at -196 °C and heated at 165 °C for 2.2 h. The product was checked by infrared spectroscopy, but it was found that no reaction took place. The reaction mixture was again heated at 250-260 °C for 5 h. The products were separated by trap-to-trap distillation through a trap at -196 °C which retained the compound found to be (CF₃)₂C=N- $N=C(CF_3)_2$ (0.46 mmol).

Reaction of CF₂CF₂CF₂CF₂CF₂S=NLi with CF₂CF₂CF₂CF₂CF₂S=NC-F((CF₃)₂). Into a 100-mL reaction vessel which retained 2.0 mmol of CF₂CF₂CF₂CF₂S=NLi was condensed 2.15 mmol of CF₂CF₂-CF₂CF₂S=NCF(CF₃)₂ at -196 °C. The reaction mixture was gradually warmed to 25 °C.3 After 6 h, the product was separated by trap-to-trap distillation. However, only starting material (CF₂CF₂CF₂CF₂S=NCF(CF₃)₂, 1.76 mmol) and small amounts of CF2CF2CF2CF2S were found.

Acknowledgment is expressed to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the National Science Foundation (Grant CHE-7727395) for support of this research. We thank Charles Barinaga and Dennis Gage for mass and ¹⁹F NMR spectral

 $CF_2CF_2CF_2CF_2S$ — $NSi(CH_3)_3$, 77110-78-2; Registry No. $CF_2CF_2CF_2CF_2S$ = $NC(O)CF_3$, 77110-79-3; $CF_2CF_2CF_2CF_2S$ = NSO₂CF₃, 77110-80-6; CF₂CF₂CF₂CF₂S=NSO₂Cl, 77110-81-7; $CF_2CF_2CF_2CF_2S$ =NC(O)N= $SCF_2CF_2CF_2CF_2$, $CF_2CF_2CF_2CF_2S$ =NC(O)C(O)N= $SCF_2CF_2CF_2CF_2$, 77110-83-9; CF₂CF₂CF₂CF₂S=NCN, 77110-84-0; (CF₃)₂N=SC(O)C(O)-S=N(CF₃)₂, 77110-85-1; bis(trifluoromethyl)diazirine, 3024-50-8; $CF_2CF_2CF_2CF_2S$, 706-76-3; $(CF_3)_2C=NN=C(CF_3)_2$, 1619-84-7; $CF_2CF_2CF_2CF_2S=NLi$, 77110-86-2; $(CF_3)_2S=NLi$, 61097-18-5; CF₂CF₂CF₂S=NH, 77110-87-3; (CF₃)₂S=NH, 60646-40-4; (CH₃)₃SiCl, 75-77-4; CF₃C(O)Cl, 354-32-5; ClCN, 506-77-4; CF₃SO₂F, 335-05-7; CISO₂F, 13637-84-8; COCl₂, 75-44-5; FC-(O)C(O)F, 359-40-0; $FN=C(CF_3)_2$, 2802-70-2.

Contribution from Rocketdyne,

a Division of Rockwell International Corporation, Canoga Park, California 91304

Syntheses and Properties of FOIF₄O, ClOIF₄O, HOIF₄O, and Tetrafluoroperiodates

KARL O. CHRISTE,* RICHARD D. WILSON, and CARL J. SCHACK

Received October 16, 1980

Mixtures of cis- and trans-CsIF₄O₂ were prepared by the interaction of CsIO₄ with either anhydrous HF, BrF₅, ClF₃, ClF₅, or F₂. The vibrational spectra of these mixtures were recorded, and partial assignments are given for cis- and trans-IF₄O₂⁻. The assignments for trans-IF₄O₂ were supported by a normal-coordinate analysis. The CsIF₄O₂ salt dissolves in CH₃CN with the formation of IF₄O₂⁻ anions but undergoes solvolysis in anhydrous HF with formation of HOIF₄O. An improved synthesis of HOIF4O from CsIF4O2 and BiF5 in anhydrous HF is reported, and its Raman and 19F NMR spectra were recorded. The interaction of CsIF₄O₂ with NF₄SbF₆ in anhydrous HF results in solutions containing NF₄+, HF₂-, and HOIF₄O. When standing or when pumped to dryness, these mixtures decompose to yield NF₃ and the new compound FOIF₄O in high yield. The latter compound, the first known example of an iodine hypofluorite, was thoroughly characterized and shown by vibrational and NMR spectroscopy to be a mixture of the cis and trans isomers. For comparison, the vibrational spectra of IF₅O have also been recorded. The reaction of CsIF₄O₂ with ClOSO₂F was shown to yield the novel compound ClOIF₄O. The fluorination reactions of CsIO₄, CsIF₄O₂, IF₅O, and HOIF₄O with elementary fluorine were also studied.

Introduction

The number of elements known to form stable hypofluorites is very limited.¹ Thus stable hypofluorites are known only for carbon-, nitrogen-, sulfur-, selenium-; fluorine-, and chlorine-containing compounds. In addition, the unstable hypofluorous acid, HOF, has been prepared.2 Since recent work in our laboratory had shown that the thermal decomposition of certain NF₄⁺ salts of oxyanions such as NF₄ClO₄³ and NF₄SO₃F⁴ produces the corresponding hypofluorites in high yield, it was interesting to apply this method to the synthesis of novel hypofluorites. Preliminary results⁵ showed that FOIF₄O, the first known example of an iodine hypofluorite, can be prepared in this manner. In this paper, detailed information is given on the synthesis, properties, and reaction chemistry of this interesting compound and of related iodine oxyfluoride derivatives such as ClOIF₄O, HOIF₄O, and the $IF_4O_2^-$ anion.

The literature on the synthesis and properties of salts containing the IF₄O₂⁻ anion is scant. The first report on the existence of IF₄O₂⁻ salts was published in 1971 by Engelbrecht and co-workers⁶ but was limited to a one-sentence statement that HOIF4O interacts with either alkali-metal fluorides or trifluoroacetates to yield the corresponding salts. In a subsequent paper, this statement was repeated, but again no data were given. In 1975, Aubke and co-workers reported⁸ that CsF combines with an excess of IF₃O₂ to give Cs⁺IF₄O₂⁻. A melting point, elemental analysis, and incomplete vibrational spectra were given, which were incorrectly interpreted in terms of a cis isomer. In 1976, Selig and Elgad reported⁹ that partial hydrolysis of IF₇ produces IF₅O, HOIF₄O, and, with increased water addition, the IF₄O₂⁻ anion, which was identified by ¹⁹F NMR and vibrational spectroscopy as the cis isomer. Although Selig and Elgad reported only solution data, their vibrational spectra strongly disagreed with those reported by Aubke for solid Cs+IF₄O₂-. In 1977, Gillespie and Krasznai reported¹⁰ that solutions of KIO₄ in IF₅ contain a mixture of IO₂F, IOF₃, and cis- and trans-IF₄O₂-. On cooling solutions of KIO₄ dissolved in boiling IF₅, they isolated a KIF₄O₂·2IF₅ adduct, which could be converted into KIF₄O₂. Both compounds were shown by ¹⁹F NMR and Raman spectroscopy to

Lustig, M.; Shreeve, J. M. Adv. Fluorine Chem. 1973, 7, 175.

Appelman, E. H. Acc. Chem. Res. 1973, 6, 113. Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19, 1494.

Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1980, 19,

⁽⁵⁾ Christe, K. O.; Wilson, R. D. Inorg. Nucl. Chem. Lett. 1979, 15, 375.

Engelbrecht, A.; Peterfy, P.; Schandara, E. Z. Anorg. Allg. Chem. 1971,

⁽⁷⁾ Engelbrecht, A.; Mayr, O.; Ziller, G.; Schandara, E. Monatsh. Chem. **1974**, *105*, 796

Carter, H. A.; Ruddick, J. M.; Sams, J. R.; Aubke, F. Inorg. Nucl. Chem. Lett. 1975, 11, 29. Selig, H.; Elgad, U. J. Inorg. Nucl. Chem. Suppl. 1976, 91.

contain in the solid state and in CH₃CN solution trans-IF₄O₂⁻. In IF₅ solution, however, IF₄O₂ was shown to exist in a cistrans equilibrium, with the cis isomer being favored.

Tetrafluoroorthoperiodic acid, HOIF₄O, was first prepared by Engelbrecht and co-workers¹¹ according to

 $Ba_3H_4(IO_6)_2 + 14HSO_3F \rightarrow$

$$2HOIF_4O + 8H_2SO_4 + 3Ba(SO_3F)_2$$

Since HOIF₄O could not be separated from HSO₃F by distillation, it was converted into the more volatile IF₃O₂

$$HOIF_4O + SO_3 \rightarrow IF_3O_2 + HSO_3F$$

which was distilled off and then reconverted to HOIF4O by HF addition according to

The acid was characterized^{6,11} by its physical constants and mass and NMR spectra, which showed the compound to be a mixture of the cis and trans isomers, with the cis isomer being more abundant. Selig and Elgad found that solutions of NaIO₄ in anhydrous HF contain HOIF₄O, as well as other unidentified fluorine species, and reported the ¹⁹F NMR spectra of both isomers in HF solution. Gillespie and Krasznai¹⁰ also listed chemical shifts for cis- and trans-HOIF₄O, without specifying the solvent, and gave a coupling constant of 21 Hz for the cis isomer, which disagrees with the values of about 220 Hz reported by others. 6,9,11

Experimental Section

Caution. Two explosions were encountered in reactions involving FOIF₄O. Most hypofluorites are shock-sensitive materials¹ and appropriate precautions should therefore be taken when one is working with larger amounts of FOIF4O.

