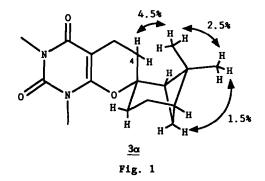
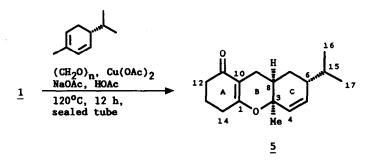
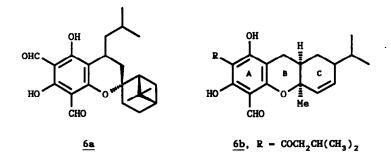

UNACTIVATED TERPENES AS 2st COMPONENTS IN INTERMOLECULAR HETERO DIELS-ALDER REACTIONS. A SHORT STEREOCONTROLLED APPROACH TO THE ROBUSTADIAL AND EUGLOBAL SKELETON.

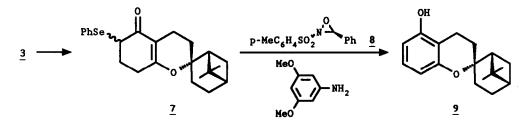
Michael Krause and H. Martin R. Hoffmann* Department of Organic Chemistry, University of Hannover, Schneiderberg 1 B, D-3000 Hannover, Germany


Abstract - A convergent route to the polyketide sesquiterpene skeleton of robustadial and euglobal is described.

Simple nonactivated olefins have to our knowledge not yet been used systematically in intermolecular hetero Diels-Alder (HDA) reactions with 1-oxabutadienes as 4π component, although we have shown earlier that α,β unsaturated acyl cyanides, in the presence of AlCl₃, react with isobutene (2π) and also 4-methyl-1,3-pentadiene (2π) with high regioselectivity to give analogues of rose oxide.¹


We now report examples for the intermolecular combination² of terpenes with activated 1-oxabutadiene equivalents. Reaction of cyclohexan-1,3dione (1) with aqueous formaldehyde, proline (catal.) and β -pinene in one flask afforded tetracycle 3. It proved advantageous to add 1,3-dione 1 to the other reactants over an extended period at 95 - 100°C. In this fashion, formation of the undesired Michael adduct 4 decreased from 37% to 12%, and tetracycle 3 was isolated in 57% yield.³


Only one spiroannulated diastereomer was formed, corresponding to diastereofacial attack of β -pinene by the 1-oxabutadiene unit from the side opposite to the hindered geminal dimethyl bridge.⁵ In order to simplify the interpretation of the ¹H NMR spectrum, we prepared adduct 3α from dimethylbarbituric acid in analogous fashion. The nuclear Overhauser effect between methyl protons and pyran methylene protons (Fig. 1) shows the preferred stereochemical fusion of β -pinene in 3α and, by analogy, in 3.


Instead of β -pinene, α -phellandrene was tried under the same conditions, but gave hardly any cycloadduct. However, using the copper acetate method, previously employed for preparing di-t-butyl methylenemalonate from di-t-butyl malonate⁶ and forcing conditions (sealed tube), the desired tricycle 5 was formed stereoselectively (isopropyl group trans to AB moiety, cf. also 6b) without any Michael adduct 4 in 34% yield.⁷

The new cycloadducts are useful intermediates in natural products synthesis. Tetracycle 3 contains the *trans* arrangement of spiro ether oxygen and geminal dimethyl bridge, as it occurs in robustadial (6a), which is used in Chinese folk medicine for the treatment of malaria.⁸ By starting from optically pure $(1S)-(-)-\beta$ -pinene $([\alpha]_D^{20} = -21, \text{ neat})$ the correct absolute stereochemistry of robustadial is introduced directly (cf. Fig. 1).⁹ In a total synthesis of robustadial Salomon^{8 b, d} has combined (+)-nopinone with a substituted 2-hydroxyacetophenone in a tandem Aldol-Michael strategy, obtaining a tetracyclic robustadial precursor as a diastereomeric mixture (2 : 5), the minor component leading to 6a. The stereoselectivity of the cyclization step in the Salomon approach^{\$b,d} has recently been improved by Majewski and Bantle. **

