
~ )  Pergamon 
Bioorganic & Medicinal Chemistry Letters, Vol. 6, No. 13, pp. 1619-1622, 1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0960-894X/96 $15.00 + 0.00 
PH: S0960-894X(96)00286-7 

X A N T H E N E  D E R I V E D  P O T E N T  N O N P E P T I D I C  I N H I B I T O R S  O F  R E C O M B I N A N T  
H U M A N  C A L P A I N  I 

Sankar Chatterjee, #' ' Mohamed Iqbal, # James C. Kauer, # John P. Mallamo, * Shobha Senadhi, °/' 
Satish Mallya, % Donna Bozyczko-Coyne, '~ and Robert Siman % 

Departments o f  Chemistry ~ and Biochemistry ~ 
Cephalon, Inc., 145 Brandywine Parkway, West Chester, Pennsylvania 19380-4245 

Abstract. Novel and potent, xanthene derived reversible aldehyde (7c) and a-ketocarboxamide (10a), and 
irreversible fluoromethyl ketone (10b) inhibitors of recombinant human calpain I are described. 
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Introduction. The possible role of calcium-activated neutral proteases (calpains) in many nervous system 
diseases and disorders, including stroke, Alzheimer's disease, amyotTophy, motor neuron damage and muscular 
dystrophy I has attracted considerable attention to the discovery of novel inhibitors of this family of cysteine 
proteases. Two major forms of calpain have been identified: calpain I and calpain II. While calpain II is the 
predominant form in many tissues, calpain I is thought to be the predominant form activated durinl] the 
pathological conditions of nervous tissues.: Potent peptide-based reversible aldehyde and ct-ketocarbonyl, and 
irreversible haiomethyl ketone, diazomethyl ketone, epoxysuccinate, and acyloxymethyl ketone 4 inhibitors of 
calpalns have been reported. Previous studies indicated that calpain prefers Leu or Val at Pc. Takahashi5 
commented that "... the subsite specificity o f  calpain at the P3 position is less rigid than those at the P2 and P I 
positions. However, an amino acid with an aromatic or a bulky aliphatic side chain at the 1'3 position may to some 
extent increase the susceptibility o f  the scissile bond to calpain." We now report the discovery of a series of novel 
and potent xanthene (occupying the P3 position) derived nonpeptidic reversible aldehyde (7e) and c~- 
ketocarboxamide (10a), and irreversible fluoromethyl ketone (10b) inhibitors of human recombinant calpain I. 6 

Chemistry. Commercially available la-e was treated with 1,1'-carbonyldiimidazole, followed by tert-butyl 
lithioacetate to generate the [3-ketoester 2a-e (Scheme 1). Following Hoifman's procedure, 7 treatment of 2a-c with 
sodium hydride and (R)-triflate-ester (3), generated the intermediate diester which on selective hydrolysis by TFA, 
followed by decarboxylation, produced the )'-ketoester 4a-¢. Basic hydrolysis of 4a-c produced the corresponding 
y-ketoacid 5a-c which was coupled with (s)-leucinol to produce 6a-e as the major product. Assuming that the 
alkylation of 13-ketoester 2a-e by (R)-triflate-ester 3 took place in an SN2 fashion as evidenced by Hoffman, 7 the 
stereochemistry around P2-site in 6a-c was assigned as (R) (note that the priority of groups around P:-site in 6a-e is 
different than that around chiral center in compound 3). Oxidation of 6a-e produced the desired aldehydes 7a-c. 
Similarly compound 5c was coupled with 3-(s)-amino-2-hydroxy-5-methyl-hexanoic acid-N-ethylamide, 8a, 
(prepared by following the method of Harbeson et al.3b) and 3-amino-l-fluoro-2-hydroxy-4-phenylbutane, 8b, 
(prepared by following the method of Imperiali et al.s modified by Revesz et al. 9 ) to generate ct-hydroxyamide 9a 
and fluorohydroxy compound 9b respectively (Scheme 2). Dess-Martin oxidation of 9a and 9b gave c~-ketoamide 
10a and fluoromethyl ketone 10b (diastereomeric mixture, epimeric at Pl) respectively. 