Materials. Literature methods were used for the syntheses of NF₄SbF₆, ¹² IF₅O, ^{13,14} and ClOSO₂F. ¹⁵ CsIO₄ was prepared by slowly combining, with stirring, stoichiometric amounts of concentrated aqueous solutions of CsCl and NaIO4. The mixture was cooled to 0 °C, and the CsIO₄ precipitate was filtered off, washed three times with ice water, and dried for 16 h in an oven at 110 °C. Its vibrational spectra showed no detectable impurities. Bismuth pentafluoride (Ozark Mahoning Co.) was used as received. BrF₅ (Matheson) was treated with 35 atm of F2 at 200 °C for 24 h and then purified by fractional condensation through traps kept at -64 and -95 °C, with the material retained in the latter being used. Hydrogen fluoride (Matheson) was dried by treatment with 20 atm of F₂ at room temperature, followed by storage over BiF₅ to remove the last traces of H₂O.¹⁶ ClF₃ (Matheson) and ClF₅ (Rocketdyne) were purified by fractional condensation prior to their use.

Apparatus. Volatile materials used in this work were handled in either a Monel-Teflon FEP, a stainless steel-Teflon FEP, or a Teflon PFA vacuum line. The last was constructed exclusively from injection-molded PFA fittings and valves (Fluoroware, Inc.). The anhydrous HF was preferentially handled in the PFA or Monel line, whereas the halogen fluorides were handled mainly in a steel line. All lines were well passivated with ClF₃ and, if HF was to be used, with HF. Nonvolatile materials were handled in the dry nitrogen atmosphere of a glove box. Metathetical reactions were carried out in HF solution using an apparatus consisting of two FEP U-traps interconnected through a coupling containing a porous Teflon filter (see Figure 1 of ref 17). For NMR or low-temperature vibrational spectra, the second FEP U-trap, which served as a receiver, was replaced by either a 4-mm Teflon FEP or a thin-walled Kel-F tube.

Infrared spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin-Elmer Model 283 spectrophotometer. Room-temperature spectra of solids were obtained by using dry powders pressed between AgCl disks. Spectra of gases were obtained by using a Teflon cell of 5-cm path length equipped with AgCl windows. The spectra of matrix-isolated FOIF4O and IF5O were obtained at 6 K with an Air Products Model DE202S helium refrigerator equipped with CsI windows. Research grade Ne (Matheson) was used as a matrix material in a mole ratio of 1000:1. The spectrometer was calibrated by comparison with standard gas calibration points, 18,19 and the reported frequencies are believed to be accurate to ± 2 cm⁻¹.

The Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880-Å exciting line and a Claassen filter²⁰ for the elimination of plasma lines. Sealed quartz, Teflon FEP, or Kel-F Tubes were used as sample containers in the transverse-viewing, transverse-excitation technique. Polarization measurements were carried out according to method VIII listed by Claassen et al.20 Lines due to the Teflon or Kel-F sample tubes were suppressed by the use of a metal mask.

The ¹⁹F NMR spectra were recorded at 84.6 MHz on a Varian Model EM 390 spectrometer equipped with a variable-temperature probe. Chemical shifts were determined relative to external CFCl₃ with positive shifts being downfield from CFCl₃.^{21a}

The mass spectra were recorded with an EAI Quad 300 quadrupole spectrometer at an ionization potential of 70 eV.

Preparation of CsIF₄O₂. In a typical experiment, CsIO₄ (31.44 mmol) was placed in a $\frac{3}{4}$ -in. o.d. Teflon FEP ampule equipped with a stainless-steel valve. Anhydrous HF (20 mL of liquid) was condensed into the ampule, and the mixture was stirred with a magnetic stirring bar for 4 days at ambient temperature. Volatile products were pumped off overnight at ambient temperature and for an additional 2 h at 50 °C. The solid residue (11.402 g, weight calculated for 31.44 mmol of CsIF₄O₂ 11.564 g) was shown by Raman spectroscopy to still contain some unreacted CsIO₄. It was treated again, as described above, with fresh anhydrous HF (15 mL of liquid). After the residue was pumped to dryness, the Raman spectrum of the solid residue (11.532 g) showed cis- and trans-CsIF₄O₂ as the principal products and only a trace of unreacted CsIO₄.

A total of eight preparations were carried out in a similar manner, with use of shorter reaction times, slightly higher reaction temperatures (~50 °C), and rapid HF removal at elevated temperature. The conversion of CsIO₄ to CsIF₄O₂ after the first HF treatment was generally in the range of 75-90%, and the Raman spectra showed the presence of some unreacted CsIO₄. This unreacted CsIO₄ was readily converted to CsIF₄O₂ by repeated treatment with anhydrous HF; however in most cases, repeated HF treatments resulted in a slight weight decrease and the appearance of bands due to HF2- (infrared 1435 s, br, 1228 ms cm⁻¹; Raman complex band at 790-740 cm⁻¹ with maximum at 759 cm⁻¹). This is caused by the solvolysis of CsIF₄O₂ in anhydrous HF and the volatility of the resulting HOIF4O (see below). The ratio between the cis and trans isomers of CsIF₄O₂ varied somewhat for the different preparations, with the trans isomer being slightly favored at the lower and the cis isomer being somewhat favored at the higher reaction temperatures.

The CsIO₄-BrF₅ System. Cesium periodate (2.453 mmol) was placed in a passivated sapphire reactor equipped with a stainless-steel valve and a magnetic stirring bar. Bromine pentafluoride (14.99 mmol) was added at -196 °C, and the mixture was allowed to react during warm-up to room temperature. A fast reaction with gas evolution occurred, which was moderated by intermittent cooling with liquid N₂. After completion of the warm-up cycles, the mixture was stirred at 20 °C for 24 h, resulting in a clear, pale yellow solution. The Raman spectrum of this solution showed the presence of BrF₅, BrF₃O, and IF₄O₂ (mainly trans with a small amount of cis isomer). The solution was kept at 22 °C for 4 days and then cooled to -196 °C. The materials volatile at -196 °C consisted of 1.92 mmol of oxygen. The materials volatile at 22 °C were separated by fractional condensation and identified by Raman spectroscopy. They consisted of unreacted

Engelbrecht, A.; Peterfy, P. Angew. Chem., Int. Ed. Engl. 1969, 8, 768. Christe, K. O.; Schack, C. J.; Wilson, R. D. J. Fluorine Chem. 1976, (12)

⁽¹³⁾ Schack, C. J.; Pilipovich, D.; Cohz, S. N.; Sheehan, D. F. J. Phys. Chem. 1968, 72, 4697.
(14) Holloway, J. H.; Selig, H.; Claassen, H. H. J. Chem. Phys. 1971, 54,

Schack, C. J.; Wilson, R. D. Inorg. Chem. 1970, 9, 311.

Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978,

⁽¹⁷⁾ Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1977, 16, 849.

⁽¹⁸⁾ Plyler, E. K.; Danti, A.; Blaine, L. R.; Tidwell, E. D. J. Res. Natl. Bur.

Stand., Sect. A 1960, 64, 841.
(19) International Union of Pure and Applied Chemistry. "Tables of Wavenumbers for the Calibration of Infrared Spectrometers"; Butterworths: Washington, D.C., 1961.

⁽²⁰⁾ Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc. (Engl. Transl.) 1969, 23, 8.

⁽a) Pure Appl. Chem. 1972, 29, 627. (b) Toetsch, W.; Sladky, F. Seventh European Symposium on Fluorine Chemistry, Venice, Italy, Sept 1980; Paper I 11; J. Chem. Soc., Chem. Commun. 1980, 927.

BrF₅ (9.9 mmol) and a mixture of BrF₃ and BrF₃O (found 682 mg, calcd for 3.84 mmol of BrF₃ + 1.06 mmol of BrF₃O 688 mg). The solid residue (found 804 mg, weight calcd for 2.453 mmol of CsIF₄O₂ 787 mg) was shown by Raman spectroscopy to consist mainly of *trans*-CsIF₄O₂, CsBrF₄, and smaller amounts of *cis*-CsIF₄O₂, and possibly some solvated BrF₃O. Vacuum pyrolysis at 90 °C resulted in a solid residue consisting again of *trans*-CsIF₄O₂, CsBrF₄ and a small amount of cis CsIF₄O₂ and also in the evolution of some IF₅ (~8 weight %).

The CsIO₄-CIF₃ System. A well-passivated (with ClF₃) sapphire tube equipped with a stainless-steel valve and containing a Teflon-coated stirring bar was loaded with CsIO₄ (1.14 mmol), followed by ClF₃ (10.6 mmol). The liquid ClF₃ and solid periodate were stirred magnetically overnight at 0-20 °C. This resulted in a clear, very pale yellow solution. Upon removal of the volatile material and several hours of pumping at ambient temperature, a white powder (0.493 g) remained in the tube, which was identified by vibrational spectroscopy as a mixture of CsF·3IF₅ and CsClF₄ (weight calculated for the conversion of 1.14 mmol of CsIO₄ to 0.38 mmol of CsF·3IF₅ and 0.76 mmol of CsClF₄ was 0.497 g). The volatile materials consisted of ClF, FClO₂, and unreacted ClF₃.