Because of the sensitivity of the electron rich resorcinol monoether moiety in 9 towards electrophiles and oxidizing agents, aromatization of 3 had to be carried out by oxidation of 7 with Davis reagent 8^{10,11} (trans-

3-phenyl-2-(p-toluenesulfonyl)oxaziridine) in the presence of 3,5-dimethoxyaniline.¹² Tricycle 5 has the correct ring BC substitution pattern of euglobal IIc (6b), which, like 6a, is a polyketide sesquiterpene isolated from Eucalyptus globulus.¹³

Acknowledgements. We thank Dr. E. Hofer for NMR measurements and the Fonds der Chemischen Industrie for continued support of our work.

References and Notes

- (1) Ismail, Z.M.; Hoffmann, H.M.R. Angew.Chem., Int.Ed.Engl. 1982, 21, 859. Review: Boger, D.L.; Weinreb, S.M. Hetero Diels-Alder Methodo-logy in Organic Synthesis, Academic Press, San Diego, 1987. Intramolecular examples: Tietze, L.F. J.Heterocyclic Chem. 1990, 27,
- (2) 47.
- Tetracycle 3. β -Pinene (10 mmol), 1 (10 mmol), proline (100 mg), for-(3) malin (1 mL of a 40% solution) in MeCN (5 mL) were used. Chromatography on silica gel (MTB ether/PE, 1 : 1) gave 3 (1.48 g, 57%) and 4 (0.283 g, 12%); ¹³C NMR (50 MHz, CDCl₃) & 15.39 (t, C-4), 21.05 (t, C-9), 23.25 (q, C-9'), 24.93 (t, C-4'), 26.43 (t, C-7'), 27.63 (q, C-8'), 28.80 (t, C-3'), 29.32 (t, C-10), 32.52 (t, C-5), 36.76 (t, C-8), 38.24 (s, C-6'), 40.77 (d, C-5'), 49.68 (d, C-1'), 84.07(s,

C-3), 110.77 (s, C-6), 170.71 (s, C-1), 197.91 (s, C-7) MS (70 eV, RT) m/z 261 (15, 260 (M⁺, 100), 217 (94), 134 (39), 92 (63), 90 (28), 78 (24), 68 (24). The procedure of Stevenson for combining Meldrum's acid, CH₂O and styrene⁴ gave 3 (34%) and 4 (37%).

