed Crossed Aldol Reaction between Aldehydes and Trimethylsilyl Enolates Generated from Other Aldehydes. *Chem. Lett.* **2005**, *34*, 614.
- 7 (a) El-Naggar, L. J.; Beal, J. L. Iridoids. A Review. J. Nat. Prod. 1980, 43, 649. (b) El-Naggar, L. J.; Beal, J. L.; W. Doskotch, R. Iridoid Glycosides from Mentzelia Decapteala. J. Nat. Prod. 1982, 45, 539.
- 8 Klionsky, D. J.; Elazar, Z.; Seglen, P. O.; Rubinsztein, D. C. Does Bafilomycin A1 Block the Fusion of Autophagosomes with Lysosomes? *Autophagy* 2008, *4*, 849.
- 9 Perry, C. M. Azilsartan Medoxomil. *Clin. Drug Investig.* 2012, 32, 621.
- 10 Lakhrissi, M.; Chapleur, Y. Wittig Olefination of Lactones. Angew. Chem., Int. Ed. Engl. 1996, 35, 750.
- Surprenant, S.; Chan W. Y.; Berthelette, C. Efficient Synthesis of Substituted Vinyl Ethers Using the Julia Olefination. *Org. Lett.* 2003, 5, 4851.
- 12 Mizuno, K.; Kimura, Y.; Otsuji, Y. A Convenient Synthesis of Aryl Vinyl Ethers by Use of *Tetra-n*-butylammonium Hydrogen Sulfate. *Synthesis* 1979, 9, 688.
- 13 Pollex A.; Hiersemann, M. Catalytic Asymmetric Claisen Rearrangement in Natural Product Synthesis: Synthetic Studies toward (-)-Xeniolide F. Org. Lett. 2005, 7, 5705.
- 14 Park, H. G.; Kim, D. H.; Yoo, M. S.; Park, M. K.; Jew, S. S. Practical Regioselective Synthetic Method for (*E*)-Enol Ether. *Tetrahedron Lett.* **2000**, *41*, 4579.
- 15 (a) Whitesides, G. M.; Sadowski J. S.; Lilburn, J. Copper(I) Alkoxides. Synthesis, Reactions, and Thermal Decompositions. J. Am. Chem. Soc. 1974, 96, 2829. (b) Keegstra, M. Copper Catalysed Preparation of Vinyl Ethers from Unactivated Vinylic Halides. Tetrahedron 1992, 48, 2681. (c) Wan, Z.; Jones, C. D.; Koenig, T. M.; Pu Y. J.; Mitchell, D. Vinyl Aryl Ethers from Copper-Catalyzed Coupling of Vinyl Halides and Phenols. Tetrahedron Lett. 2003, 44, 8257. (d) Nordmann, G.; Buchwald, S. L. A Domino Copper-Catalyzed C–O Coupling–Claisen Rearrangement Process. J. Am. Chem. Soc. 2003, 125, 4978.
- 16 (a) Kuznik N.; Krompiec, S. Transition Metal Complexes as Catalysts of Double-Bond Migration in O-allyl Systems. *Coordin. Chem. Rev.* 2007, 251, 222. (b) Krompiec, S.; Kuznik, N.; Kuznik, R.; Kuznik J.; Mrowiec-Białon, J. Isomerization of Allyl Aryl Ethers to Their 1-Propenyl Serivatives Catalysed by

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

60

Ruthenium Complexes. J. Mol. Catal. A Chem. 2004, 219, 29. (c)
Manzini, S. J.; Nelson D.; Nolan, S. P. A Highly Active Cationic
Ruthenium Complex for Alkene Isomerisation: A Catalyst for the
Synthesis of High Value Molecules. ChemCatChem 2013, 5,
2848. (d) Gauthier, D.; Lindhardt, A. T.; Olsen, E. P.; Overgaard
J.; Skrydstrup, T. In Situ Generated Bulky Palladium Hydride
Complexes as Catalysts for the Efficient Isomerization of Olefins.
Selective Transformation of Terminal Alkenes to 2-Alkenes. J.
Am. Chem. Soc. 2010, 132, 7998. (e) Varela-Alvarez, A.; Sordo,
J. A.; Piedra, E.; Nebra, N.; Cadierno, V.; Gimeno, J.
Ruthenium(IV) - Catalyzed Isomerization of the C=C Bond of O
Allylic Substrates: A Theoretical and Experimental Study.
Chem. Eur. J. 2011, 17, 10583.