The CsIO₄-CiF₅ System. When CsIO₄ was allowed to interact with a large excess of ClF₅ in a stainless-steel reactor at room temperature, the composition of the solid reaction product depended on the reaction time. After short reaction times (about several hours) the solid consisted, on the basis of its weight change and Raman spectra, mainly of unreacted CsIO₄ and smaller amounts of *trans*-CsIF₄O₂. After longer reaction times (in excess of 1 month), the solid consisted mainly of CsIF₈ and *trans*-CsIF₄O₂ and some CsIF₄O.

The CsIO₄-F₂ System. The fluorination of CsIO₄ with elemental fluorine in a static system at temperatures up to 60 °C resulted in a solid product, which, on the basis of its vibrational spectra, was a mixture of mainly CsIF₈, CsIF₆, and CsIO₄ with smaller amounts of CsIF₄O and *cis*- and *trans*-CsIF₄O₂ also being present.

Synthesis of HOIF₄O. In a typical experiment, CsIF₄O₂ (2.0 mmol) and BiF₅ (2.0 mmol) were placed in a passivated Teflon FEP U-trap containing a magnetic stirring bar. One arm of the trap was closed off by the stainless-steel valve, while the other one was connected through a porous Teflon filter to a second Teflon U-trap, which was capped off by another valve. Anhydrous HF (5 mL of liquid) was condensed into the U-trap, and the CsIF₄O₂-BiF₅-HF mixture was stirred at 25 °C for 1 h. The double U-trap assembly was cooled to -78 °C and inverted, and the HOIF₄O-containing HF solution was separated from the CsBiF₆ precipitate by pressure filtration. The HF solvent was pumped off at -45 and -13 °C. The residue was allowed to warm to ambient temperature, and the material volatile at 25 °C was collected at -78 °C in a 4-mm o.d. external Teflon U-trap. This trap was shown to contain HOIF₄O (~2 mmol), which was identified by its Raman and ¹⁹F NMR spectra. The filter cake (0.9 g) was identified by its Raman spectrum as CsBiF₆.

Synthesis of FOIF₄O. In a typical experiment, $CsIF_4O_2$ (5.0 mmol) and NF₄SbF₆ (5.0 mmol) were placed in the Teflon FEP metathesis apparatus (see above), and anhydrous HF (5 mL of liquid) was condensed in at -78 °C. The mixture was stirred for 1 h at room temperature. The apparatus was cooled to -78 °C and inverted, and the white precipitate was separated from the solution by pressure filtration. Most of the HF solvent was pumped off over several hours at temperatures ranging from -64 to -30 °C. The resulting white solid residue was allowed to decompose during slow warm-up from -30 °C to ambient temperature. The volatile products were passed through a Teflon U-trap containing passivated NaF pellets, followed by a series of cold traps kept at -78, -95, -112, and -210 °C. The -78 °C trap contained a small amount of unidentified material, which was discarded, the -95 °C fraction consisted of pure FOIF₄O (2.36 mmol), the -112 °C trap had 1.69 mmol of FOIF₄O containing a small amount of IF5O as an impurity, and the -210 °C trap contained NF₃ (4.0 mmol). A small amount of white solid residue, which was left behind after the thermal decomposition of the filtrate, was shown by vibrational spectroscopy to consist mainly of trans-CsIF₄O₂. The filter cake (1.8 g) was identified by Raman spectroscopy as CsSbF₆. The -95 °C fraction was used for the characterization of FOIF₄O and was shown by vibrational and 19F NMR analysis to be free of IF5O.

For the elemental analysis, 278.7 mg of the material was condensed at -196 °C into an ampule containing 12 mL of frozen 1 N NaOH. The mixture was warmed to ambient temperature for 12 h and then

analyzed for total iodine by energy-dispersive X-ray fluorescence spectrometry, for IO_4^- by iodometric titration, for base consumption by back-titration with 0.1 N HCl using a pH electrode and for fluoride by titration using La(NO₃)₃ and an Orion specific-ion electrode. Anal. Calcd for FOIF₄O: I, 49.98; F, 37.42; OH⁻ consumed, 6.0 equiv/mol; iodometric titration, 8.0 equiv/mol, with the assumption of the hydrolysis reaction FOIF₄O + 6OH⁻ \rightarrow IO_4^- + 5F⁻ + 0.5O₂(g) + 3H₂O. Found: I, 50.0; F, 36.0; OH⁻ consumed, 6.1 equiv/mol; iodometric titration, 7.8 equiv/mol.

Synthesis of ClOIF₄O. A 30-mL stainless-steel cylinder was loaded with 2.32 mmol of CsIF₄O₂, and 2.12 mmol of ClSO₃F was added at -196 °C. After the cylinder was kept for 5 days at -78 °C, the volatile products were removed from the cylinder. The solid residue was identified by vibrational spectroscopy as CsSO₃F. The volatiles were fractionated through traps cooled to -45, -78, and -196 °C. The lowest temperature fraction (0.77 mmol) was mainly Cl₂ together with some FClO₂, while the -45 °C trap contained a white solid, which melted above 0 °C and which was identified by its infrared spectra as IF₅. The -78 °C trap contained a yellow-orange solid, which on slight warming melted to an orange liquid. Its gas-phase infrared spectrum was recorded at 25 °C and showed the following bands (cm⁻¹; relative intensity, assignment): 912 m, I=O stretch; 763 mw, O-Cl stretch; 678 vs, 635 s, 532 mw, I-F and I-O stretching. The compound was found to be thermally unstable and very difficult to handle. It readily decomposed to IF5, and its synthesis required careful temperature control. When the synthesis was carried out for example at -45 °C, only decomposition products were obtained. Attempts to isolate fluorocarbon derivatives of ClOIF4O by adding it across the C=C double bond of C₂F₄ resulted at -78 °C in no reaction and at room temperature in the oxygenation, fluorination, and decomposition products COF₂, CF₃COF, ClCF₂COF, C₂F₅Cl, and IF₅.

Results and Discussion

Synthesis of CsIO₂F₄. In our work the known⁹ equilibrium

$$IO_4^- + 4HF \rightleftharpoons IF_4O_2^- + 2H_2O$$

was utilized for a convenient synthesis of CsIF₄O₂. So that this equilibrium can be shifted to the right, a large excess of HF must be used and the HF treatment must be repeated at least once. The resulting CsIF₄O₂ consists of a mixture of the cis and trans isomers, as shown by ¹⁹F NMR and vibrational spectroscopy (see below). The ratio of cis to trans isomer varies somewhat with the reaction conditions used, but the formation of the cis isomer appears to be slightly favored. The ¹⁹F NMR and Raman spectra were recorded for solutions of CsIF₄O₂ in anhydrous HF and CH₃CN. Whereas the CH₃CN solution spectra show the presence of the IF₄O₂⁻ anion, the spectra of the HF solutions are characteristic (see below) for those of HOIF₄O. This finding is in excellent agreement with the previous report by Selig and Elgad9 that solutions of NaIO4 in anhydrous HF contain HOIF4O and the report by Engelbrecht and co-workers^{6,7} that HOIF₄O interacts with alkalimetal fluorides to form IF₄O₂ salts. Consequently, the above equilibrium reaction involves at least two reactions, the first

$$IO_4^- + 6HF \xrightarrow{+HF} HOIF_4O + HF_2^- + 2H_2O$$

and, upon HF and H2O removal, the second being

$$HOIF_4O + C_8HF_2 \xrightarrow{-HF} C_8IF_4O_2 + 2HF$$

The intermediate formation and the slight volatility of HOIF₄O also explain why in some of our CsIF₄O₂ preparations, when the HF was rapidly pumped off at elevated temperature, a weight loss accompanied by some CsHF₂ formation was observed.

The above synthesis of CsIF₄O₂ from CsIO₄ and HF appears more convenient than the previously reported methods involving either the difficult to obtain IF₃O₂ as a starting material or the isolation and recrystallization of MIF₄O₂·2IF₅ from IF₅, followed by its pyrolysis. However, the latter method produces almost exclusively the trans isomer and might be the

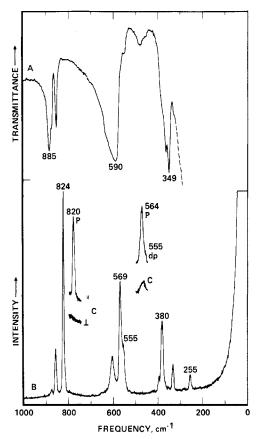


Figure 1. Vibrational spectra of a CsIF₄O₂ sample containing mainly trans-IF₄O₂ (bands marked by their frequency values) and smaller amounts of cis-IF₄O₂. Trace A is an infrared spectrum of the solid as a dry powder pressed between AgCl disks; the broken line indicates absorption due to the window material. Trace B is a Raman spectrum of the solid. Inserts C are Raman bands of the CH₃CN solution, recorded with parallel and perpendicular polarization.

preferred method if pure trans-IF₄O₂⁻ is desired. The fact that the cis-trans isomer ratio strongly depends on the nature of the reactants suggests that this ratio is kinetically and not thermodynamically controlled. This conclusion is in excellent agreement with those reached by Toetsch and Sladky for the closely related TeF₄(OH)₂ system.^{21b}

An alternate method for the formation of CsIF₄O₂ involves the reaction of CsIO₄ with BrF₅. The main reaction can be described by

$$CsIO_4 + 2BrF_5 \rightarrow CsIF_4O_2 + 2BrF_3O$$

This reaction is analogous to that 10 previously reported for $KIO_4 + IF_5$, i.e.

$$KIO_4 + 2IF_5 \rightarrow KIF_4O_2 + 2IF_3O$$

and produces almost entirely the trans isomer. Compared to the IF₅ reaction, the BrF₅ reaction offers the advantage that the BrF₃O and BrF₃ byproducts are volatile and can easily be pumped off. However, the resulting product was contaminated by nonvolatile CsBrF₄, which could not be readily separated from the $CsIF_4O_2$.