- (4) Stevenson, R.; Weber, J.V. Heterocycl. 1988, 27, 1929.
- (5) Cf. the analogous behaviour of β-pinene towards enophiles in ene reactions: Hoffmann, H.M.R. Angew.Chem., Int.Ed.Engl. 1969, 8, 556.
 (6) Ballestoros B. : Babarta B. W. One Sup 1965. (6)
- (6) Ballesteros, P.; Roberts, B.W. Org. Syn. 1986, 64, 63.
- (7) Preparation of 5. Paraformaldehyde (300 mg, 10 mmol), 1 (560 mg, 5 mmol), (-)- α -phellandrene (680 mg, 5 mmol), Cu(OAc)₂ (45 mg, 0.25 mmol), NaOAc (40 mg, 0.5 mmol) and glacial AcOH (0.5 mL) were sealed at -78°C under N₂ and then heated at 120°C for 12 h. After neutralization (NaHCO₃) the mixture was chromatographed, giving 5, colourless oil. 445 mg (34%); ¹³C NMR (50 MHz, APT, CDCl₃) δ 19.78, 20.04 (q, C-16, C-17), 20.42 (t, C-13), 21.00 (t, C-9), 27.35 (q, C-18), 27.41 (t, C-7), 28.95 (t, C-14), 31.75 (d, C-15), 33.66 (d, C-8), 36.61 (t, C-12), 38.82 (d, C-6), 77.59 (s, C-3), 109.57 (s, C-10), 131.06, 132.64 (d, C-4, C-5), 169.56 (s, C-1), 198.22 (s, C-11); MS (70 eV, RT) m/z 248 (M⁺, 0), 217 (3), 196 (4), 169 (3), 119 (14), 112 (21), 86 (68), 84 (100).
- (8) a) Xu, R.; Snyder, J.K.; Nakanishi, K. J.Am.Chem.Soc. 1984, 106, 734. Revised structure: ref. 8b-d; b) Lal, K.; Zarate, E.A.; Youngs, W.J.; Salomon, R.G. J.Org.Chem. 1988, 53, 3673; Salomon, R.G.; Lal, K.; Mazza, S.M.; Zarate, E.A.; Youngs, W.J. J.Am.Chem.Soc. 1988, 112, 5213; c) Cheng, Q.; Snyder, J.K. J.Org. Chem. 1988, 53, 4562; d) Salomon, R.G.; Mazza, S.M.; Lal, K. J.Org.Chem. 1989, 54, 1562; e) Majewski, M.; Bantle, G. Tetrahedron Lett. 1989, 30, 6653.
- (9) Optical rotation of 3: $[\alpha]_D^{21} = -52.5$, MeOH, c = 1.18. Investigations with Eu(hfc)₃ on 3 did not indicate the presence of the other enantiomer. However, the diagnostically useful migrating peaks were comparatively broad multiplets.
- (10) Davis, F.A.; Stringer, O.D.; Billmers, J. M. Tetrahedron Lett. 1983, 24, 1213; Davis, F.A.; Sheppard, A.C. Tetrahedron 1989, 45, 5703; see also Kolb, H.C.; Hoffmann, H.M.R. Tetrahedron: Asymmetry 1990, 1, 237; Krause, M.; Hoffmann, H.M.R. Synlett. 1990, 485.
- (11) Aromatization: Ketone 3 (1 g, 3.84 mmol) was added to LDA (1.3 eq in hexane/THF) at -78°C and stirred for 2 h. PhSeCl (770 mg, 4.04 mmol) in THF (4 mL) was added at -78°C. After 10 min the mixture was allowed to reach 0°C to 25°C. Rapid flash chromatography gave sensitive 7 (1.13 g, 2.7 mmol, 62%). Oxidation of 7 (830 mg, 2 mmol) in CHCl₃ (7 mL) and 3,5-dimethoxyaniline (612 mg, 4 mmol) with 8 (660 mg, 2.4 mmol) at r.t. for 1.5 h and chromatography (2x) gave 9 (235 mg, 46%); ¹H NMR (200 MHz, CDCl₃) & 1.00 (s, 3 H, endo-CH₃, H-9'), 1.25 (s, 3 H, exo-CH₃, H-8'), 1.72 (d, J = 9.5 Hz, 1 H, H-7'endo), 1.79 2.01 (m, 6 H, H-3, H-3', H-4'), 2.06 2.26 (m, 3 H, H-1', H-5', H-7'exo), 2.63 (t, J = 7 Hz, 2 H, H-4), 5.44 (bs, 1 H, OH), 6.28 (dd, J = 8 Hz, ⁴J = 1 Hz, 1 H, H-7), 6.38 (dd, J = 8 Hz, ⁴J = 1 Hz, 1 H, H-9), 6.92 (t, J = 8 Hz, 1 H, H-8); ¹³C NMR (50 MHz, APT, CDCl₃) & 16.74 (t, C-3), 23.35 (q, C-9'), 24.92 (t, C-4'), 26.93 (t, C-7'), 27.71 (q, C-8'), 28.32 (t, C-3'), 32.35 (t, C-4), 38.06 (s, C-6'), 40.74 (d, C-5'), 49.31 (d, C-1'), 80.55 (s, C-2), 105.99 (d, C-7), 109.40 (s, C-10).
- (12) Tietze, L.F.; Kiedrowski, G. von; Berger, B. Tetrahedron Lett. 1982, 23, 51.
- Kozuka, M.; Sawada, T.; Kasahara, F.; Mizuta, E.; Amano, T.; Komiya, T.; Goto, M. Chem. Pharm. Bull. 1982, 30, 1952 and preceding papers.