- 17 (a) Su, C.; Williard, P. G.; Isomerization of Allyl Ethers Initiated by Lithium Diisopropylamide. Org. Lett. 2010, 12, 5378. (b) Krompiec, S.; Marcol, B.; Zych, D.; Kurpanik, A.; Danikiewicz, W.; Matussek, M.; Kuznik, N. Crown Ether Base: Highly Active, Regioselective and Reusable Catalytic Systems for Double Bond Migration in Allylic Compounds. ChemistrySelect 2017, 2, 6717; (c) Ma, Y.; Algera, R. F.; Collum, D. B. Sodium Diisopropylamide in N,N-Dimethylethylamine: Reactivity, Selectivity, and Synthetic Utility. J. Org. Chem. 2016, 81, 11312. (d) Krompiec, S.; Bujak, P.; Malarz, J. Krompiec, M.; Skorka, L.; Pluta, T.; Danikiewicz, W.; Kania, M.; Kusz, J. An isomerization-1,3-dipolar Cycloaddition Tandem Reaction Towards the Synthesis of 3-aryl-4-methyl-5-O-Substituted Isoxazolines from O-Allyl Compounds. Tetrahedron 2012, 68, 6018. (e) Price, C. C.; Snyder, W. H. Solvent Effects in the Base-Catalyzed Isomerization of Allyl to Propenyl Ethers. J. Am. Chem. Soc. 1961, 83, 1773. (f) Wojtowicz J. A.; Polak, R. J. 3-Substituted Oxetanes. J. Org. Chem. 1973, 38, 2061.
- 18 (a) Lv, Z. N.; Chen, Z. Q.; Hu, Y.; Zheng, W. R.; Wang, H. B.; Mo, W. L.; Yin, G. C. A General Strategy for Open-Flask Alkene Isomerization by Ruthenium Hydride Complexes with Non - Redox Metal Salts. ChemCatChem 2017, 9, 3849. (b) Weber, F.; Schmidt, A.; Röse, P.; Fischer, M.; Burghaus O.; Hilt, G. Double-Bond Isomerization: Highly Reactive Nickel Catalyst Applied in the Synthesis of the Pheromone (9Z,12Z)-Tetradeca-9,12-dienyl Acetate. Org. Lett. 2015, 17, 2952. (c) Mamone, P.; Grunberg, M. F.; Fromm, A.; Khan, B. A.; Gooßen, L. J. [Pd(µ-Br)(P^tBu3)]₂ as a Highly Active Isomerization Catalyst: Synthesis of Enol Esters from Allylic Esters. Org. Lett. 2012, 14, 3716. (d) Wang, H. B.; Liu, S. D.; Sun, T. T.; Lv, Z. N.; Zhan, Z.; Yin, G. C.; Chen, Z. Q. Lewis acid promoted double bond migration in O-allyl to Z-products by Ru-H complexes. Mol. Catal. 2019, 463, 10. (e) Krompies, S.; Kuznik, N.; Bieg, T.; Adamus, B.; Maznusz, J.; Grymel, M. Isomerization of allylaryl ethers catalyzed by ruthenium complexes. Pol. J. Chem. 2000, 74, 1197. (f) Krompiec, S.; Kuznik, N.; Urbala, M.; Rzepa, J. Isomerization of alkyl allyl and allyl silyl ethers catalyzed by ruthenium complexes. J. Mol. Catal. A Chem. 2006, 248, 198.
 - 19 (a) Pünner, F.; Schmidt, A.; Hilt, G. Up the Hill: Selective Double
 Bond Isomerization of Terminal 1,3-Dienes towards Z-1,3-

Dienes or 2Z,4E-Dienes. Angew. Chem. Int. Ed. 2012, 51, 1270.
(b) Hilt, G. Double Bond Isomerisation and Migration-New Playgrounds for Transition Metal-Catalysis. ChemCatChem 2014, 6, 2484.
(c) Schmidt, A.; Hilt, G. Unprecedented Cobalt-Catalyzed Isomerization Reactions to Single Skipped 2,4,7-Trienes Applied in the Synthesis of Urushiol. Chem. Asian J. 2014, 9, 2407.