The reactions of CsIO₄ with chlorine fluorides were also briefly studied. With ClF₅, trans-CsIF₄O₂ was formed in low conversion according to

$$CsIO_4 + ClF_5 \rightarrow CsIF_4O_2 + FClO_2$$

Attempts to achieve higher conversions by the use of longer reaction times failed due to the formation of CsIF₈ as the main product and of CsIF₄O as a minor product.

When ClF₅ was replaced by the more reactive ClF₃, complete conversion of the CsIO₄ was obtained; however, all the

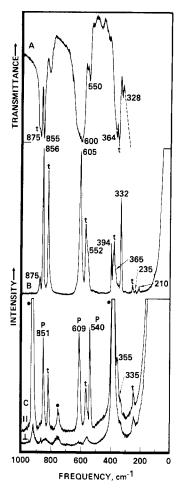


Figure 2. Vibrational spectra of a CsIF₄O₂ sample containing mainly cis-IF₄O₂ (bands marked by frequency values) and smaller amounts of trans-IF₄O₂ (marked by t). Trace A is an infrared spectrum of the solid as a dry powder pressed between AgCl disks. The weak bands at 815 and 470 cm⁻¹ probably do not belong to IF₄O₂⁻. Trace B is a Raman spectrum of the solid. Traces C are Raman spectra of a CH₃CN solution. Solvent bands are marked by an asterisk.

oxygens in IO₄ were exchanged for fluorine, and the solid product consisted of a mixture of CsIF₆·2IF₅²² and CsClF₄.²³ Based on the observed material balance, the following reaction occurred:

$$3CsIO_4 + 11ClF_3 \rightarrow 6FClO_2 + 3ClF + 2CsClF_4 + CslF_6 \cdot 2lF_5$$

The formation of CIF and of half of the FClO2 can be readily explained by the well-known²⁴ disproportionation of the expected unstable FClO intermediate:

The fluorination of CsIO₄ by elemental fluorine at temperatures up to 60 °C in a static system was also studied. The main products were CsIF₈ and CsIF₆, with CsIF₄O and cisand trans-CsIF₄O₂ as minor products.

In view of the fact that the fluorination reactions of CsIO₄ with ClF₅, BrF₅, ClF₃, or F₂ do not result in pure compounds, they are less attractive synthetic methods for the preparation of CsIF₄O₂.

Vibrational Spectra of CsIF₄O₂. The vibrational spectra of solid CsIF₄O₂ were recorded for samples that differed in their cis and trans isomer content. The observed spectra are given

Christe, K. O. Inorg. Chem. 1972, 11, 1215. Christe, K. O.; Sawodny, W. Z. Anorg. Allg. Chem. 1970, 374, 306. Cooper, T. D.; Dost, F. N.; Wang, C. H. J. Inorg. Nucl. Chem. 1972,

Vibrational Spectra of trans-IF 402 and Their Assignments in Point Group D4th Compared to Those of Closely Related Molecules

obsd freq, cm⁻¹, and rel intens

OS.	solid	CH.CN soln	1F.0	IF ₄ O ⁻ , solid	IF	IF, a solid	IF.	IF O, gas	T	IF,' gas	assiont for	approx description
æ	Ramana	Ramana	IR	Raman	R	Raman	R	Raman	H	Raman	$\mathbb{F}_4\mathcal{O}_2^-$ in D_4h	of mode
:	569 (5.5)	564 (7) p	540 sh	540 (5.8)	:	522 (10)	640 s	640 vs, p		616 vs, p	A ₁ g ν ₁	v _s (IF ₄) in phase
885 8	824 (10)	820 (10) p	885 8	887 (10)	:	:	927 ve	977 s n	:	:	, p. 2	$\nu_{\rm S}({\rm IO}_2)$
349 s	: :	: :	279 ms	283 (0.3)	271 ms	: :	363 m	,	318 m	318 m, p	A_{2u} ν_3	$\nu_{as}({ m IO}_{\scriptscriptstyle 2})$
	(6)	de (C) 555		179 (7.3)		ASS (7.7)		C47 ° 4"			, , , , , , , , , , , , , , , , , , ,	δ umbrella(IF ₄)
:	(7) (5)	dn (7) ccc		4/0 (4.5)	:	(7.1) 664		04/s, up		004 III	D ₁ g v _s	$\nu_{\rm s}(1{\rm F}_4)$ out of phase
:	255 (0.7)	248 (2.5) dp		224 (0.5)	:	195 (0+)	:	330 w	:	276 w	B_{2g} ν_{6}	$\delta_{\rm s}({\rm IF}_4)$ in plane
:	:	•	:	:	:	:			:	:	B_{2u} ν_{γ}	δ _{as} (IF ₄) out of plane
:	380 (3.5)	q	366 mw	368 (1)	:	:	372 s	375 m, dp	:	:	Д 2	\$OIF,0
590 vs, br	:	:	480 vs		448 vs	:	710 vs	712 w, dp	640 vs	631 w	, n	$\nu_{ m as}({ m IF}_4)$
			:	•	:	:	:	:	:	:	ν_{10}	$\delta_{ m sciss}({ m IO}_2)$
				140(0+)			205 vw	208 vw, dp	:	~200 w	<i>v</i> ₁₁	δ _{as} (IF ₄) in plane

Table II. Vibrational Spectra of cis-IF₄O₂

obsd free	q, cm ⁻¹ , and	l rel intensa		
so	solid		assignt for	approx description
IR	Raman	CH ₃ CN soln Raman	point group C_{2v}	of mode
875 vs	875	870 sh	$\nu_{12} \left(\mathbf{B}_{2} \right)$	$\nu_{as}(IO_2)$
855 vs	856 (10)	851 (9) p	$\nu_1(A_1)$	$\nu_{\rm s}({\rm IO_2})$
600 vs, br		.,-	$\nu_{9}(B_{1})$	$\nu_{as}(IF_2)_{ax}, \\ \nu_{as}(IF_2)_{eq}$
600 vs, br	605 (9.8)	609 (10) p	$\nu_2(\mathbf{A}_1)$	$\nu_{\rm s}({\rm IF}_2)_{\rm eq}$
550 mw	552 sh	540 (10) p	$\nu_3(A_1)$	$\nu_{\rm s}({\rm IF}_2)_{\rm ax}$
395 sh	394 (3.4)		$\nu_{\mathbf{A}}(\mathbf{A}_1)$	$\delta_{sciss}(IO_2)$
364 s	365 sh	355 sh	7	00.235
328 mw	332 (6.5) 235 (0.2) 210 (0.5)	335 sh		

^a Uncorrected Raman intensities (peak height).

in Figures 1 and 2, and the observed frequencies and their assignments in point group D_{4h} and C_{2v}

$$\begin{bmatrix} F & F & F \\ F & F & F \end{bmatrix}$$

$$\begin{bmatrix} F & F & F \\ F & F & G \end{bmatrix}$$

$$D_{Ab}, trans$$

$$C_{ab}, cis$$

are summarized in Tables I and II, respectively. The bands belonging to the trans isomer could be readily distinguished from those of the cis isomer due to the fact that only the trans isomer has a center of symmetry, which causes the infrared and Raman bands to be mutually exclusive. Furthermore, the ¹⁹F NMR spectrum (see below) clearly distinguished the trans from the cis isomer and established which isomer was more abundant in a given sample.

Assignments and Normal-Coordinate Analysis for trans- $IF_4O_2^-$. The trans- $IF_4O_2^-$ anion of symmetry D_{4h} should possess 11 fundamental modes classified as $2 A_{1g} + 2 A_{2u} + B_{1g} + B_{2g} + B_{2u} + E_{g} + 3 E_{u}$. Of these, the A_{1g} , B_{1g} , B_{2g} , and E_{g} modes should be Raman active only and the A_{2u} and E_{u} modes should be infrared active only, whereas the B_{2u} mode should be inactive in both spectra. Of the 10 active modes, all five Raman-active modes and three out of the five infrared-active modes have been observed and can be readily assigned on the basis of their activity, polarization data, and comparison with the closely related species IF_4 , 25 $IF_4O^{-,26}$ IF_5 , 27,28 and $IF_5O^{14,29}$ (see Table I). The correctness of these assignments was confirmed by a normal-coordinate analysis using the symmetry coordinates and G matrix elements previously published30 by Beattie and co-workers. The bond distances were estimated to be $r_{\rm IF} = 1.92$ Å and $d_{\rm IO} = 1.72$ Å, on the basis of the known structures and stretching frequencies of the related IF₅O^{14,29,31} and IF₅^{27,28,32} molecules and the IF₄O⁻ anion.^{26,33} The force constants of the B_{1g}, B_{2g}, and E_g species are uniquely determined. In the A_{1g} block, the G_{12} element is zero, and therefore F_{12} can be ignored. For the A_{2u} block, the extremal solution³⁴ F_{44} = minimum was used, which has previously been shown²⁵ for the closely related IF₄ anion

⁽²⁶⁾

Christe, K. O.; Naumann, D. *Inorg. Chem.* 1973, 12, 59. Christe, K. O.; Wilson, R. D.; Curtis, E. C.; Sawodny, W., Kuhlmann, W. *Inorg. Chem.* 1978, 17, 533. Begun, G. M.; Fletcher, W. H.; Smith, D. F. J. Chem. Phys. 1965, 42, 2236.