Biology. The inhibitory activities of the compounds 7a-e and 10a-b were determined using recombinant human 
10 II 12 calpain I, prepared as described by Meyer et al. with Suc-Leu-Tyr-MNA, as substrate. • Inhibition data for 7a- 

3b e, 10a-b and reference compounds 11 (Cbz-Val-Phe-H, MDL 28170)) 3 12 (Cbz-Leu-Abu-CONHEt), and 13 
(Cbz-Leu-Phe-CH2F) 14 are shown in Table 1. 
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SCHEME 1 
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Reagents: (a) 1,1 '-carbonyldiimidazole, THF, 0 °C to 23 °C; (b) Li ÷ "CH2COOtBu, TI-IF; -78 °C to 0 °C; (c) 60% 
NaI-I, THF, 3, 23 °C; (d) TFA, 23 °C; (e) C6I-I6, reflux; (f) LiOH, MeOH-H20; 70-75 °C; (g) (s)-leucinol, BOP, 
HOBt, NMM, DMF, 0 °C to 23 °C; (h) Pyr.SO3, EtaN, DMSO-CH2CI2, 0 °C to 23 °C. 

SCHEME 2 
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Reagents: (a) BOP, HOBt, NMM, DMF, 0 °C to 23 °C; Co) Dess-Martin pefiodinane, CH2CI2, 23 °C. 
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Table 1. Recombinant Human Calnain I Inhibitorv Activity of Comuounds 7a-c and 10a-b. and 11-13 a 

O R2 

-(CH2)4Ph -CH2CH(CH3) 2 H 138 

-CH(Ph)2 -CH2CH(CH3)2 H 50 

-xanthen-9-yl -CHECH(CH3) 2 H 25 

-xanthen-9-yl -CH2CH(CH3) 2 CONHEt 130 

-xanthen-9-yl -CH2Ph CH2F 

17 

240 

lk~./I M'-ts -t 

76,000 

136,000 

°For compounds 7a-c and 10a, the stereochemistry at Pl-site is (s); compound 10b is diasteromeric mixture (at P0. 
Compounds 11, 12, 13 are reference compounds Cbz-Val-Phe-H, Cbz-Leu-Abu-CONHEt and Cbz-Leu-Phe-CH2F 
respectively. 

Discussion. Compounds 7a-c and 10a-b show good inhibitory activity. However, in the aldehyde series, the 
presence of two aromatic rings spanning the P3-P4 region is preferred over one aromatic ring attached to an alkyl 
chain (cf. 7b vs. 7a). Interestingly, constraining the aromatic rings of 7b into a xanthene moiety (7c), produces the 
most potent compound of the series. Compound 7c (ICs0 25nM) is comparable to the reference dipeptidyl aldehyde 
11 (IC50 17nM in this assay). The corresponding cx-ketocarboxamide 10a (IC50 130nM) also maintains the potency 
equivalent to the related reference dipeptidyl cc-ketocarboxamide 12 (IC50 240nM in this assay). Finally, the 
irreversible fluoromethyl ketone 10b (kob/I 76,000M'ts "l) was compared to the corresponding dipeptidyl 
fluoromethyl ketone 13 (kobs/I 136,300 M'rsq). It should be noted that these inhibitors were also tested for 
inhibition of cathepsin B, a related cysteine protease; they displayed the following inhibitory activities: 7e (IC50 
440nM), 10a (IC50 1150nM), and 10b (kobs/I 1000M'lsl). Thus compounds 7e, 10a and 10b prefer calpain I by 
>17-fold, approximately 9-fold and 76-fold, respectively over cathepsin B. 

Conclusion. We have described a series of novel and potent xanthene derived inhibitors (reversible and 
irreversible) of recombinant human calpain I. Such inhibitors should provide useful tools for the assessment of the 
role of calpain in different neurological functions. The outcome of these studies will be the basis of future 
publications from our laboratories. 
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