- 20 Morgans, G. L.; Ngidi, E. L.; Madeley, L. G.; Khanye, S. D.; Michael, J. P.; de Koning, C. B.; van Otterlo, W. A. L. Synthesis of Unsaturated 1,4-Heteroatom-Containing Benzo-Fused Heterocycles using a Sequential Isomerization Ring-Closing Metathesis Strategy. *Tetrahedron* 2009, *65*, 10650.
- 21 (a) Shigehisa, H.; Ano, T.; Homna, H.; Ebisawa, K.; Hiroya, K. Co-catalyzed Hydroarylation of Unactivated Olefins. Org. Lett. 2016, 18, 3622. (b) Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu N.; Hiroya, K. Hydroalkoxylation of Unactivated Olefins with Carbon Radicals and Carbocation Species as Key Intermediates. J. Am. Chem. Soc. 2013, 135, 10306. (c) Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.; Hiroya, K. Catalytic Hydroamination of Unactivated Olefins Using a Co Catalyst for Complex Molecule Synthesis. J. Am. Chem. Soc. 2014, 136, 13534. (d) Shigehisa, H.; Hayashi, M.; Ohkawa, H.; Suzuki, T.; Okayasu, H.; Mukai, M.; Yamazaki, A.; Kawai, R.; Kikuchi, H.; Satoh, Y.; Fukuyama, A.; Hiroya, K. Catalytic of Synthesis Saturated Oxygen Heterocycles bv Hydrofunctionalization of Unactivated Olefins: Unprotected and Protected Strategies. J. Am. Chem. Soc. 2016, 138, 10597. (e) Shigehisa, H.; Nishi, E.; Fujisawa M.; Hiroya, K. Cobalt-Catalyzed Hydrofluorination of Unactivated Olefins: A Radical Approach of Fluorine Transfer. Org. Lett. 2013, 15, 5158.
- 22 (a) Ding, K.; Dugan, T. R.; Brennessel, W. W.; Bill, E.; Holland, P. L. Synthesis, Properties, and Reactivity of Diketiminate-Supported Cobalt Fluoride Complexes. *Organometallics* 2009, 28, 6650. (b) Dugan, T. R.; Goldberg, J. M.; Brennessel, W. W.; Holland, P. L. Low-Coordinate Cobalt Fluoride Complexes: Synthesis, Reactions, and Production from C-F Activation Reactions. *Organometallics* 2012, *31*, 1349.
- 23 (a) Larionov, E.; Li, H. H.; Mazet, C. Well-defined Transition Metal Hydrides in Catalytic Isomerizations. *Chem. Commun.*, 2014, 50, 9816. (b) Clark, H. C.; Kurosawa, H. Chemistry of Metal Hydrides. XV. Mechanism of Double-Bond Migration Induced by Platinum(II) Hydrides. *Inorg. Chem.*, 1973, 12, 1566. (c) Sato, T.; Komine, N.; Hirano, M.; Komiya, S.; Selective Isomerization of 2-Allylphenol to (Z)-2-Propenylphenol Catalyzed by Ru(cod)(cot)/PEt₃. *Chem. Lett.* 1999, 28, 441.
- 24 Giedyk, M.; Turkowska,J.; Lepak, S.; Marculewicz, M.; Proinsias, K.; Gryko, D. Photoinduced Vitamin B12-Catalysis for Deprotection of (Allyloxy)arenes. *Org. Lett.* 2017, *19*, 2670.
- 25 Kumar, A.; Pandiakumar, A. K.; Samuelson, A. G. Titanium promoted reduction of imines with Grignards, silanes, and zinc: identification of a new mechanism with silanes. *Tetrahedron* **2004**, *70*, 3185.