Selig, H.; Holzman, A. Isr. J. Chem. 1969, 7, 417.
Smith, D. F.; Begun, G. M. J. Chem. Phys. 1965, 43, 2001.
Beattie, I. R.; Webster, M.; Chantry, G. W. J. Chem. Soc. 1964, 6172.
Pierce, S. B.; Cornwell, C. D. J. Chem. Phys. 1967, 47, 1731.
Robiette, A. G.; Bradley, R. H.; Brier, P. N. J. Chem. Soc. D 1971, (32)

Ryan, R. R.; Asprey, L. B. Acta Crystallogr., Sect. B 1972, B28, 979.

⁽³⁴⁾ Sawodny, W. J. Mol. Spectrosc. 1969, 30, 56.

a stretching constants in mdyn/A, deformation constants in mdyn A/rad², and stretch-bend interaction constants in mdyn/rad.

to be an excellent approximation to a general valence force field for these weakly coupled systems. For the E_u block, only the frequency value of the stretching mode is experimentally known. A comparison with the force field of the related IF₄ anion²⁵ showed that, due to the heavy iodine central atom, the approximation $F_{99} = \lambda_9/G_{99}$ yields an almost exact value for the stretching force constant in the E_u block and was therefore used for IF₄O₂. The resulting force field is listed in Table III and strongly supports our assignments. Table IV gives a comparison of the internal stretching force constants of trans-IF₄O₂⁻ with those of the closely related species IF₄, 25 IF₅O, 29 and IF₆⁺, 36 As previously discussed 37 for chlorine oxyfluorides, the IF stretching force constants increase in the sequence anions < neutral molecules < cations and within a given group with increasing oxidation state of the iodine central atom. The IO stretching force constants are in the range expected for I=O double bonds and demonstrate that, even in the anions, the formal negative charge is located mainly on the more electronegative fluorine ligands rather than on the oxygen ligand. Consequently, contributions from resonance structures such as I and II are more important

than those from III and IV to explain the bonding in IF₄O₂.

Resonance structures such as I and II also account for the decrease of the IF stretching force constants with increasing formal negative charges and also with decreasing oxidation state of the central atom. Both effects increase the $I^{\delta+}-F^{\delta-}$ polarity of the IF bonds, thereby causing the bonds to become more ionic, longer, and therefore weaker. This weakening of the IF bonds can be very significant as is demonstrated by the low value of f_r , in IF₄, which is only 41% of that in IF₆. The fact that the IO stretching force constant drops from IF₄O (6.56 mdyn/Å) toward IF₄O₂ (6.15 mdyn/Å), in spite of an increase in the oxidation state of the iodine atom, is interesting and parallels the trends previously noted³⁷ for chlorine oxyfluorides, i.e., the electron-releasing effect of oxygen ligands

in highly electronegative compounds.

Assignments for cis-IF₄O₂. Our assignments for cis-IF₄O₂ have been limited to the stretching modes because only 10 of the 15 fundamentals expected for point group C_{2v} have been observed and because no reliable assignments have been published for similar XF₄O₂ species. The assignment of the two IO₂ stretching modes is straightforward on the basis of their high frequencies, relative intensities, and the previously published ¹⁸O spectra. The symmetric IF₂ axial and the symmetric IF₂ equatorial stretches must belong to the two intense polarized Raman bands at 540 and 609 cm⁻¹, respectively, with the axial mode resulting in a weak and the equatorial mode resulting in a strong infrared counterpart. The antisymmetric axial and the antisymmetric equatorial IF. stretches should both be very intense in the infrared spectrum and therefore are assumed to coincide at about 600 cm⁻¹, resulting in a very strong, broad band.

Comparison with Previous IF₄O₂-Assignments. Disregarding some solvent-induced shifts, we find the above assignments for cis-IF₄O₂- agree well with those previously reported by Selig and Elgad for an aqueous solution. The only minor discrepancy is the assignment of the antisymmetric axial IF, stretch. For trans-IF₄O₂, the assignments proposed by Gillespie and Krasznai for six of the modes have been revised for three of them. The vibrational spectra reported by Carter et al. 8 show that their sample contained mainly trans-IF₄O₂- but was incorrectly interpreted in terms of the cis isomer.

¹⁹F NMR Spectra of IF₄O₂ and HOIF₄O. The presence and the relative amounts of cis- and of trans-IF₄O₂ in the above samples were verified by ¹⁹F NMR spectroscopy. The spectra were recorded in CH₃CN solution at -70 °C and showed a narrow singlet at ϕ 65.1 for the trans isomer and a broader A_2B_2 pattern at ϕ 66.0 and 112.8 with $J_{FF} = 204$ Hz for the cis isomer. The observed shifts and coupling constant are in fair agreement with the value previously reported for solutions in CH₃CN (trans ϕ 62.0), ¹⁰ IF₅ [cis ϕ 68.5, 102.1 (J_{FF} = 202 Hz); trans ϕ 70.6], and aqueous HF [cis ϕ 64, 105 (J_{FF} = 196 Hz)].9

Solutions of CsIF₄O₂ in anhydrous HF at -75 °C resulted in a sharp singlet at ϕ 62.0 and a broadened A_2B_2 pattern at ϕ 61.8 and 85.9 with $J_{\rm FF}$ = 220 Hz. At room temperature, the A₂B₂ pattern was broadened to the extent that it could barely be detected. Although these spectra are similar to those of IF₄O₂-, it was conclusively shown (see below) by Raman spectroscopy that they are due to cis- and trans-HOIF4O and not to IF₄O₂. This finding is in excellent agreement with the conclusion⁹ reached by Selig and Elgad that their signals 1 and 2 observed for solutions of NaIO4 in HF are due to cisand trans-HOIF₄O. The observed chemical shifts and coupling constant are in fair agreement with previous reports, 6,7,9,10 considering the different solvents and conditions used for recording the spectra. The coupling constant of 21 Hz previously reported by Gillespie and Krasznai¹⁰ appears to be a typographical error.

Synthesis and Properties of HOIF₄O. The above described experiments involving CsIF₄O₂ in HF solutions indicate the existence of the equilibrium

$$CsIF_4O_2 + 2HF \xrightarrow{+HF} CsHF_2 + HOIF_4O$$

which, in the presence of a large excess of HF, is shifted all the way to the right side. In view of the lack of a convenient synthesis of HOIF₄O,^{6,7} this reaction was utilized to prepare HOIF4O. Since during HF removal the above equilibrium is shifted back to the left, the CsHF2 was converted into an insoluble BiF₆ salt according to

$$CsHF_2 + BiF_5 \xrightarrow{HF} CsBiF_6$$

which can be filtered off at -78 °C. The resulting mixture

Christe, K. O.; Curtis, E. C.; Wilson, R. D. J. Inorg. Nucl. Chem.

Suppl. 1976, 437. Christe, K. O.; Sawodny, W. Inorg. Chem. 1967, 6, 1783. Christe, K. O.; Schack, C. J. Adv. Inorg. Chem. Radiochem. 1976, 18,

Table IV. Stretching Force Constants (mdyn/A) of trans-IF₄O₂-Compared to Those of Similar Molecules and Ions

		anions		mo	olecules	cation
	IF ₄ (+III) ^a	IF ₄ O⁻ (+V) ^b	IF ₄ O ₂ ⁻ (+VII)	IF ₅ (+V) ^c	IF₅O (+VII) ^d	IF, + (+VII)
$f_r(IF)$	2.22	2.46	3.27	3.77	4.42	5.42
f_{rr}	0.18	0.16	0.04	0.04	0.00	-0.07
$\hat{f}_{rr'}$	0.47	0.45	0.27	0.38	0.18	0.19
$f_d(IO)$		6.56	6.15		6.99	
f_{dd}			0.25			

^a Data from ref 25; iodine oxidation state in parentheses for all species. ^b Data from ref 26. ^c Data from ref 35. ^d Data from ref 29. ^e Data from ref 36.

of $HOIF_4O$ and HF can be easily separated by fractional condensation or distillation.

The ¹⁹F NMR spectrum of HOIF₄O in HF solution was recorded at -78 °C and was identical with that of the product obtained by dissolving CsIF₄O₂ in HF (see above). The ratio of cis to trans isomer in the HOIF₄O sample appeared to be similar to that in the CsIF₄O₂ starting material. It should be pointed out that at room temperature the signal due to the cis isomer can be so broad that it is difficult to detect, thereby giving the false impression of dealing with samples containing exclusively the trans isomer.

The Raman spectra of liquid HOIF₄O showed some variation. Freshly prepared samples and HF solutions exhibited spectra similar to that of trace A of Figure 3. After the solutions were allowed to stand, the 872 cm⁻¹ band decreased in intensity and bands at 828 and 799 cm⁻¹ started to grow. In addition the bands in the 600–700 cm⁻¹ region became broader and shifted to slightly lower frequencies, as shown by trace B of Figure 3. On the basis of its ¹⁹F NMR spectrum, a sample of HOIF₄O in HF solution, which showed a Raman spectrum very similar to that of trace A of Figure 3, consisted mainly of the cis isomer. Whether the change from Raman spectrum A to spectrum B involves a change in the isomer ratio or is caused by association effects was not clearly established.

Synthesis of FOIF₄O. Previous studies have shown that unstable NF₄⁺ salts containing oxyanions such as ClO_4^{-3} or SO_3F^{-4} can be prepared by metathesis in anhydrous HF solution according to

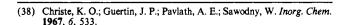
$$NF_4SbF_6 + C_8XO_4 \xrightarrow{HF} C_8SbF_6 \downarrow + NF_4XO_4$$

Thermal decomposition of these NF₄⁺ salts provided a new high-yield synthetic route to hypofluorites.^{3,4} Since no examples of iodine hypofluorites had previously been known, it was interesting to examine the applicability of this method to periodates.

Since the IO₄⁻ anion is fluorinated to IF₄O₂⁻ in anhydrous HF, as shown by the above studies and the previous report by Selig and Elgad, the metathetical reaction of IO₄⁻ itself could not be studied. However, when IO₄⁻ was replaced by IF₄O₂⁻, the following metathetical reaction occurred:

the following metathetical reaction occurred:

NF₄SbF₆ + CsIF₄O₂
$$\xrightarrow{\text{HF}}$$


CsSbF₆ + HOIF₄O + NF₄HF₂

The CsSbF precipitate could be essily filtered off at -78 °C

The CsSbF₆ precipitate could be easily filtered off at -78 °C, and Raman and ¹⁹F NMR spectroscopy of the filtrate showed the presence of NF₄⁺³⁸ and HOIF₄O (see above) with no evidence for the IF₄O₂⁻ anion. This is in agreement with the above results for CsIF₄O₂, which demonstrated that MIF₄O₂ salts undergo solvolysis in anhydrous HF according to

$$MIF_4O_2 + 2HF \rightarrow MHF_2 + HOIF_4O$$

Raman and ¹⁹F NMR spectra showed that these NF₄HF₂-HOIF₄O-containing HF solutions are unstable at room tem-

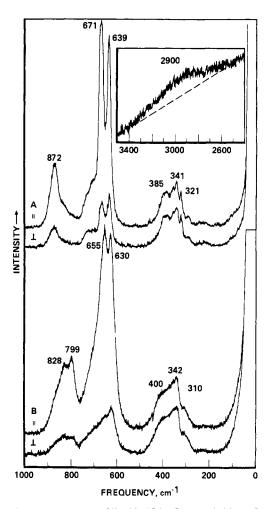


Figure 3. Raman spectra of liquid HOIF₄O, recorded in Teflon FEP tubes at room temperature.

perature and slowly decompose to NF₃^{39,40} and a new compound identified (see below) as a mixture of cis- and trans-FOIF₄O. At the same time, the relative intensities of the NF₄⁺ and HOIF₄O signals decreased accordingly. When the HF solvent was pumped off at -30 °C from a freshly prepared NF₄HF₂-HOIF₄O solution, a white solid residue was obtained. The low-temperature Raman spectrum of this solid showed the presence of the NF₄⁺ cation, but the remaining bands were too broad to permit a positive distinction among IF₄O₂⁻, HOIF₄O, and possibly some HF₂·nHF.³ The new compound FOIF₄O was obtained in high yield by decomposing at room temperature this thermally unstable solid, with the byproduct being NF₃. Since the same products were obtained from HF solutions that, on the basis of their ¹⁹F NMR and Raman spectra, contained only HOIF₄O but not IF₄O₂⁻, it appears

⁽³⁹⁾ Rose, W. B.; Nebgen, J. W.; Metz, F. I. Rev. Sci. Instrum. 1966, 37, 238.

⁽⁴⁰⁾ Shamir, J.; Hyman, H. H. Spectrochim. Acta, Part A 1967, 23A, 1899.

that FOIF4O is formed by fluorination of HOIF4O by either NF₄⁺ or nascent fluorine formed during the thermal decomposition of the marginally stable NF₄+HF₂-nHF.³ Consequently, it was interesting to investigate whether FOIF4O could also be obtained by the fluorination of HOIF4O with elemental fluorine. However, fluorination reactions carried out at 25 °C with the use of either neat or HF solutions of HOIF₄O, 2 atm of F₂ pressure, and a shaker for agitation did not result in any fluorination of HOIF₄O, and only unchanged starting materials were recovered.

Since the fluorination reactions of alkali-metal salts such as CsSF₅O, CsCF₃O, CsClO₄, or KNO₃ with elemental fluorine yield the corresponding hypofluorites,1 it was interesting to study the analogous fluorination reaction of CsIF₄O₂. In static systems up to 60 °C slow reactions between CsIF₄O₂ and F₂ were observed, producing IF₅O in low yield as the only volatile product. Since IF5O is the primary decomposition product of FOIF₄O (see below), the intermediate formation of some FOIF4O in this reaction cannot be ruled out. Similarly, the fluorination of CsIO₄ with F₂ under comparable conditions produced small amounts of IF₅O as the only volatile product. The Raman spectra of the solid residues from both reaction systems showed the presence of CsIF₈,⁴¹ CsIF₆,²² cisand trans-CsIF₄O₂, and CsIF₄O.²⁶ The low reactivity of the I=O double bond in IF5O was further demonstrated by separate experiments, showing that F₂ is not added across the I=O double bond, even in the presence of CsF as a catalyst, at temperature between -196 and +25 °C with the use of an excess of F₂.

Properties of FOIF₄O. As shown by NMR and vibrational spectroscopy (see below), FOIF₄O exists in the form of two isomers, one in which the two oxygens are cis and one in which they are trans to each other. Attempts were unsuccessful to separate the two isomers by gas chromatography at 25 °C using a 30-ft, ³/₁₆-in. o.d. stainless-steel column containing 50% Halocarbon oil No. 4-11V on Kel-F 300 (70-80 mesh).⁴² Consequently, the physical properties could only be determined for a mixture of both isomers. On the basis of their ¹⁹F NMR peak areas, the ratio of cis to trans isomers in the sample used for the physical property measurements was 1.92:1. FOIF₄O is colorless as a gas, pale yellow as a liquid, and white in the solid state. The given sample melted at -33.1 °C. Vapor pressures were fitted by the method of least squares to the equation

$$log [P (mm)] = 7.62925 - 1432.0/[T (K)]$$

the index of correlation being 0.99991. The extrapolated boiling point is 28.37 °C. Measured vapor pressures at the noted temperatures are as follows $[T(\circ C), \bar{P}(mm)]$: -45.3, 22; -33.1, 47; -23.0, 80; -13.7, 129; O, 244. The latent heat of vaporization of FOIF4O is 6.55 kcal/mol and the derived Trouton constant is 21.73, indicating little association in the liquid phase. This is in agreement with the relatively low boiling point and the small changes between the vibrational spectra of the gas and the liquid (see below). The molecular weight was determined from the vapor density and found to be 254.5 (calcd for FOIF₄O 253.9). The good agreement indicates little or no association in the gas phase at the pressure used $(P \sim 1 \text{ atm})$.

FOIF4O is marginally stable at room temperature and can be handled in well-passivated metal and Teflon equipment without rapid decomposition. The fact that IF₅O was frequently observed as an impurity in the vibrational and NMR spectra suggests the primary decomposition mode

$$FOIF_4O \rightarrow IF_5O + \frac{1}{2}O_2$$

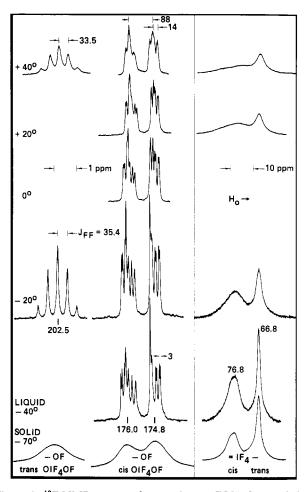


Figure 4. ¹⁹F NMR spectra of cis- and trans-FOIF₄O recorded at different temperatures. The signals due to the O-F fluorines are given at a 10 times wider scale than those due to fluorines on iodine. Positive shifts are downfield from the external CFCl₃ standard.

When a sample of FOIF4O has heated in a stainless-steel cylinder to 120 °C for 388 h, decomposition to IF₅ and O₂ was observed. This is not surprising in view of a previous report¹³ that IF5O readily decomposed to IF5 and O2. As expected for a hexacoordinated iodine species, FOIF4O is neither a good fluoride ion acceptor nor a good donor. Thus, it does not form stable adducts at room temperature with either the strong Lewis acid SbF₅ or the strong Lewis base CsF. Attempts to add FOIF₄O across the C=C double bond in C_2F_4 were unsuccessful. Fluorination and oxygenation of C_2F_4 occurred with COF₂, CF₃CFO, and C₂F₆ being the principal reaction products.

¹⁹F NMR Spectra of FOIF₄O. The ¹⁹F NMR spectra of FOIF4O were recorded for the neat material and HF solutions and were essentially identical. The spectra of the neat liquid and solid are shown in Figure 4, together with the observed chemical shifts and coupling constants. Peak-area measurements showed that the 202 and 67 ppm signals belong to an AX_4 and the 176, 175, and 77 ppm signals to an A_2BCX system. The AX₄ system is readily assigned to the trans isomer

The chemical shift of 66.8 ppm of the four equatorial fluorines is almost identical with that in IF₅O (68.5 ppm for neat IF₅O at -20 °C), and that of 202.5 ppm of the fluorine on oxygen

Adams, C. J. Inorg. Nucl. Chem. Lett. 1974, 10, 831.

⁽⁴²⁾ Dayan, V. H.; Neale, C. B. Adv. Chem. Ser. 1966, No. 54, 223.

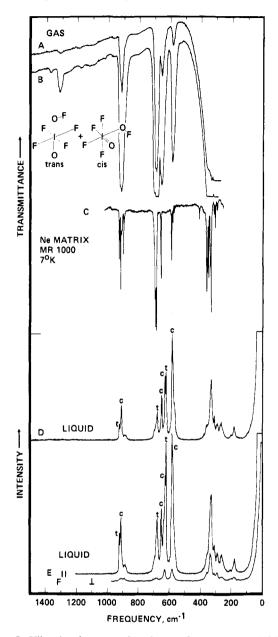


Figure 5. Vibrational spectra of a mixture of cis- and trans-FOIF₄O in a ratio of about 1.9:1. Traces A and B are infrared spectra of the gas, recorded at pressures of 10 and 95 mm, respectively, in a 5-cm path length cell equipped with AgCl windows. Most of the absorption below 400 cm⁻¹ is due to the window material. Trace C is an infrared spectrum of FOIF₄O isolated in a neon matrix [mole ratio (MR) 1000:1] and recorded at 6 K. Traces D-F are Raman spectra of liquid FOIF₄O recorded in 4-mm o.d. quartz tubes at -20 °C for two samples containing somewhat different ratios of cis (c) to trans (t) isomers, with the incident polarization parallel and perpendicular.

is similar to those of other hypofluorites such as O_3ClOF (219 ppm), ⁴³ SF₅OF (189 ppm), ⁴⁴ or trans-SeF₄(OF)₂ (179 ppm). ⁴⁵ The fluorine-fluorine coupling constant, $J_{FF} = 34$ Hz, is in good agreement with the value of 27 Hz previously reported for the coupling constant of the four equatorial fluorines to the two hypofluorite fluorines in trans-SeF₄(OF)₂. ⁴⁵ The broadened fluorine on iodine resonance and the lack of observable fine structure of FOIF₄O is attributed to unresolved IF coupling ($I_1 = \frac{5}{2}$) due to decreased quadrupole relaxation caused by the approximately spherically symmetric electric

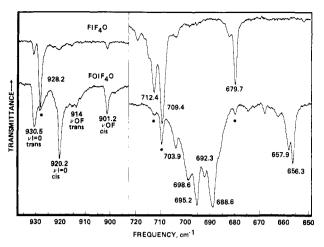


Figure 6. Infrared spectra of IF₅O and FOIF₄O in a Ne matrix (MR 1000:1) at 6 K recorded at 20-fold scale expansion. The bands due to IF₅O in the FOIF₄O spectrum are marked by an asterisk.

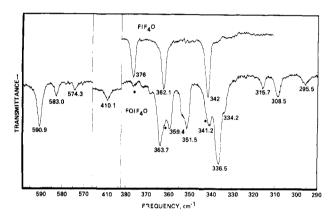


Figure 7. Infrared spectra of IF₅O and FOIF₄O in a Ne matrix (MR 1000:1).

field about the iodine.⁶ The A₂BCX system is assigned to the cis isomer

$$F_{B}$$
 F_{C}
 F_{C}
 F_{C}
 F_{C}
 F_{C}

and also shows an unresolved IF signal (at about 77 ppm) and a resolved hypofluorite signal (at about 202 ppm), which exhibits a pronounced temperature dependence. At 40 °C, the OF signal approximates a first-order doublet (J = 88Hz)of triplets (J = 14Hz). Since coupling should be stronger to the cis fluorines than to the trans fluorine,44 this spectrum could then be interpreted as being due to the cis isomer with free rotation around the I—O single bond and $J_{BX} = 88 \text{ Hz}$, J_{AX} = 14 Hz, and J_{CX} being too small to be resolved. When the solution is cooled, the line width becomes smaller and the CX coupling becomes observable. As can be seen from Figure 4, the spectrum exhibits pronounced second-order effects, and a computer-aided analysis will be required to obtain precise coupling constants. The fact that the unresolved fluorine on iodine signal has a significantly larger line width for the cis than for the trans isomer is not surprising because the cis isomer possesses three similar but nevertheless nonequivalent types of fluorine on iodine.

Vibrational Spectra of FOIF₄O and IF₅O. The infrared spectra of the gas and of the neon matrix isolated solid and the Raman spectra of liquid and solid FOIF₄O were recorded (see Figures 5-7), and the observed frequencies are summa-

⁽⁴³⁾ Christe, K. O., unpublished results.

⁽⁴⁴⁾ Harris, R. K.; Packer, K. J. J. Chem. Soc. 1962, 3077.

⁽⁴⁵⁾ Smith, J. E.; Cady, G. H. Inorg. Chem. 1970, 9, 1293.

Table V. Vibrational Spectra of FOIF₄O^a

ol	osd freq, cm-1	, and rel inter	180	
_	_	Ram	an	tentative assignts
gas	Ne matrix	liquid, -20 °C	solid, -80°C	to cis and trans
	110 11101111			
1375 vw				2 × 688
1315 w		004400	004 (4.5)	2 × 655
	930.5 m	926 (2.9) p	924 (1.7)	$\nu(I=O)_{trans}$
916 s	920.2 ms	916 (4) p	914 (3.6)	$\nu(I=O)_{cis}$
	914 mw	890 (0.6) p	891 (0.4)	$\nu(OF)_{trans}$
900 sh	901.2 m §	0) (() F	07 2 (01.1)	$\nu(OF)_{cis}$
701 sh	703.9 m			
	698.6 s			
693 vs	695.2 vs լ	695 sh	690 sh	$v_{as}(IF_4)_{trans}$
	692.3 m 🖇	075 311	070 311	$\nu_{as}(IF_2)_{ax}$ cis
688 vs	688.6 vs	680 (3.9) p	679 (3.3)	$\nu(I-O)_{trans}$
	686 sh			
	657.9 m			
653 s	656.3 ms	654 (4.5) p	652 (2.9)	$\nu (I-O)_{cis}$
		631 (6) p	630 (5)	$\nu_{\rm s}({\rm IF}_2)_{\rm ax,cis}$
		624 (9.2) p	622 (6.8)	$\nu_{\rm s}({\rm IF_4})_{\rm trans}$
584 ms	590.9 ms	585 (10) p	586 (10)	
	583.0 mw	ETE -1-	677 (1)	$\nu_{\rm s}({\rm IF}_2)_{\rm eq, cis}$ and
	574.3 w	575 sh	577 (4)	$v_{as}(IF_2)_{eq, cis}$
	410.1 mw		570 sh	
	363.7 ms			
	359.4 m	360 sh	358 (1)	
	353.5 sh	200 511	200 (1)	
	351.5 ms			
	341.2 m	340 sh		
335 s	336.5 vs	2 10 311		
JJJ 3	334.2 sh	334 (5.4) p	333 (4)	
	315.7 mw	227 (2.7) P	333 (1)	
	308.5 m	311 (0.4) p	311 (0.4)	
	295.5 mw	211 (0.4) b	J11 (U.+)	
	493.3 IIIW	201 (0.7)	201 (1)	
		291 (0.7)	291 (1)	
		264 (1) p	263 (0.8)	
		205 (0.1)	203 (0+)	
		182 (0.9) p	183 (0.6)	

^a Mixture of cis and trans isomers. ^b Uncorrected Raman intensities based on trace E of Figure 5.

rized in Table V. The studied samples were mixtures of cisand trans-FOIF4O with a cis:trans ratio of about 1.9 based on the NMR spectra and, in the matrix study, also contained a small amount of IF₅O, formed during manipulation of the sample. Since the vibrational spectra of cis- and trans-FOIF₄O and of IF₅O (see Figure 8) are all very similar, the gas-phase infrared spectra are only of limited value for distinguishing the three compounds. However, the Raman spectra of the liquid and solid and particularly the infrared spectra of the matrix-isolated samples definitely confirm the presence of the two FOIF₄O isomers established by the ¹⁹F NMR study. Some distinction of the cis from the trans isomer bands was possible from a comparison of spectra of samples having different cis to trans ratios (see for example traces D and E of Figure 5).

Tentative assignments for the stretching modes of cis- and trans-FOIF4O are given in Table V and were made by comparison with those established for IF₅O^{14,29} and IF₄O₂⁻ (see above), relying mainly on the observed relative infrared and Raman intensities.

The vibrational spectra observed for IF₅O are in excellent agreement with those previously reported, 14,29 except for the fact that our spectra do not show a strong infrared band at 640 cm⁻¹. As previously suggested,²⁹ this band is due to IF₅, the principal decomposition product of IF₅O.

Mass Spectra. The recording of the mass spectrum of FOIF₄O presented difficulties due to reaction of the compound with the inlet system, resulting in the formation of some IF₅O. Furthermore, I_2 has almost the same mass (253.8) as the parent FOIF₄O (253.9) thus making a distinction of the two

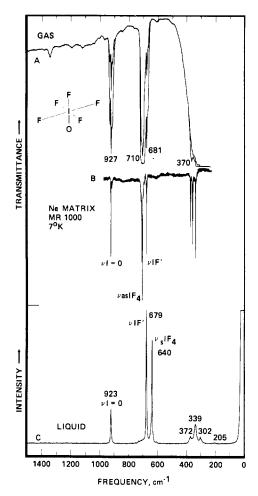


Figure 8. Vibrational spectra of IF₅O. Trace A is infrared spectra of the gas, trace B is an infrared spectrum in a Ne matrix, and trace C is a Raman spectrum of the liquid. All were recorded under conditions identical with those of Figure 5.

Table VI. Mass Spectruma of a Mixture of cis- and trans-FOIF.O

m/e	rel intens	ion	m/e	rel intens	ion
219	72	IF₄O⁺	165	18	IF,+
203	100	IF ₄ ⁺	162	38	IF ₂ + IOF+
200	32	IF ₃ O ⁺	146	15	IF^{+}
184	18	IF ₃ +	143	7	IO+
181	73	IF₂O⁺	127	38	I+
178	1	IO,F⁺			

a Recorded with an ionization potential of 70 eV, with the use of a 1:1 mixture of FOIF O and CIF. Peaks due to CIF, and IF_sO have been subtracted from the pattern.

molecules difficult. These problems were overcome by recording the spectra of pure IF5O under the same conditions and subtracting the IF5O pattern from that of the FOIF4Ocontaining sample. The interference from I₂ was eliminated by recording spectra of 1:1 mixtures of ClF₃ and FOIF₄O. The ClF₃ oxidized I₂ rapidly to iodine fluorides but did not appear to interact with FOIF4O. The mass cracking pattern obtained in this manner for FOIF4O is listed in Table VI and agrees with the expectations⁴⁶ for a hypofluorite. The I-OF single bond is readily broken to yield an intense IF₄O⁺ fragment, which can undergo additional oxygen and/or fluorine loss.

Synthesis of ClOIF₄O. Since FOIF₄O was found to be stable, the synthesis of the analogous hypochlorite, ClOIF₄O, appeared feasible. Using CsIF₄O₂ and ClOSO₂F, a generally

useful reagent for the syntheses of hypochlorites,⁴⁷ the synthesis of ClOIF4O was accomplished according to

$$CsIF_4O_2 + ClOSO_2F \xrightarrow{-78 \text{ °C}} CsSO_3F + ClOIF_4O$$

The resulting ClOIF4O appears to be highly reactive, difficult to handle, and thermally unstable. Consequently, the compound could not be well characterized. The main evidence for its existence is the infrared spectrum of the gas, which is similar to that of FOIF₄O except that the O—F stretch is replaced by a band at 763 cm⁻¹, characteristic of an O—Cl stretch, 47 and the I=O, IF, and I-O stretching modes are shifted to slightly lower frequencies. The compound decomposes to IF₅, and attempts to add it across the C=C double bond of C_2F_4 did not result in stable adducts.

Conclusion. Although the isolation of NF₄⁺ salts of either IO₄ or IF₄O₂ was not possible, solutions containing NF₄ and HOIF₄O were found to decompose to produce FOIF₄O in high yield. This is in marked contrast to the similar syntheses of FOClO₃ and FOSO₂F where the corresponding NF₄+ClO₄⁻³

(47) Schack, C. J.; Christe, K. O. Isr. J. Chem. 1978, 17, 20.

and NF₄+SO₃F⁻⁴ salts were shown to be the actual intermediates. FOIF4O is the first known example of an iodine hypofluorite and exists as cis and trans isomers. It is a stable compound and was thoroughly characterized. The analogous hypochlorite, ClOIF₄O, was also prepared for the first time but, as expected, is considerably less stable than FOIF₄O. The reaction of CsIO₄ with HF was found to be a convenient synthesis of CsIF₄O₂, which, by reaction with BiF₅ in HF, can readily be converted into HOIF4O, thus providing easy access to tetrafluoroperiodates. The bonding in trans-IF₄O₂ was studied by vibrational spectroscopy, and the results of a normal-coordinate analysis are in excellent agreement with the trends previously established³⁷ for chlorine oxyfluorides.

Acknowledgment. The authors are grateful for financial support by the Office of Naval Research, Power Branch, and the U.S. Army Research Office.

Registry No. trans-CsIF₄O₂, 77224-44-3; cis-CsIF₄O₂, 55188-51-7; trans-HOIF4O, 25685-16-9; cis-HOIF4O, 25685-15-8; trans-FOIF4O, 72151-31-6; cis-FOIF₄O, 72123-55-8; ClOIF₄O, 77224-34-1; CsIO₄, 13478-04-1; HF, 7664-39-3; BrF₅, 7789-30-2; ClF₃, 7790-91-2; ClF₅, 13637-63-3; F₂, 7782-41-4; BiF₅, 7787-62-4; NF₄SbF₆, 16871-76-4; CISO₃F, 13997-90-5; IF₅O, 16056-61-4.

Contribution from the Department of Chemistry, University of Missouri, Columbia, Missouri 65201, and the Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

Oxidation by Aqueous Fluoroxysulfate: Catalysis by Silver(I)^{1a}

RICHARD C. THOMPSON1b and EVAN H. APPELMAN*1c

Received November 5, 1980

The oxidations of the ions Cr3+, Co2+, and VO2+ by the fluoroxysulfate ion, SO4F, in aqueous solution are catalyzed by Ag*. The rate-determining step for all three catalyzed reactions is the bimolecular oxidation of Ag* by SO₄F*, which has a rate constant of $(1.3 \pm 0.2) \times 10^3$ M⁻¹ s⁻¹ at 17 °C. Activation parameters for this reaction are $\Delta H^* = 6.1 \pm 0.5$ kcal/mol and $\Delta S = -23 \pm 2$ cal/(mol deg). In the absence of Ag⁺, Co²⁺ and VO²⁺ react very slowly with SO₄F⁻, while Cr³⁺ does not react at all. Despite its high thermodynamic oxidizing power, the fluoroxysulfate ion acts as a very selective oxidant.

Introduction

The fluoroxysulfate ion, SO₄F⁻, is the only known ionic hypofluorite.² It is also one of the most powerful of all aqueous oxidants, with a standard electrode potential of 2.46 V.3 The rubidium and cesium fluoroxysulfates are rather easily made and are sufficiently stable that they can be conveniently stored prior to use. These salts are therefore very suitable substances with which to explore and take advantage of the chemical properties of a hypofluorite, which we may expect to act as a vigorous oxidizing and fluorinating agent.

In the course of our initial survey of the reaction chemistry of aqueous fluoroxysulfate, 2,4 we have observed that SO₄Freadily oxidizes most reducing substrates. However, some reducing agents such as Cr3+ are not oxidized at all, while others such as Mn²⁺, Ce³⁺, Co²⁺, and VO²⁺ react rather sluggishly. On the other hand, Ag+ is very rapidly oxidized by SO₄F⁻, and since higher oxidation states of silver are known to be powerful oxidants, it appeared to us that Ag+ should catalyze oxidation by SO₄F and might thereby extend the application of the latter as an oxidizing agent. We have found that such catalysis does indeed take place, and we have undertaken to study the Ag+-catalyzed reactions of SO₄F- with Cr³⁺, Co²⁺, and VO²⁺. For the sake of comparison, we have also examined the slow uncatalyzed reactions of SO₄F with Co^{2+} and VO^{2+} .

Experimental Section

Materials. Cesium fluoroxysulfate was prepared and purified by techniques described previously.^{2,4} Solutions of VO(ClO₄)₂ in 1 M HClO₄ were prepared from commercial vanadyl sulfate by ion exchange. Stock solutions of lower acidity were obtained by partial neutralization of the acid with lithium carbonate. Zinc perchlorate was prepared by the reaction of Johnson-Matthey high-purity ZnO with HClO₄, followed by two recrystallizations. Other starting materials such as G. F. Smith Zn(ClO₄)₂, reagent grade ZnO, and reagent grade Zn metal resulted in Zn(ClO₄)₂ solutions containing impurities that rapidly reduced or decomposed fluoroxysulfate. The preparations of Co(ClO₄)₂, Cr(ClO₄)₃, and LiClO₄ have been described elsewhere.⁵ Other materials were commercial products of reagent grade. Deionized water was distilled before use first from acid dichromate and then from alkaline permanganate.

Solutions of HSO₅ in which the terminal peroxide oxygen was enriched in ¹⁸O were prepared by allowing cesium fluoroxysulfate to decompose in a 1 M HClO₄ solution that was enriched in ¹⁸O. The hydrogen peroxide formed was decomposed by addition of a stoichiometric amount of Ce(IV). The yield of peroxymonosulfate in 1 M HClO₄ was of the order of 40% of the fluoroxysulfate. This is considerably higher than the yield obtained at lower acidity.⁴

Analytical Procedures. Solutions of Co²⁺, Co³⁺, VO²⁺, VO₂+, and HCrO₄ were analyzed spectrophotometrically, with use of extinction

⁽a) Work supported in part by the Office of Basic Energy Sciences, Division of Chemical Sciences, U. S. Department of Energy. (b) University of Missouri. (c) Argonne National Laboratory. Appelman, E. H.; Basile, L. J.; Thompson, R. C. J. Am. Chem. Soc. 1979, 101, 3384.

Steele, W. V.; O'Hare, P. A. G.; Appelman, E. H. *Inorg. Chem.* 1981, 20, 1022.

⁽⁴⁾ Thompson, R. C.; Appelman, E. H. Inorg. Chem. 1980, 19, 3248.

⁽⁵⁾ Sullivan, J. C.; Thompson, R. C. Inorg. Chem. 1967, 6, 1795.